首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
According to the free radical theory of aging proposed by Denham Harman (Journal of Gerontology 1956, 11, pp. 298-300), the continuous oxidative damage to cellular components over an organism's life span is a causal factor of the aging process. The age-related build-up of oxidized protein is therefore resulting from increased protein oxidative damage and/or decreased elimination of oxidized proteins. In this mini-review, we will address the fate, during aging, of the protein maintenance systems that are involved in the degradation of irreversibly oxidized proteins and in the repair of reversible protein oxidative damage with a special focus on the methionine sulfoxide reductases system. Since these protein degradation and repair systems have been found to be impaired with age, it is proposed that not only failure of redox homeostasis but, as importantly, failure of protein maintenance are critical factors in the aging process.  相似文献   

3.
The proteostasis network adjusts protein composition and maintains protein integrity, which are essential processes for cell function and viability. Current efforts, given their intrinsic characteristics, regenerative potential and fundamental biological functions, have been directed to define proteostasis of stem cells. These insights demonstrate that embryonic stem cells and induced pluripotent stem cells exhibit an endogenous proteostasis network that not only modulates their pluripotency and differentiation but also provides a striking ability to suppress aggregation of disease-related proteins. Moreover, recent findings establish a central role of enhanced proteostasis to prevent the aging of somatic stem cells in adult organisms. Notably, proteostasis is also required for the biological purpose of adult germline stem cells, that is to be passed from one generation to the next. Beyond these links between proteostasis and stem cell function, we also discuss the implications of these findings for disease, aging, and reproduction.  相似文献   

4.
5.
6.
7.
Skin aging can be attributed to photoaging (extrinsic) and chronological (intrinsic) aging. Photoaging and intrinsic aging are induced by damage to human skin attributable to repeated exposure to ultraviolet (UV) irradiation and to the passage of time, respectively. In our previous report, eicosapentaenoic acid (EPA) was found to inhibit UV-induced matrix metalloproteinase-1 (MMP-1) expression in human dermal fibroblasts. Therefore, we investigated the effects of EPA on UV-induced skin damage and intrinsic aging by applying EPA topically to young and aged human skin, respectively. By immunohistochemical analysis and Western blotting, we found that topical application of EPA reduced UV-induced epidermal thickening and inhibited collagen decrease induced by UV light. It was also found that EPA attenuated UV-induced MMP-1 and MMP-9 expression by inhibiting UV-induced c-Jun phosphorylation, which is closely related to UV-induced activator protein-1 activation, and by inhibiting JNK and p38 activation. EPA also inhibited UV-induced cyclooxygenase-2 (COX-2) expression without altering COX-1 expression. Moreover, it was found that EPA increased collagen and elastic fibers (tropoelastin and fibrillin-1) expression by increasing transformin growth factor-beta expression in aged human skin. Together, these results demonstrate that topical EPA has potential as an anti-skin-aging agent.  相似文献   

8.
9.
The skin provides protection against environmental stress. However, intrinsic and extrinsic aging causes significant alteration to skin structure and components, which subsequently impairs molecular characteristics and biochemical processes. Here, we have conducted an immunohistological investigation and established the proteome profiles on nude mice skin to verify the specific responses during aging caused by different factors. Our results showed that UVB‐elicited aging results in upregulation of proliferating cell nuclear antigen and strong oxidative damage in DNA, whereas chronological aging abolished epidermal cell growth and increased the expression of caspase‐14, as well as protein carbonylation. Network analysis indicated that the programmed skin aging activated the ubiquitin system and triggered obvious downregulation of 14‐3‐3 sigma, which might accelerate the loss of cell growth capacity. On the other hand, UVB stimulation enhanced inflammation and the risk of skin carcinogenesis. Collectively, functional proteomics could provide large‐scale investigation of the potent proteins and molecules that play important roles in skin subjected to both intrinsic and extrinsic aging.  相似文献   

10.
The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharomyces cerevisiae. Therefore, we used biochemical approaches to elucidate how proteins containing isoaspartyl residues are metabolized in this organism. Surprisingly, the level of isoaspartyl residues in yeast proteins (50–300 pmol of isoaspartyl residues/mg of protein extract) is comparable with organisms with protein-l-isoaspartyl (d-aspartyl) O-methyltransferase, suggesting a novel regulatory pathway. Interfering with common protein quality control mechanisms by mutating and inhibiting the proteasomal and autophagic pathways in vivo did not increase isoaspartyl residue levels compared with wild type or uninhibited cells. However, the inhibition of metalloproteases in in vitro aging experiments by EDTA resulted in an ∼3-fold increase in the level of isoaspartyl-containing peptides. Characterization by mass spectrometry of these peptides identified several proteins involved in metabolism as targets of isoaspartyl damage. Further analysis of these peptides revealed that many have an N-terminal isoaspartyl site and originate from proteins with short half-lives. These results suggest that one or more metalloproteases participate in limiting isoaspartyl formation by robust proteolysis.  相似文献   

11.
Normal aging is associated with cognitive decline. Evidence indicates that large-scale brain networks are affected by aging; however, it has not been established whether aging has equivalent effects on specific large-scale networks. In the present study, 40 healthy subjects including 22 older (aged 60–80 years) and 18 younger (aged 22–33 years) adults underwent resting-state functional MRI scanning. Four canonical resting-state networks, including the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN) and salience network, were extracted, and the functional connectivities in these canonical networks were compared between the younger and older groups. We found distinct, disruptive alterations present in the large-scale aging-related resting brain networks: the ECN was affected the most, followed by the DAN. However, the DMN and salience networks showed limited functional connectivity disruption. The visual network served as a control and was similarly preserved in both groups. Our findings suggest that the aged brain is characterized by selective vulnerability in large-scale brain networks. These results could help improve our understanding of the mechanism of degeneration in the aging brain. Additional work is warranted to determine whether selective alterations in the intrinsic networks are related to impairments in behavioral performance.  相似文献   

12.
A common feature of aging is the accumulation of genetic damage throughout life. DNA damage can lead to genomic instability. Many diseases associated with premature aging are a result of increased accumulation of DNA damage. In order to minimize these damages, organisms have evolved a complex network of DNA repair mechanisms, including mismatch repair (MMR). In this review, we detail the effects of MMR on genomic instability and its role in aging emphasizing on the association between MMR and the other hallmarks of aging, serving to drive or amplify these mechanisms. These hallmarks include telomere attrition, epigenetic alterations, mitochondrial dysfunction, altered nutrient sensing and cell senescence. The close relationship between MMR and these markers may provide prevention and treatment strategies, to reduce the incidence of age-related diseases and promote the healthy aging of human beings.  相似文献   

13.
Oxygen free radicals have been hypothesized to play an important role in the aging process. To investigate the correlation between the oxidative stress and aging, we have determined the levels of oxidative protein damage and lipid peroxidation in the brain and liver, and activities of antioxidant enzymes in the brain, liver, heart, kidney, and serum from the Fisher 344 rats at ages of 1, 6, 12, 18, and 24 months. The results showed that the level of oxidative protein damage (measured as carbonyl content) in the brain and liver was significantly higher in older animals than in young animals. No statistical difference was observed in the lipid peroxidation of the liver and brain between young and old animals. The activities of antioxidant enzymes in most tissues displayed an age-dependent decline. Superoxide dismutases in the heart, kidney, and serum, glutathione peroxidase activities in the serum and kidney, and catalase activities in the brain, liver, and kidney, significantly decreased during aging. Cytochrome c oxidase, an enzyme involved in electron transport in mitochondria, initially increased, but subsequently decreased in the aged brain, whereas no significant alteration was observed in the liver mitochondrial antioxidant enzymes. The present studies suggest that the accumulation of oxidized proteins during aging is most likely to be linked with an age-related decline of antioxidant enzyme activities, whereas lipid peroxidation is less sensitive to predict the aging process.  相似文献   

14.
15.
Abstract: The dopaminergic phenotype of neurons in human substantia nigra deteriorates during normal aging, and loss of these neurons is prominent in Parkinson's disease. These degenerative processes are hypothesized to involve oxidative stress. To compare oxidative stress in the nigra and related regions, we measured carbonyl modifications of soluble proteins in postmortem samples of substantia nigra, basal ganglia, and prefrontal cortex from neurologically normal subjects, using an improved 2,4-dinitrophenylhydrazine assay. The protein carbonyl content was found to be about twofold higher in substantia nigra pars compacta than in the other regions. To further analyze this oxidative damage, the distribution of carbonyl groups on soluble proteins was determined by western immunoblot analysis. This method revealed that carbonyl content of the major proteins in each region was linearly dependent on molecular weight. This distribution raises the possibility that protein carbonyl content is controlled by a size-dependent mechanism in vivo. Our results suggest that oxidative stress is elevated in human substantia nigra pars compacta in comparison with other regions and that oxidative damage is higher within the dopaminergic neurons. Elevated oxidative damage may contribute to the degeneration of nigral dopaminergic neurons in aging and in Parkinson's disease.  相似文献   

16.
Abstract

Increasing evidence suggests an important role of oxidant-induced damage in the progress of senescent changes, providing support for the free radical theory of aging proposed by Harman in 1956. However, considering that biological organisms continuously renew their structures, it is not clear why oxidative damage should accumulate with age. No strong evidence has been provided in favor of the concept of aging as an accumulation of synthetic errors (e.g. Orgels `error-catastrophe' theory and the somatic mutation theory). Rather, we believe that the process of aging may derive from imperfect clearance of oxidatively damaged, relatively indigestible material, the accumulation of which further hinders cellular catabolic and anabolic functions. From this perspective, it might be predicted that: (i) suppression of oxidative damage would enhance longevity; (ii) accumulation of incompletely digested material (e.g. lipofuscin pigment) would interfere with cellular functions and increase probability of death; (iii) rejuvenation during reproduction is mainly provided by dilution of undigested material associated with intensive growth of the developing organism; and (iv) age-related damage starts to accumulate substantially when development is complete, and mainly affects postmitotic cells and extracellular matrix, not proliferating cells. There is abundant support for all these predictions.  相似文献   

17.
Stem cell research holds a promise to treat and prevent age-related degenerative changes in humans. Literature is replete with studies showing that stem cell function declines with aging, especially in highly proliferative tissues/organs. Among others, telomerase and telomere damage is one of the intrinsic physical instigators that drive age-related degenerative changes. In this review we provide brief overview of telomerase-deficient aging affects in diverse stem cells populations. Furthermore, potential disease phenotypes associated with telomerase dysregulation in a specific stem cell population is also discussed in this review. Additionally, the role of telomerase in stem cell driven cancer is also briefly touched upon.  相似文献   

18.
Understanding the aging process and ways to manipulate it is of major importance for biology and medicine. Among the many aging theories advanced over the years, the concept most consistent with experimental evidence posits the buildup of numerous forms of molecular damage as a foundation of the aging process. Here, we discuss that this concept integrates well with recent findings on cellular senescence, offering a novel view on the role of senescence in aging and age‐related disease. Cellular senescence has a well‐established role in cellular aging, but its impact on the rate of organismal aging is less defined. One of the most prominent features of cellular senescence is its association with macromolecular damage. The relationship between cell senescence and damage concerns both damage as a molecular signal of senescence induction and accelerated accumulation of damage in senescent cells. We describe the origin, regulatory mechanisms, and relevance of various damage forms in senescent cells. This view on senescent cells as carriers and inducers of damage puts new light on senescence, considering it as a significant contributor to the rise in organismal damage. Applying these ideas, we critically examine current evidence for a role of cellular senescence in aging and age‐related diseases. We also discuss the differential impact of longevity interventions on senescence burden and other types of age‐related damage. Finally, we propose a model on the role of aging‐related damage accumulation and the rate of aging observed upon senescent cell clearance.  相似文献   

19.
20.
The lifespan of schizophrenia patients is significantly shorter than the general population. Olanzapine is one of the most commonly used antipsychotic drugs (APDs) for treating patients with psychosis, including schizophrenia and bipolar disorder. Despite their effectiveness in treating positive and negative symptoms, prolonged exposure to APDs may lead to accelerated aging and cognitive decline, among other side effects. Here we report that dysfunctional mitophagy is a fundamental mechanism underlying accelerated aging induced by olanzapine, using in vitro and in vivo (Caenorhabditis elegans) models. We showed that the aberrant mitophagy caused by olanzapine was via blocking mitophagosome–lysosome fusion. Furthermore, olanzapine can induce mitochondrial damage and hyperfragmentation of the mitochondrial network. The mitophagosome–lysosome fusion in olanzapine-induced aging models can be restored by a mitophagy inducer, urolithin A, which alleviates defective mitophagy, mitochondrial damage, and fragmentation of the mitochondrial network. Moreover, the mitophagy inducer ameliorated behavioral changes induced by olanzapine, including shortened lifespan, and impaired health span, learning, and memory. These data indicate that olanzapine impairs mitophagy, leading to the shortened lifespan, impaired health span, and cognitive deficits. Furthermore, this study suggests the potential application of mitophagy inducers as therapeutic strategies to reverse APD-induced adverse effects associated with accelerated aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号