共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Christine Allmang Laurence WurthAlain Krol 《Biochimica et Biophysica Acta (BBA)/General Subjects》2009
The amino acid selenocysteine (Sec) is the major biological form of the trace element selenium. Sec is co-translationally incorporated in selenoproteins. There are 25 selenoprotein genes in humans, and Sec was found in the active site of those that have been attributed a function. This review will discuss how selenocysteine is synthesized and incorporated into selenoproteins in eukaryotes. Sec biosynthesis from serine on the tRNASec requires four enzymes. Incorporation of Sec in response to an in-frame UGA codon, otherwise signaling termination of translation, is achieved by a complex recoding machinery to inform the ribosomes not to stop at this position on the mRNA. A number of the molecular partners acting in this machinery have been identified but their detailed mechanism of action has not been deciphered yet. Here we provide an overview of the literature in the field. Particularly striking is the higher than originally envisaged number of factors necessary to synthesize Sec and selenoproteins. Clearly, selenoprotein synthesis is an exciting and very active field of research. 相似文献
3.
Effects of Se-depletion on glutathione peroxidase and selenoprotein W gene expression in the colon 总被引:6,自引:0,他引:6
Selenium (Se)-containing proteins have important roles in protecting cells from oxidative damage. This work investigated the effects of Se-depletion on the expression of the genes encoding selenoproteins in colonic mucosa from rats fed diets of different Se content and in human intestinal Caco-2 cells grown in Se-adequate or Se-depleted culture medium. Se-depletion produced statistically significant (P<0.05) falls in glutathione peroxidase (GPX) 1 mRNA (60-83%) and selenoprotein W mRNA (73%) levels, a small but significant fall in GPX4 mRNA (17-25%) but no significant change in GPX2. The data show that SelW expression in the colon is highly sensitive to Se-depletion. 相似文献
4.
Ryuta Tobe Hisaaki Mihara 《Biochimica et Biophysica Acta (BBA)/General Subjects》2018,1862(11):2433-2440
Background
Selenophosphate, the key selenium donor for the synthesis of selenoprotein and selenium-modified tRNA, is produced by selenophosphate synthetase (SPS) from ATP, selenide, and H2O. Although free selenide can be used as the in vitro selenium substrate for selenophosphate synthesis, the precise physiological system that donates in vivo selenium substrate to SPS has not yet been characterized completely.Scope of review
In this review, we discuss selenium metabolism with respect to the delivery of selenium to SPS in selenoprotein biosynthesis.Major conclusions
Glutathione, selenocysteine lyase, cysteine desulfurase, and selenium-binding proteins are the candidates of selenium delivery system to SPS. The thioredoxin system is also implicated in the selenium delivery to SPS in Escherichia coli.General significance
Selenium delivered via a protein-bound selenopersulfide intermediate emerges as a central element not only in achieving specific selenoprotein biosynthesis but also in preventing the occurrence of toxic free selenide in the cell. This article is part of a Special Issue entitled “Selenium research in biochemistry and biophysics – 200 year anniversary”. 相似文献5.
A. Jerome-Morais S. Bera W. Rachidi P.H. Gann A.M. Diamond 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
Significant data supports the health benefits of selenium although supplementation trials have yielded mixed results. GPx-1, whose levels are responsive to selenium availability, is implicated in cancer etiology by human genetic data. Selenium's ability to alter the phosphorylation of the H2AX, a histone protein that functions in the reduction of DNA damage by recruiting repair proteins to the damage site, following exposure to ionizing radiation and bleomycin was investigated.Methods
Human cell lines that were either exposed to selenium or were transfected with a GPx-1 expression construct were exposed to ionizing radiation or bleomycin. Phosphorylation of histone H2AX was quantified by flow cytometry and survival by the MTT assay. Phosphorylation of the Chk1 and Chk2 checkpoint proteins was quantified by western blotting.Results
In colon-derived cells, selenium increases GPx-1 and attenuated H2AX phosphorylation following genotoxic exposures while the viability of these cells was unaffected. MCF-7 cells and transfectants that express high GPx-1 levels were exposed to ionizing radiation and bleomycin, and H2AX phosphorylation and cell viability were assessed. GPx-1 increased H2AX phosphorylation and viability following the induction of DNA damage while enhancing the levels of activated Chk1 and Chk2.Conclusions
Exposure of mammalian cells to selenium can alter the DNA damage response and do so by mechanisms that are dependent and independent of its effect on GPx-1.General significance
Selenium and GPx-1 may stimulate the repair of genotoxic DNA damage and this may account for some of the benefits attributed to selenium intake and elevated GPx-1 activity. 相似文献6.
Simpson C 《Proceedings. Biological sciences / The Royal Society》2012,279(1726):116-121
Functional specialization, or division of labour (DOL), of parts within organisms and colonies is common in most multi-cellular, colonial and social organisms, but it is far from ubiquitous. Several mechanisms have been proposed to explain the evolutionary origins of DOL; the basic feature common to all of them is that functional differences can arise easily. These mechanisms cannot explain the many groups of colonial and social animals that exhibit no DOL despite up to 500 million years of evolution. Here, I propose a new hypothesis, based on a multi-level selection theory, which predicts that a reproductive DOL is required to evolve prior to subsequent functional specialization. I test this hypothesis using a dataset consisting of the type of DOL for living and extinct colonial and social animals. The frequency distribution of DOL and the sequence of its acquisition confirm that reproductive specialization evolves prior to functional specialization. A corollary of this hypothesis is observed in colonial, social and also within multi-cellular organisms; those species without a reproductive DOL have a smaller range of internal variation, in terms of the number of polymorphs or cell types, than species with a reproductive DOL. 相似文献
7.
M. C. Santos H. Rodrigues S. Vasconcelos V. Andrade M. J. Lança A. M. Viegas Crespo 《Biological trace element research》1995,47(1-3):257-261
Two age groups, 3 and 15 mo, were used to investigate whether age-associated changes in some parameters related to lipid peroxidation
occur in the liver of male Wistar rats and to observe possible effects of dietary selenium supplementation (0.25 and 0.50
ppm) for 12 mo on the same parameters. At these experimental conditions, the most important observation was that peroxidation
did not change by aging, at least until 15 mo of age. In addition, the activity of Sedependent glutathione peroxidase (GSH-Px,
EC 1.11.1.9) was higher in the liver of the older animals. It is suggested that the enzyme could have a role in the unchanged
hepatic peroxidation observed in aged male rats. On the other hand, an effect of dietary selenium supplementation on those
parameters was not observed, probably because the selenium levels were still at an adequate plateau. 相似文献
8.
In liver homogenate the biosynthesis ofN-acetylneuraminic acid usingN-acetylglucosamine as precursor can be followed stepwise by applying different chromatographic procedures. In this cell-free system 16 metal ions (Zn2+, Mn2+, La3+, Co2+, Cu2+, Hg2+, VO
3
–
, Pb2+, Ce3+, Cd2+, Fe2+, Fe3+, Al3+, Sn2+, Cs+ and Li+) and the selenium compounds, selenium(IV) oxide and sodium selenite, have been checked with respect to their ability to influence a single or possible several steps of the biosynthesis ofN-acetylneuraminic acid. It could be shown that the following enzymes are sensitive to these metal ions (usually applied at a concentration of 1 mmoll–1):N-acetylglucosamine kinase (inhibited by Zn2+ and vandate), UDP-N-acetylglucosamine-2-epimerase (inhibited by zn2+, Co2+, Cu2+, Hg2+, VO
3
–
, Pb2+, Cd2+, Fe3+, Cs+, Li+, selenium(IV) oxide and selenite), andN-acetylmannosamine kinase (inhibited by Zn2+, Cu2+, Cd2+, and Co2+). Dose dependent measurements have shown that Zn2+, Cu2+ and selenite are more efficient inhibitors of UDP-N-acetylglucosamine-2-epimerase than vanadate. As for theN-acetylmannosamine kinase inhibition, a decreasing inhibitory effect exists in the following order Zn2+, Cd2+, Co2+ and Cu2+. In contrast, La3+, Al3+ and Mn2+ (1 mmoll–1) did not interfere with the biosynthesis ofN-acetylneuraminic acid. Thus, the conclusion that the inhibitory effect of the metal ions investigated cannot be regarded as simply unspecific is justified.Dedicated to Professor Theodor Günther on the occasion of his 60th birthday 相似文献
9.
10.
ADRIAN DESMOND 《Zoological Journal of the Linnean Society》1984,82(1-2):7-16
New sociological techniques in the history of science are described. Their value is illustrated by reinterpreting the diagnostic disputes which occurred following the first discovery of the Stonesfield mammals. It is concluded that contextual explanations are more sympathetic to early savants and more conducive to the integration of science and social history. 相似文献
11.
Jamieson M 《Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences》2010,41(4):356-366
An allergy is commonly understood to be an overreaction of the immune system to harmless substances that are misrecognised as foreign. This concept of allergy as an abnormal, misdirected immune response-a biological fault-stems from the idea that the immune system is an inherently defensive operation designed to protect the individual through an innate capacity to discriminate between the benign and toxic, or self and nonself. However, this definition of allergy represents a radical departure from its original formulation. Literally meaning 'altered reactivity', the term was coined in 1906 by Austrian paediatrician Clemens von Pirquet, to describe the fundamentally mutable nature of the immune response. This paper argues that the conventional interpretation of allergy-as-pathology derives from specific concepts of 'organism', 'response', and 'normal' immune function that have-for over a century-governed the perception and study of immune phenomena within immunology. Through an examination of Louis Pasteur's conceptualisation of the host body/microorganism relationship, I argue that immunology is founded on a view of the organism as a discrete, autonomous entity, and on a concomitant notion of the immune response as essentially reactive. Revisiting the concept of 'altered reactivity', this paper points to the fact that allergy was initially posited as a general theory of immune responsiveness and, importantly, one that poses a significant challenge to orthodox notions of immunopathology. It suggests that Pirquet's unique view of immune responsiveness presents an account of organismic or biological identity that encapsulates, rather than reduces, its ecological complexity. 相似文献
12.
Exposure of cells to ionizing radiation leads to the formation of reactive oxygen species (ROS) that are associated with radiation-induced
cytotoxicity. Because of the serious damaging potential of ROS, cells depend on the elaboration of the antioxidant defense
system (AODS), both enzymatic and nonenzymatic oxidant defense mechanisms. The deficiency in important components of the endogenous
AODS leads to the accumulation of oxidative stress inducing oxidative damage. The antioxidant enzymes superoxide dismutase
and glutathione peroxidase are key intracellular antioxidants in the metabolism of ROS.
In the current study, we investigated the potential role of these antioxidant enzymes in radioresistance during the evaluation
of the compensatory role of some exogenous micronutrients against oxidative stress
Animals were categorized into eight groups, receiving vitamin E (α-tocopherol) and/or selenium (Se) with or without whole-body
γ-irradiation (6.5 Gy).
The results indicate that antioxidant pretreatments before irradiation may have some beneficial effects against irradiation-induced
injury. The results also indicate that selenium and vitamin E act alone and in an additive fashion as radioprotecting agents.
The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging
systems and by enhancing peroxide breakdown, whereas vitamin E appears to confer its protection by an alternate complementary
mechanism. 相似文献
13.
The green colonial alga Botryococcus braunii has unusually high levels of hydrocarbons. Two distinct sites of hydrocarbon accumulation are present in the species: an internal pool present in cytoplasmic inclusions and an external pool in the trilaminar outer walls and associated globules. It is generally assumed that the hydrocarbons are produced within the cells and then excreted into the external pool to maintain the intracellular content at a normal value. Various feeding experiments showed, however, that the radioactivity of the external pool is much higher than the internal one. On the other hand, there was no decrease in the labelling of internal hydrocarbons in chase experiments. Therefore, an excretory process apparently does not take place in B. braunii. The outer wall, therefore, is the main site of hydrocarbon accumulation and also the place where the bulk of B. braunii hydrocarbons are produced. The outer wall also is involved in the matrix of colony formation and the above findings account for the sharp decrease of hydrocarbon production which is associated with the loss of colonial habit. The cultures were also shown to be unable, under usual growth conditions, to catabolize their own hydrocarbons. Such a feature, along with the extracellular location of the main site of production, may account for the abnormally high content of hydrocarbons typical of B. braunii. 相似文献
14.
1′-Deoxyabscisic acid (1′-deoxy-ABA) has been isolated from cultures of Cercospora rosicola which are actively synthesizing abscisic acid (ABA) 相似文献
15.
The genes for trehalose synthesis in Thermus thermophilus RQ-1, namely otsA [trehalose-phosphate synthase (TPS)], otsB [trehalose-phosphate phosphatase (TPP)], and treS [trehalose synthase (maltose converting) (TreS)] genes are structurally linked. The TPS/TPP pathway plays a role in osmoadaptation, since mutants unable to synthesize trehalose via this pathway were less osmotolerant, in trehalose-deprived medium, than the wild-type strain. The otsA and otsB genes have now been individually cloned and overexpressed in Escherichia coli and the corresponding recombinant enzymes purified. The apparent molecular masses of TPS and TPP were 52 and 26 kDa, respectively. The recombinant TPS utilized UDP-glucose, TDP-glucose, ADP-glucose, or GDP-glucose, in this order as glucosyl donors, and glucose-6-phosphate as the glucosyl acceptor to produce trehalose-6-phosphate (T6P). The recombinant TPP catalyzed the dephosphorylation of T6P to trehalose. This enzyme also dephosphorylated G6P, and this activity was enhanced by NDP-glucose. TPS had an optimal activity at about 98°C and pH near 6.0; TPP had a maximal activity near 70°C and at pH 7.0. The enzymes were extremely thermostable: at 100°C, TPS had a half-life of 31 min, and TPP had a half-life of 40 min. The enzymes did not require the presence of divalent cations for activity; however, the presence of Co2+ and Mg2+ stimulates both TPS and TPP. This is the first report of the characterization of TPS and TPP from a thermophilic organism. 相似文献
16.
The major diterpenes in the foliage of Dacrydium intermedium have been identified as rimuene, ent-rosadiene, ent-beyerene, phyllocladene, ent-kaurene, sclarene and ent-sclarene. ent-Rosadiene and ent-sclarene have not been reported previously from natural sources. Considerable tree-to-tree variations are encountered and genetic control is proposed. Biosynthetic mechanisms are put forward to explain the presence of diterpenes of both enantiomeric series. A lack of mono- and sesquiterpenes in both D. intermedium and D. fonkii, which ties in with Quinn's proposed revision of the Dacrydium genus, is also noted. 相似文献
17.
Starch granules from eight diverse plant sources all had active starch synthases and branching enzymes inside the granules. The enzymes synthesized both amylose and amylopectin from ADPGlc. Pulsing of the granules with ADP-[14C]Glc gave synthesis of starch that on reduction and glucoamylase hydrolysis gave 14C-labeled D-glucitol. The pulsed label could be chased by nonlabeled ADPGlc to give a significant decrease of 14C-label in D-glucitol. Evidence further indicated that the synthase forms a high-energy covalent complex with D-glucose and the growing starch chain, and that the D-glucopyranosyl group is added to the reducing end of the growing starch chain by a two-site insertion mechanism. 相似文献
18.
Jesús Mu?oz-Bertomeu Armand Djoro Anoman María Flores-Tornero Walid Toujani Sara Rosa-Téllez Alisdair R Fernie Sanja Roje Juan Segura Roc Ros 《Plant signaling & behavior》2013,8(11)
In plants, 3 different pathways of serine biosynthesis have been described: the Glycolate pathway, which is associated with photorespiration, and 2 non-photorespiratory pathways, the Glycerate and the Phosphorylated pathways. The Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been known since the 1950s, but has been studied relatively little, probably because it was considered of minor significance as compared with the Glycolate pathway. In the associated study1, we described for the first time in plants the in vivo functional characterization of the PPSB, by targeting the phosphoserine phosphatase (PSP1), the last enzyme of the pathway. Following a gain- and loss-of-function approach in Arabidopsis, we provided genetic and molecular evidence for the essential role of PSP1 for embryo and pollen development, and for proper root growth. A metabolomics study indicated that the PPSB affects glycolysis, the Krebs cycle, and the biosynthesis of several amino acids, which suggests that this pathway is an important link connecting metabolism and development. The mechanisms underlying the essential functions of PSP1 are discussed. 相似文献
19.
20.
The vertebrate retina has multiple demands for utilization of cholesterol and must meet those demands either by synthesizing its own supply of cholesterol or by importing cholesterol from extraretinal sources, or both. Unlike the blood-brain barrier, the blood-retina barrier allows uptake of cholesterol from the circulation via a lipoprotein-based/receptor-mediated mechanism. Under normal conditions, cholesterol homeostasis is tightly regulated; also, cholesterol exists in the neural retina overwhelmingly in unesterified form, and sterol intermediates are present in minimal to negligible quantities. However, under certain pathological conditions, either due to an inborn error in cholesterol biosynthesis or as a consequence of exposure to selective inhibitors of enzymes in the cholesterol pathway, the ratio of sterol intermediates to cholesterol in the retina can rise dramatically and persist, in some cases resulting in progressive degeneration that significantly compromises the structure and function of the retina. Although the relative contributions of de novo synthesis versus extraretinal uptake are not yet known, herein we review what is known about these processes and the dynamics of cholesterol in the vertebrate retina and indicate some future avenues of research in this area. 相似文献