首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aphids, among the most destructive insects to world agriculture, are mainly controlled by organophosphate insecticides that disable the catalytic serine residue of acetylcholinesterase (AChE). Because these agents also affect vertebrate AChEs, they are toxic to non-target species including humans and birds. We previously reported that a cysteine residue (Cys), found at the AChE active site in aphids and other insects but not mammals, might serve as a target for insect-selective pesticides. However, aphids have two different AChEs (termed AP and AO), and only AP-AChE carries the unique Cys. The absence of the active-site Cys in AO-AChE might raise concerns about the utility of targeting that residue. Herein we report the development of a methanethiosulfonate-containing small molecule that, at 6.0 µM, irreversibly inhibits 99% of all AChE activity extracted from the greenbug aphid (Schizaphis graminum) without any measurable inhibition of the human AChE. Reactivation studies using β-mercaptoethanol confirm that the irreversible inhibition resulted from the conjugation of the inhibitor to the unique Cys. These results suggest that AO-AChE does not contribute significantly to the overall AChE activity in aphids, thus offering new insight into the relative functional importance of the two insect AChEs. More importantly, by demonstrating that the Cys-targeting inhibitor can abolish AChE activity in aphids, we can conclude that the unique Cys may be a viable target for species-selective agents to control aphids without causing human toxicity and resistance problems.  相似文献   

2.
3.
Previously we used site-directed mutagenesis, in vitro expression, and molecular modeling to investigate the inactivation of an invertebrate acetylcholinesterase, cholinesterase 2 from amphioxus, by the sulfhydryl reagents 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM). We created the mutants C310A, C466A, C310A/C466A and C310A/F312I to assess the roles of the two cysteines and a proposal that the increased rate of inactivation previously found in an F312I mutant was due to increased access of sulfhydryl reagents to Cys310. Our results indicated that both of the cysteines could be involved in inactivation by sulfhydryl reagents, but that the cysteine near the acyl pocket was more accessible. We speculated that the inactivation of aphid AChEs by sulfhydryl reagents was due to the presence of a cysteine homologous to Cys310 and proposed that this residue could be a target for a specific insecticide. Here we reconsider this proposal.  相似文献   

4.
Three commercial and six experimental plant growth bioregulators were surveyed for their effect on aphid reproduction when applied to sorghum. Only CCC and PIX had a significant effect on the greenbug, Schizaphis graminum. Application of the commercial bioregulators CCC and PIXR caused about a 50% decrease in aphid reproduction rate when applied to greenbug susceptible sorghum but had little effect when applied to a greenbug resistant sorghum line. Electronic monitoring of aphid probing behavior on CCC treated, greenbug-susceptible sorghum showed a response pattern which was indistinguishable from that normally observed on greenbug resistant lines and was different from that associated with aphid probing behavior on untreated susceptible lines. The isolated pectin content of the CCC treated susceptible sorghum was twice that of the controls and had twice the methoxy content. These results support the argument that pectin is a barrier to aphid-stylet penetration for phloem feeding aphids which probe intercellularly and that manipulation of pectin content and/or structure can be a major factor in host-plant resistance to sap-sucking insects.  相似文献   

5.
有机磷和氨基甲酸酯类杀虫剂抑制乙酰胆碱酯酶(AChE)的天然生物活性。近年来,AChE作为生物识别元素的生物传感器在杀虫剂残留量检测领域受到了广泛的关注。简要分析了AChE结构与功能关系,综述了近年来通过定点突变法设计AChE以增加对各种杀虫剂的检测灵敏度及其在生物传感器领域的应用现状,指出多种灵敏的AChE突变体同时被应用于多样品及多分析物的平行检测体系是该领域进一步的发展方向。  相似文献   

6.
Interactions between biotype E greenbugs, Schizaphis graminum (Rodani), and two near isogenic lines of the greenbug resistance gene Gb3 of wheat, Triticum aestivum L., were examined for 62 d after infestation. By comparing aphid performance and host responses on control and greenbug-preconditioned plants, we demonstrated that systemic resistance to greenbug herbivory was inducible in the resistant genotype with varying intensities and effectiveness in different parts of the plants. Preconditioning of susceptible plants resulted in modification of within-plant aphid distribution and reduction of cumulative greenbug densities, but it showed no effect on reducing greenbug feeding damage to host plant. Preconditioning of resistant plants altered greenbug population dynamics by reducing the size and buffering the fluctuation of the aphid population. Preconditioning in the first (oldest) leaf of the resistant plant had no phenotypically detectable effect in the stem and induced susceptibility locally in the first leaf within the first 2 d after infestation. The preconditioning-induced resistance reduced greenbug density, delayed aphid density peaks and extended the life of younger leaves in resistant plants. Expression of induced resistance was spatially and temporally dynamic within the plant, which occurred more rapidly, was longer in duration, and stronger in intensity in younger leaves. Host resistance gene-mediated induced resistance was effective in lowering greenbug performance and reducing damage from greenbug herbivory in host plants. Results from this study supported the optimal defense theory regarding within-plant defense allocation.  相似文献   

7.
Sulfatases are a major group of enzymes involved in many critical physiological processes as reflected by their broad distribution in all three domains of life. This class of hydrolases is unique in requiring an essential post-translational modification of a critical active-site cysteine or serine residue to C(alpha)-formylglycine. This modification is catalyzed by at least three nonhomologous enzymatic systems in bacteria. Each enzymatic system is currently considered to be dedicated to the modification of either cysteine or serine residues encoded in the sulfatase-active site and has been accordingly categorized as Cys-type and Ser-type sulfatase-maturating enzymes. We report here the first detailed characterization of two bacterial anaerobic sulfatase-maturating enzymes (anSMEs) that are physiologically responsible for either Cys-type or Ser-type sulfatase maturation. The activity of both enzymes was investigated in vivo and in vitro using synthetic substrates and the successful purification of both enzymes facilitated the first biochemical and spectroscopic characterization of this class of enzyme. We demonstrate that reconstituted anSMEs are radical S-adenosyl-l-methionine enzymes containing a redox active [4Fe-4S](2+,+) cluster that initiates the radical reaction by binding and reductively cleaving S-adenosyl-l-methionine to yield 5 '-deoxyadenosine and methionine. Surprisingly, our results show that anSMEs are dual substrate enzymes able to oxidize both cysteine and serine residues to C(alpha)-formylglycine. Taken together, the results support a radical modification mechanism that is initiated by hydrogen abstraction from a serine or cysteine residue located in an appropriate target sequence.  相似文献   

8.
Microheterogeneity in the amino acid sequence of pea embryo histone III at residue 96 has been established previously. It has been indicated that calf-thymus contains two forms of histone III, with 1 or 2 residues of cysteine, respectively. Evidence is presented here that these two forms are also due to microheterogeneity at residue 96 with one form containing a cysteine residue and the other a serine residue.  相似文献   

9.
The light chain cysteine residue that forms an interchain disulfide bond with the cysteine residue in the heavy chain in IgG1κ is the last amino acid. The cysteine residue is followed by a serine residue in IgG1λ. Effect of the serine residue on the susceptibility of disulfide bonds to reduction was investigated in the current study using a method including reduction, differential alkylation using iodoacetic acid with either natural isotopes or enriched with carbon-13, and mass spectrometry analysis. This newly developed method allowed an accurate determination of the susceptibility of disulfide bonds in IgG antibodies. The effect of the serine residue on disulfide bond susceptibility was compared using three antibodies with differences only in the light chain last amino acid, which was either a serine residue, an alanine residue or deleted. The results demonstrated that the presence of the amino acid (serine or alanine) increased the susceptibility of the inter light and heavy chain disulfide bonds to reduction. On the other hand, susceptibility of the two inter heavy chain disulfide bonds and intrachain disulfide bonds was not changed significantly.  相似文献   

10.
Apple grain aphid, Rhopalosiphum padi (Linnaeus), is an important wheat pest. In China, it has been reported that R. padi has developed high resistance to carbamate and organophosphate insecticides. Previous work cloned from this aphid 2 different genes encoding acetylcholinesterase (AChE), which is the target enzyme for carbamate and organophosphate insecticides, and its insensitive alteration has been proven to be an important mechanism for insecticide resistance in other insects. In this study, both resistant and susceptible strains of R, padi were developed, and their AChEs were compared to determine whether resistance resulted from this mechanism and whether these 2 genes both play a role in resistance. Bioassays showed that the resistant strain used was highly or moderately resistant to pirimicarb, omethoate, and monocrotophos (resistance ratio, 263.8, 53.8, and 17.5, respectively), and showed little resistance to deltamethrin or thiodicarb (resistance ratio, 5.2 and 3.4, respectively). Correspondingly, biochemistry analysis found that AChE from resistant aphids was very insensitive to the first 3 insecticides (I50 increased 43.0-, 15.2-, and 8.8-fold, respectively), but not to thiodicarb (I50 increased 1.1-fold). Enzyme kinetics tests showed that resistant and susceptible strains had different AChEs. Sequence analysis of the 2 AChE genes cloned from resistant and susceptible aphids revealed that 2 mutations in Ace2 and 1 in Ace1 were consistently associated with resistance. Mutation F368(290)L in Ace2 localized at the same position as a previously proven resistance mutation site in other insects. The other 2 mutations, S329(228)P in Ace1 and V435(356)A in Ace2, were also found to affect the enzyme structure. These findings indicate that resistance in this aphid is mainly the result of insensistive AChE alteration, that the 3 mutations found might contribute to resistance, and that the AChEs encoded by both genes could serve as targets of insecticides.  相似文献   

11.
Peptidoglycan recognition proteins (PGRPs) form a recently discovered protein family, which is conserved from insect to mammals and is implicated in the innate immune system by interacting with/or degrading microbial peptidoglycans (PGNs). Drosophila PGRP-SA is a member of this family of pattern recognition receptors and is involved in insect Toll activation. We report here the crystal structure of PGRP-SA at 1.56 A resolution, which represents the first example of a "recognition" PGRP. Comparison with the catalytic Drosophila PGRP-LB reveals an overall structure conservation with an L-shaped hydrophilic groove that is likely the PGN carbohydrate core binding site, but further suggests some possible functional homology between recognition and catalytic PGRPs. Consistent with sequence analysis, PGRP-SA does not contain the canonical zinc-binding residues found in catalytic PGRPs. However, substitution of the zinc-binding cysteine residue by serine, along with an altered coordinating histidine residue, assembles a constellation of residues that resembles a modified catalytic triad. The serine/histidine juxtaposition to a threonine residue and a carbonyl oxygen atom, along with conservation of the catalytic water molecule found in PGRP-LB, tantalizingly suggests some hydrolytic function for this member of receptor PGRPs.  相似文献   

12.
Interactions between biotype E greenbug, Schizaphis graminum (Rondani), and wheat, Triticum aestivum L., were investigated using resistant and susceptible near isogenic lines of the greenbug resistance gene Gb3. In an antixenosis test, the greenbugs preferred susceptible plants to resistant ones when free choice of hosts was allowed. Aphid feeding resulted in quick and severe damage to susceptible plants, which seemed to follow a general pattern spatially and was affected by the position where the greenbugs were initially placed. Symptom of damage in resistant plants resembled senescence. Within-plant distribution of aphids after infestation was clearly different between the two genotypes. Significantly more greenbugs fed on the first (oldest) leaf than on the stem in resistant plants, but this preference was reversed in the susceptible one. After reaching its peak, aphid population on the susceptible plants dropped quickly. All susceptible plants were dead in 10-14 d after infestation due to greenbug feeding. Aphid population dynamics on resistant plants exhibited a multipeak curve. After the first peak, the greenbug population declined slowly. More than 70% of resistant plants were killed 47 d after infestation. Performance of both biotype E and I greenbugs on several Gb3-related wheat germplasm lines were also examined. It seems that the preference-on-stem that was characteristic of biotype E greenbugs on the susceptible plants was aphid biotype- and host genotype-dependent. Results from this study suggested that antixenosis, antibiosis, and tolerance in the resistant plants of wheat might all contribute to resistance against greenbug feeding.  相似文献   

13.
Apolipoprotein A-II, the second major apolipoprotein of human HDL, also has been observed in a variety of mammals; however, it is either present in trace amounts or absent in other mammals. In humans and chimpanzee, and probably in other great apes, apoA-II with a cysteine at residue 6 is able to form a homodimer. In other primates as well as other mammals, apoA-II, lacking a cysteine residue, is monomeric. However, horse HDL has been reported to contain dimeric apoA-II that following reduction forms monomers. In this report, we extend these observations by reporting on the first complete sequence for a horse apolipoprotein and by demonstrating that horse apoA-II also contains a cysteine residue at position 6. Both the intact protein and its enzymatic fragments were analyzed by chemical sequence analysis and time-of-flight MALDI-MS (matrix assisted laser desorption ionization mass spectrometry). We also obtained molecular mass data on dimeric and monomeric apoA-II using electrospray-ionization mass spectrometry (ESI-MS). The data are compared with other mammalian sequences of apoA-II and are discussed in terms of resulting similarities and variations in the primary sequences.  相似文献   

14.
Acetylcholinesterase (AChE) plays a pivotal role in synaptic transmission by hydrolyzing the neurotransmitter acetylcholine. In addition to the classical function of AChE in synaptic transmission, various non-classical functions have been elucidated. Unlike vertebrates possessing a single AChE gene (ace), invertebrates (nematodes, arachnids, and insects) have multiple ace loci, encoding diverse AChEs with a range of different functions. In the field of toxicology, AChE with synaptic function has long been exploited as the target of organophosphorus and cabarmate pesticides to control invertebrate pests for the past several decades. However, many aspects of the evolution and non-classical roles of invertebrate AChEs are still unclear. Although currently available information on invertebrate AChEs is fragmented, we reviewed the recent findings on their evolutionary status, molecular/biochemical properties, and deduced non-classical (non-neuronal) functions.  相似文献   

15.
The cysteine biosynthetic pathway is essential for survival of the protist pathogen Entamoeba histolytica, and functions by producing cysteine for countering oxidative attack during infection in human hosts. Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS) are involved in cysteine biosynthesis and are present in three isoforms each. While EhSAT1 and EhSAT2 are feedback inhibited by end product cysteine, EhSAT3 is nearly insensitive to such inhibition. The active site residues of EhSAT1 and of EhSAT3 are identical except for position 208, which is a histidine residue in EhSAT1 and a serine residue in EhSAT3. A combination of comparative modeling, multiple molecular dynamics simulations and free energy calculation studies showed a difference in binding energies of native EhSAT3 and of a S208H-EhSAT3 mutant for cysteine. Mutants have also been generated in vitro, replacing serine with histidine at position 208 in EhSAT3 and replacing histidine 208 with serine in EhSAT1. These mutants showed decreased affinity for substrate serine, as indicated by Km, compared to the native enzymes. Inhibition kinetics in the presence of physiological concentrations of serine show that IC50 of EhSAT1 increases by about 18 folds from 9.59 µM for native to 169.88 µM for H208S-EhSAT1 mutant. Similar measurements with EhSAT3 confirm it to be insensitive to cysteine inhibition while its mutant (S208H-EhSAT3) shows a gain of cysteine inhibition by 36% and the IC50 of 3.5 mM. Histidine 208 appears to be one of the important residues that distinguish the serine substrate from the cysteine inhibitor.  相似文献   

16.
The activation of cyclic nucleotide-gated (CNG) channels is the final step in olfactory and visual transduction. Previously we have shown that, in addition to their activation by cyclic nucleotides, nitric oxide (NO)-generating compounds can directly open olfactory CNG channels through a redox reaction that results in the S-nitrosylation of a free SH group on a cysteine residue. To identify the target site(s) of NO, we have now mutated the four candidate intracellular cysteine residues Cys-460, Cys-484, Cys-520, and Cys-552 of the rat olfactory rCNG2 (alpha) channel into serine residues. All mutant channels continue to be activated by cyclic nucleotides, but only one of them, the C460S mutant channel, exhibited a total loss of NO sensitivity. This result was further supported by a similar lack of NO sensitivity that we found for a natural mutant of this precise cysteine residue, the Drosophila melanogaster CNG channel. Cys-460 is located in the C-linker region of the channel known to be important in channel gating. Kinetic analyses suggested that at least two of these Cys-460 residues on different channel subunits were involved in the activation by NO. Our results show that one single cysteine residue is responsible for NO sensitivity but that several channel subunits need to be activated for channel opening by NO.  相似文献   

17.
Three distinct classes of membrane-bound acetylcholinesterases (AChEs) have been identified. A12 AChE is composed of 12 catalytic subunits that are linked to noncatalytic collagen-like subunits through intersubunit disulfide bonds. G2 AChE is localized in membranes by a glycoinositol phospholipid covalently linked to the C-terminal amino acid. Brain G4 AChE involves two catalytic subunits linked by a direct intersubunit disulfide bond while the other two are disulfide-linked to a membrane-binding 20-kDa noncatalytic subunit. Molecular cloning studies have so far failed to find evidence of more than one AChE gene in any organism although alternative splicing of torpedo AChE mRNA results in different C-terminal sequences for the A12 and G2 AChE forms. Support for a single bovine AChE gene is provided in this report by amino acid sequencing of the N-terminal domains from the G2 erythrocyte, G4 fetal serum, and G4 brain AChE. Comparison of the 38-amino acid sequences reveals virtually complete identity among the three AChE forms. Additional extensive identity between the fetal serum and brain AChEs was demonstrated by sequencing several brain AChE peptides isolated by high performance liquid chromatography after trypsin digestion of nitrocellulose blots of brain AChE catalytic subunits. Cysteines involved in intersubunit disulfide linkages in brain AChE were reduced selectively with dithiothreitol in the absence of denaturants and radioalkylated with iodoacetamide. The observed sequence of the major radiolabeled tryptic peptide was C*SDL, where C* was the radioalkylated cysteine residue. This sequence is precisely the same as that observed at the C terminus of fetal bovine serum AChE and shows close homology to the C-terminal sequence of torpedo A12 AChE. We conclude that the mammalian brain G4 AChEs utilize the same exon splicing pattern as the A12 AChEs and that factors other than the primary sequence of the AChE catalytic subunits dictate assembly with either the collagen-like or the 20-kDa noncatalytic subunits.  相似文献   

18.
The greenbug aphid, Schizaphis graminum (Rondani) was introduced into the United States in the late 1880s, and quickly was established as a pest of wheat, oat, and barley. Sorghum was also a host, but it was not until 1968 that greenbug became a serious pest of it as well. The most effective control method is the planting of resistant varieties; however, the occurrence of greenbug biotypes has hampered the development and use of plant resistance as a management technique. Until the 1990s, the evolutionary status of greenbug biotypes was obscure. Four mtDNA cytochrome oxidase subunit I (COI) haplotypes were previously identified, suggesting that S. graminum sensu lato was comprised of host-adapted races. To elucidate the current evolutionary and taxonomic status of the greenbug and its biotypes, two nuclear genes and introns were sequenced; cytochrome c (CytC) and elongation factor 1-α (EF1-α). Phylogenetic analysis of CytC sequences were in complete agreement with COI sequences and demonstrated three distinct evolutionary lineages in S. graminum. EF1-α DNA sequences were in partial agreement with COI and CytC sequences, and demonstrated two distinct evolutionary lineages. Host-adapted races in greenbug are sympatric and appear reproductively isolated. Agricultural biotypes in S. graminum likely arose by genetic recombination via meiosis during sexual reproduction within host-races. The 1968 greenbug outbreak on sorghum was the result of the introduction of a host race adapted to sorghum, and not selection by host resistance genes in crops.  相似文献   

19.
Platelet-derived growth factor (PDGF) is a dimeric factor stabilized by disulfide bonds. Using an approach involving partial reduction of PDGF, we have identified the 2nd and 4th cysteine residues in the PDGF chains as the cysteine residues forming interchain disulfide bonds. Analysis of PDGF mutants in which the 2nd and 4th cysteine residues were mutated to serine residues revealed that the disulfide bonds are arranged in a cross-wise manner, with the 2nd cysteine residue in one chain being linked to the 4th cysteine residue in the other. A PDGF B-chain mutant, in which both the 2nd and 4th cysteine residues were substituted with serine residues, migrated as a monomer in sodium dodecyl sulfate gel electrophoresis and retained receptor binding activity. When analyzed in receptor dimerization and autophosphorylation assays, this mutant showed agonistic activity. Thus, structural information has been obtained that will allow the large scale production of properly folded monomeric PDGF, as well as design of specific PDGF heterodimers.  相似文献   

20.
Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a kcat of 610 min(-1) and a Km of 610 microM using E. coli thioredoxin as substrate. The reported kcat is 25% of the kcat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号