首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang J 《Genetics》2001,157(2):867-874
An approach to the optimal utilization of marker and pedigree information in minimizing the rates of inbreeding and genetic drift at the average locus of the genome (not just the marked loci) in a small diploid population is proposed, and its efficiency is investigated by stochastic simulations. The approach is based on estimating the expected pedigree of each chromosome by using marker and individual pedigree information and minimizing the average coancestry of selected chromosomes by quadratic integer programming. It is shown that the approach is much more effective and much less computer demanding in implementation than previous ones. For pigs with 10 offspring per mother genotyped for two markers (each with four alleles at equal initial frequency) per chromosome of 100 cM, the approach can increase the average effective size for the whole genome by approximately 40 and 55% if mating ratios (the number of females mated with a male) are 3 and 12, respectively, compared with the corresponding values obtained by optimizing between-family selection using pedigree information only. The efficiency of the marker-assisted selection method increases with increasing amount of marker information (number of markers per chromosome, heterozygosity per marker) and family size, but decreases with increasing genome size. For less prolific species, the approach is still effective if the mating ratio is large so that a high marker-assisted selection pressure on the rarer sex can be maintained.  相似文献   

2.
The negative fitness consequences of close inbreeding are widely recognized, but predicting the long-term effects of inbreeding and genetic drift due to limited population size is not straightforward. As the frequency and homozygosity of recessive deleterious alleles increase, selection can remove (purge) them from a population, reducing the genetic load. At the same time, small population size relaxes selection against mildly harmful mutations, which may lead to accumulation of genetic load. The efficiency of purging and the accumulation of mutations both depend on the rate of inbreeding (i.e., population size) and on the nature of mutations. We studied how increasing levels of inbreeding affect offspring production and extinction in experimental Drosophila littoralis populations replicated in two sizes, N = 10 and N = 40. Offspring production and extinction were measured over 25 generations concurrently with a large control population. In the N = 10 populations, offspring production decreased strongly at low levels of inbreeding, then recovered only to show a consistent subsequent decline, suggesting early expression and purging of recessive highly deleterious alleles and subsequent accumulation of mildly harmful mutations. In the N = 40 populations, offspring production declined only after inbreeding reached higher levels, suggesting that inbreeding and genetic drift pose a smaller threat to population fitness when inbreeding is slow. Our results suggest that highly deleterious alleles can be purged in small populations already at low levels of inbreeding, but that purging does not protect the small populations from eventual genetic deterioration and extinction.  相似文献   

3.
Effective population size (Ne) is an important parameter determining the genetic structure of small populations. In natural populations, the number of adults (N) is usually known and Ne can be estimated on the basis of an assumed ratio Ne/N, usually found to be close to 0.5. In farm animal populations, apart from using pedigrees or genetic marker information, Ne can be estimated from the number N of breeding animals, and a value of 1 is commonly assumed for the ratio Ne/N. The purpose of this paper is to show the relation between effective population size and breeding herd size in livestock species. With overlapping generations, Ne can be predicted knowing the number of individuals entering the population per generation and the variance of family size, the latter being directly related to the survival pattern (or replacement policy) in the breeding herd. Assuming an ideal survivorship leading to a geometric age distribution, it can be shown that the number of breeding animals tends to overestimate effective size, particularly in early-maturing species. The ratio of annual effective size to the number of breeding animals is shown to be equal to [1 + (a- 1)(1 - s)]2/(1 - s2), where a is the age at first offspring and s is the survival rate (including culling) of the parents between successive births. This expression shows to what extent inbreeding may be determined by demography or culling policy independently of the actual herd size. In many situations a fast replacement or an early culling will increase annual effective size. Consequences for the management of small populations are discussed.  相似文献   

4.
Willi Y  Van Buskirk J  Fischer M 《Genetics》2005,169(4):2255-2265
A decline in population size can lead to the loss of allelic variation, increased inbreeding, and the accumulation of genetic load through drift. We estimated the fitness consequences of these processes in offspring of controlled within-population crosses from 13 populations of the self-incompatible, clonal plant Ranunculus reptans. We used allozyme allelic richness as a proxy for long-term population size, which was positively correlated with current population size. Crosses between plants of smaller populations were less likely to be compatible. Inbreeding load, assessed as the slope of the relationship between offspring performance and parental kinship coefficients, was not related to population size, suggesting that deleterious mutations had not been purged from small populations. Offspring from smaller populations were on average more inbred, so inbreeding depression in clonal fitness was higher in small populations. We estimated variation in drift load from the mean fitness of outbred offspring and found enhanced drift load affecting female fertility within small populations. We conclude that self-incompatibility systems do not necessarily prevent small populations from suffering from inbreeding depression and drift load and may exacerbate the challenge of finding suitable mates.  相似文献   

5.
In natural populations, mating between relatives can have important fitness consequences due to the negative effects of reduced heterozygosity. Parental level of inbreeding or heterozygosity has been also found to influence the performance of offspring, via direct and indirect parental effects that are independent of the progeny own level of genetic diversity. In this study, we first analysed the effects of parental heterozygosity and relatedness (i.e. an estimate of offspring genetic diversity) on four traits related to offspring viability in great tits (Parus major) using 15 microsatellite markers. Second, we tested whether significant heterozygosity–fitness correlations (HFCs) were due to ‘local’ (i.e. linkage to genes influencing fitness) and/or ‘general’ (genome‐wide heterozygosity) effects. We found a significant negative relationship between parental genetic relatedness and hatching success, and maternal heterozygosity was positively associated with offspring body size. The characteristics of the studied populations (recent admixture, polygynous matings) together with the fact that we found evidence for identity disequilibrium across our set of neutral markers suggest that HFCs may have resulted from genome‐wide inbreeding depression. However, one locus (Ase18) had disproportionately large effects on the observed HFCs: heterozygosity at this locus had significant positive effects on hatching success and offspring size. It suggests that this marker may lie near to a functional locus under selection (i.e. a local effect) or, alternatively, heterozygosity at this locus might be correlated to heterozygosity across the genome due to the extensive ID found in our populations (i.e. a general effect). Collectively, our results lend support to both the general and local effect hypotheses and reinforce the view that HFCs lie on a continuum from inbreeding depression to those strictly due to linkage between marker loci and genes under selection.  相似文献   

6.
Many endangered species have small population sizes, with less than 10 remaining individuals in some extreme situations. Although the consequences of a small population size have received considerable research attention, few studies have examined the fate of extremely rare plants. Ostrya rehderiana is one such species, with only 5 naturally-regenerated surviving individuals and less than 150 artificially-regenerated progeny. Using amplified fragment length polymorphisms (AFLPs), we found that there was a low percentage of polymorphic loci but moderate heterozygosity in the 5 wild individuals. A severe decline in genetic diversity was observed in the progeny, with a decrease of 36.7% in heterozygosity and of 12% in the number of markers that were amplified per individual compared with the parental generation, a result which was caused by genetic drift and inbreeding. The effective population size was estimated to be 1. A significant positive relationship between parental genetic dissimilarity and the number of surviving offspring was observed, which indicated that inbreeding depression might have purged more inbred offspring. Implications for protection and recovery of the genetic variation of extremely rare plants, such as O. rehderiana, are proposed.  相似文献   

7.
A. Caballero  W. G. Hill 《Genetics》1992,130(4):909-916
Nonrandom mating whereby parents are related is expected to cause a reduction in effective population size because their gene frequencies are correlated and this will increase the genetic drift. The published equation for the variance effective size, Ne, which includes the possibility of nonrandom mating, does not take into account such a correlation, however. Further, previous equations to predict effective sizes in populations with partial sib mating are shown to be different, but also incorrect. In this paper, a corrected form of these equations is derived and checked by stochastic simulation. For the case of stable census number, N, and equal progeny distributions for each sex, the equation is [formula: see text], where Sk2 is the variance of family size and alpha is the departure from Hardy-Weinberg proportions. For a Poisson distribution of family size (Sk2 = 2), it reduces to Ne = N/(1 + alpha), as when inbreeding is due to selfing. When nonrandom mating occurs because there is a specified system of partial inbreeding every generation, alpha can be substituted by Wright's FIS statistic, to give the effective size as a function of the proportion of inbred mates.  相似文献   

8.
Keller MC  Visscher PM  Goddard ME 《Genetics》2011,189(1):237-249
Inbreeding depression, which refers to reduced fitness among offspring of related parents, has traditionally been studied using pedigrees. In practice, pedigree information is difficult to obtain, potentially unreliable, and rarely assessed for inbreeding arising from common ancestors who lived more than a few generations ago. Recently, there has been excitement about using SNP data to estimate inbreeding (F) arising from distant common ancestors in apparently "outbred" populations. Statistical power to detect inbreeding depression using SNP data depends on the actual variation in inbreeding in a population, the accuracy of detecting that with marker data, the effect size, and the sample size. No one has yet investigated what variation in F is expected in SNP data as a function of population size, and it is unclear which estimate of F is optimal for detecting inbreeding depression. In the present study, we use theory, simulated genetic data, and real genetic data to find the optimal estimate of F, to quantify the likely variation in F in populations of various sizes, and to estimate the power to detect inbreeding depression. We find that F estimated from runs of homozygosity (Froh), which reflects shared ancestry of genetic haplotypes, retains variation in even large populations (e.g., SD=0.5% when Ne=10,000) and is likely to be the most powerful method of detecting inbreeding effects from among several alternative estimates of F. However, large samples (e.g., 12,000-65,000) will be required to detect inbreeding depression for likely effect sizes, and so studies using Froh to date have probably been underpowered.  相似文献   

9.
A multilocus stochastic model is developed to simulate the dynamics of mutational load in small populations of various sizes. Old mutations sampled from a large ancestral population at mutation-selection balance and new mutations arising each generation are considered jointly, using biologically plausible lethal and deleterious mutation parameters. The results show that inbreeding depression and the number of lethal equivalents due to partially recessive mutations can be partly purged from the population by inbreeding, and that this purging mainly involves lethals or detrimentals of large effect. However, fitness decreases continuously with inbreeding, due to increased fixation and homozygosity of mildly deleterious mutants, resulting in extinctions of very small populations with low reproductive rates. No optimum inbreeding rate or population size exists for purging with respect to fitness (viability) changes, but there is an optimum inbreeding rate at a given final level of inbreeding for reducing inbreeding depression or the number of lethal equivalents. The interaction between selection against partially recessive mutations and genetic drift in small populations also influences the rate of decay of neutral variation. Weak selection against mutants relative to genetic drift results in apparent overdominance and thus an increase in effective size (Ne) at neutral loci, and strong selection relative to drift leads to a decrease in Ne due to the increased variance in family size. The simulation results and their implications are discussed in the context of biological conservation and tests for purging.  相似文献   

10.
A within-family marker-assisted selection scheme was designed for typical aquaculture breeding schemes, where most traits are recorded on sibs of the candidates. Here, sibs of candidates were tested for the trait and genotyped to establish genetic marker effects on the trait. BLUP breeding values were calculated, including information of the markers (MAS) or not (NONMAS). These breeding values were identical for all family members in the NONMAS schemes, but differed between family members in the MAS schemes, making within-family selection possible. MAS had up to twice the total genetic gain of the corresponding NONMAS scheme. MAS was somewhat less effective when heritability increased from 0.06 to 0.12 or when the frequency of the positive allele was < 0.5. The relative efficiency of MAS was higher for schemes with more candidates, because of larger fullsib family sizes. MAS was also more efficient when male:female mating ratio changed from 1:1 to 1:5 or when the QTL explained more of the total genetic variation. Four instead of two markers linked to the QTL increased genetic gain somewhat. There was no significant difference in polygenic genetic gain between MAS and NONMAS for most schemes. The rates of inbreeding were lower for MAS than NON-MAS schemes, because fewer full-sibs were selected by MAS.  相似文献   

11.
Use of Multiple Genetic Markers in Prediction of Breeding Values   总被引:17,自引:4,他引:13       下载免费PDF全文
Genotypes at a marker locus give information on transmission of genes from parents to offspring and that information can be used in predicting the individuals' additive genetic value at a linked quantitative trait locus (MQTL). In this paper a recursive method is presented to build the gametic relationship matrix for an autosomal MQTL which requires knowledge on recombination rate between the marker locus and the MQTL linked to it. A method is also presented to obtain the inverse of the gametic relationship matrix. This information can be used in a mixed linear model for simultaneous evaluation of fixed effects, gametic effects at the MQTL and additive genetic effects due to quantitative trait loci unlinked to the marker locus (polygenes). An equivalent model can be written at the animal level using the numerator relationship matrix for the MQTL and a method for obtaining the inverse of this matrix is presented. Information on several unlinked marker loci, each of them linked to a different locus affecting the trait of interest, can be used by including an effect for each MQTL. The number of equations per animal in this case is 2m + 1 where m is the number of MQTL. A method is presented to reduce the number of equations per animal to one by combining information on all MQTL and polygenes into one numerator relationship matrix. It is illustrated how the method can accommodate individuals with partial or no marker information. Numerical examples are given to illustrate the methods presented. Opportunities to use the presented model in constructing genetic maps are discussed.  相似文献   

12.
Selection Response in Finite Populations   总被引:1,自引:1,他引:0       下载免费PDF全文
M. Wei  A. Caballero    W. G. Hill 《Genetics》1996,144(4):1961-1974
Formulae were derived to predict genetic response under various selection schemes assuming an infinitesimal model. Account was taken of genetic drift, gametic (linkage) disequilibrium (Bulmer effect), inbreeding depression, common environmental variance, and both initial segregating variance within families (σ(AW0)(2)) and mutational (σ(M)(2)) variance. The cumulative response to selection until generation t(CR(t)) can be approximated as & where N(e) is the effective population size, σ(AW &)(2) = N(e)σ(M)(2) is the genetic variance within families at the steady state (or one-half the genic variance, which is unaffected by selection), and D is the inbreeding depression per unit of inbreeding. R(0) is the selection response at generation 0 assuming preselection so that the linkage disequilibrium effect has stabilized. β is the derivative of the logarithm of the asymptotic response with respect to the logarithm of the within-family genetic variance, i.e., their relative rate of change. R(0) is the major determinant of the short term selection response, but σ(M)(2), N(e) and β are also important for the long term. A selection method of high accuracy using family information gives a small N(e) and will lead to a larger response in the short term and a smaller response in the long term, utilizing mutation less efficiently.  相似文献   

13.
Genome-wide association and genomic selection in animal breeding   总被引:2,自引:0,他引:2  
Hayes B  Goddard M 《Génome》2010,53(11):876-883
Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.  相似文献   

14.
Estimates of effective population size (Ne) are required to predict the impacts of genetic drift and inbreeding on the evolutionary dynamics of populations. How the ratio of Ne to the number of sexually mature adults (N) varies in natural vertebrate populations has not been addressed. We examined the sensitivity of Ne/N to fluctuations of N and determined the major variables responsible for changing the ratio over a period of 17 years in a population of steelhead trout (Oncorhynchus mykiss) from Washington State. Demographic and genetic methods were used to estimate Ne. Genetic estimates of Ne were gained via temporal and linkage disequilibrium methods using data from eight microsatellite loci. DNA for genetic analysis was amplified from archived smolt scales. The Ne/N from 1977 to 1994, estimated using the temporal method, was 0.73 and the comprehensive demographic estimate of Ne/N over the same time period was 0.53. Demographic estimates of Ne indicated that variance in reproductive success had the most substantial impact on reducing Ne in this population, followed by fluctuations in population size. We found increased Ne/N ratios at low N, which we identified as genetic compensation. Combining the information from the demographic and genetic methods of estimating Ne allowed us to determine that a reduction in variance in reproductive success must be responsible for this compensation effect. Understanding genetic compensation in natural populations will be valuable for predicting the effects of changes in N (i.e. periods of high population density and bottlenecks) on the fitness and genetic variation of natural populations.  相似文献   

15.
The hypothesis that effective population sizes are low in hatchery-reared catla ( Catla catla ) from Bangladesh, possibly leading to inbreeding and loss of variation, was tested. The study was based on analysis of seven microsatellite loci in three samples of hatchery-reared catla and four samples representing wild populations. Pair-wise estimates of genetic differentiation between samples were low between wild samples (θ ranging from 0·012 to 0·034), but high between hatchery samples (θ ranging from 0·153 to 0·185), suggesting strong genetic drift in hatcheries. Genetic variation, both in terms of expected heterozygosity and allelic richness, was significantly lower in hatchery samples than in samples of wild catla. Application of a method for reconstructing families among offspring without parental genetic data showed that the hatchery samples consisted of very few half- and full-sib families, whereas the wild samples consisted of a high number of families, suggesting that most individuals were unrelated. Finally, estimation of the effective number of parents ( N b) in the largest sample of hatchery fish confirmed that effective population size was low ( N b= 14·9 for multiallelic loci and N b= 10·6 if alleles were pooled into two composite alleles). The results show that low effective population sizes leading to loss of variation and possibly inbreeding depression should be a matter of serious concern in aquaculture production of catla.  相似文献   

16.
Many local breeds of farm animals have small populations and, consequently, are highly endangered. The correct genetic management of such populations is crucial for their survival. Managing an animal population involves two steps: first, the individuals who will be permitted to leave descendants are to be chosen and the number offspring they will be permitted to produce has to be determined; second, the mating scheme has to be identified. Strategies dealing with the first step are directed towards the maximisation of effective population size and, therefore, act jointly on the reduction in the loss of genetic variation and in the increase of inbreeding. In this paper, the most relevant methods are summarised, including the so-called 'Optimum Contribution' methodology (contributions are proportional to the coancestry of each individual with the rest), which has been shown to be the best. Typically, this method is applied to pedigree information, but molecular marker data can be used to complete or replace the genealogy. When the population is subjected to explicit selection on any trait, the above methodology can be used by balancing the response to selection and the increase in coancestry/inbreeding. Different mating strategies also exist. Some of the mating schemes try to reduce the level of inbreeding in the short term by preventing mating between relatives. Others involve regular (circular) schemes that imply higher levels of inbreeding within populations in the short term, but demonstrate better performance in the long term. In addition, other tools such as cryopreservation and reproductive techniques aid in the management of small populations. In the future, genomic marker panels may replace the pedigree information in measuring the coancestry. The paper also includes the results of several experiments and field studies on the effectiveness and on the consequences of the use of the different strategies.  相似文献   

17.
In promiscuous mating systems, females often show a consistent preference to mate with one or a few males, presumably to acquire heritable genetic benefits for their offspring. However, strong directional selection should deplete additive genetic variation in fitness and consequently any benefit to expressing the preference by females (referred to as the lek paradox). Here, we provide a novel resolution that examines non-additive genetic benefits, such as overdominance or inbreeding, as a source of genetic variation. Focusing on the inbreeding coefficient f and overdominance effects, we use dynamic models to show that (1) f can be inherited from sire to offspring, (2) populations with females that express a mating preferences for outbred males (low f) maintain higher genetic variation than populations with females that mate randomly, and (3) preference alleles for outbred males can invade populations even when the alleles are associated with a fecundity cost. We show that non-additive genetic variation due to overdominance can be converted to additive genetic variation and becomes “heritable” when the frequencies of alternative homozygous genotypes at fitness loci deviate from equality. Unlike previous models that assume an infinite population size, we now show that genetic drift in finite populations can lead to the necessary deviations in the frequencies of homozygous genotypes. We also show that the “heritability of f,” and hence the benefit to a mating preference for non-additive genetic benefits, is highest in small populations and populations in which a smaller number of loci contribute to fitness via overdominance. Our model contributes to the solution of the lek paradox.  相似文献   

18.
This study compares estimates of the census size of the spawning population with genetic estimates of effective current and long-term population size for an abundant and commercially important marine invertebrate, the brown tiger prawn (Penaeus esculentus). Our aim was to focus on the relationship between genetic effective and census size that may provide a source of information for viability analyses of naturally occurring populations. Samples were taken in 2001, 2002 and 2003 from a population on the east coast of Australia and temporal allelic variation was measured at eight polymorphic microsatellite loci. Moments-based and maximum-likelihood estimates of current genetic effective population size ranged from 797 to 1304. The mean long-term genetic effective population size was 9968. Although small for a large population, the effective population size estimates were above the threshold where genetic diversity is lost at neutral alleles through drift or inbreeding. Simulation studies correctly predicted that under these experimental conditions the genetic estimates would have non-infinite upper confidence limits and revealed they might be overestimates of the true size. We also show that estimates of mortality and variance in family size may be derived from data on average fecundity, current genetic effective and census spawning population size, assuming effective population size is equivalent to the number of breeders. This work confirms that it is feasible to obtain accurate estimates of current genetic effective population size for abundant Type III species using existing genetic marker technology.  相似文献   

19.
? Premise of the Study: Effective population size (N(e)) is a critical index of the evolutionary capacity of populations. Low N(e) indicates that standing genetic diversity is susceptible to loss via stochastic processes (and inbreeding) and is, therefore, unavailable for natural selection to act upon. Reported N(e) in plant populations is often quite low. What biological and ecological factors might produce such low N(e) ? Methods: We conducted a simulation model to test the effect of randomly assigned and autocorrelated growth rates of annual plants on plant-size distributions at the end of the growing season. Because plant size is directly correlated with reproductive output in annual plants, variation in plant size reflects variation in reproduction, and thus our modeled size distributions can be used to estimate N(e). ? Key Results: Randomly assigned growth rates had a negligble effect on N(e)/N. Autocorrelated growth rates decreased N(e)/N as the length of the growing season increased. This was the case even when the variance in growth rates was as low as 0.1% of the mean. ? Conclusions: While intrinsic plant biology can affect the degree of growth autocorrelation, ecological factors such as competition, herbivory, and abiotic stress can increase or decrease levels of growth autocorrelation. Ecological factors that increase growth autocorrelation can have significant effects on genetic drift within populations.  相似文献   

20.
The association between population dynamics and genetic variability is of fundamental importance for both evolutionary and conservation biology. We combined long-term population monitoring and molecular genetic data from 123 offspring and their parents at 28 microsatellite loci to investigate changes in genetic diversity over 14 cohorts in a small and relatively isolated population of mountain goats (Oreamnos americanus) during a period of demographic increase. Offspring heterozygosity decreased while parental genetic similarity and inbreeding coefficients (F(IS) ) increased over the study period (1995-2008). Immigrants introduced three novel alleles into the population and matings between residents and immigrants produced more heterozygous offspring than local crosses, suggesting that immigration can increase population genetic variability. The population experienced genetic drift over the study period, reflected by a reduced allelic richness over time and an 'isolation-by-time' pattern of genetic structure. The temporal decline of individual genetic diversity despite increasing population size probably resulted from a combination of genetic drift due to small effective population size, inbreeding and insufficient counterbalancing by immigration. This study highlights the importance of long-term genetic monitoring to understand how demographic processes influence temporal changes of genetic diversity in long-lived organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号