首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adiponectin is one of the most thoroughly studied adipocytokines. Low plasma levels of adiponectin are found to associate with obesity, metabolic syndrome, diabetes and many other human diseases. From animal experiments and human studies, adiponectin has been shown to be a key regulator of insulin sensitivity. In this article, we review the evidence and propose that hypo-adiponectinemia is not a major cause of obesity. Instead, it is the result of obesity-induced insulin resistance in the adipose tissue. Hypo-adiponectinemia then mediates the metabolic effects of obesity on the other peripheral tissues, such as liver and skeletal muscle and may also exert some direct effects on end-organ damage. We propose that deciphering the molecular details governing the adiponectin gene expression and protein secretion will lead us to more comprehensive understanding of the mechanisms of insulin resistance in the adipose tissue and provide us new avenues for the therapeutic intervention of obesity and insulin resistance-related human disorders  相似文献   

2.
C-type natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor-B (NPR-B), are abundantly distributed in the hypothalamus. To explore the role of central CNP/NPR-B signaling in energy regulation, we generated mice with brain-specific NPR-B deletion (BND mice) by crossing Nestin-Cre transgenic mice and mice with a loxP-flanked NPR-B locus. Brain-specific NPR-B deletion prevented body weight gain induced by a high-fat diet (HFD), and the mesenteric fat and liver weights were significantly decreased in BND mice fed an HFD. The decreased liver weight in BND mice was attributed to decreased lipid accumulation in the liver, which was confirmed by histologic findings and lipid content. Gene expression analysis revealed a significant decrease in the mRNA expression levels of CD36, Fsp27, and Mogat1 in the liver of BND mice, and uncoupling protein 2 mRNA expression was significantly lower in the mesenteric fat of BND mice fed an HFD than in that of control mice. This difference was not observed in the epididymal or subcutaneous fat. Although previous studies reported that CNP/NPR-B signaling inhibits SNS activity in rodents, SNS is unlikely to be the underlying mechanism of the metabolic phenotype observed in BND mice.Taken together, CNP/NPR-B signaling in the brain could be a central factor that regulates visceral lipid accumulation and hepatic steatosis under HFD conditions. Further analyses of the precise mechanisms will enhance our understanding of the contribution of the CNP/NPR-B system to energy regulation.  相似文献   

3.
4.
Divergent selection has created rat phenotypes of high‐ and low‐capacity runners (HCR and LCR, respectively) that have differences in aerobic capacity and correlated traits such as adiposity. We analyzed visceral adipose tissue of HCR and LCR using label‐free high‐definition MS (elevated energy) profiling. The running capacity of HCR was ninefold greater than LCR. Proteome profiling encompassed 448 proteins and detected 30 significant (p <0.05; false discovery rate <10%, calculated using q‐values) differences. Approximately half of the proteins analyzed were of mitochondrial origin, but there were no significant differences in the abundance of proteins involved in aerobic metabolism. Instead, adipose tissue of LCR rats exhibited greater abundances of proteins associated with adipogenesis (e.g. cathepsin D), ER stress (e.g. 78 kDa glucose response protein), and inflammation (e.g. Ig gamma‐2B chain C region). Whereas the abundance antioxidant enzymes such as superoxide dismutase [Cu‐Zn] was greater in HCR tissue. Putative adipokines were also detected, in particular protein S100‐B, was 431% more abundant in LCR adipose tissue. These findings reveal low running capacity is associated with a pathological profile in visceral adipose tissue proteome despite no detectable differences in mitochondrial protein abundance.  相似文献   

5.
Objective: We tested sex, race, and age differences in the patterning of visceral adipose tissue (VAT) and subcutaneous adipose tissue. Research Methods and Procedures: Contiguous 1‐cm‐thick magnetic resonance (MR) images of the abdomen were collected from 820 African‐American and white adults. Repeated‐measures ANOVA was used to examine the effects of image location, sex, race, and age (≥50 vs. <50 years) on adipose tissue areas. Maximum VAT area was identified for each subject from the raw data. Results: Compared to women, men had greater total VAT volume (p < 0.0001), and their maximum VAT area occurred higher in the abdomen (p < 0.0001). Among white men, maximim VAT area most frequently occurred 5 to 10 cm above L4‐L5, whereas in the other groups, maximim VAT area most frequently occurred 1 to 4 cm above L4‐L5 (p < 0.0001). African‐American men had greater total VAT volume than African‐American women (p < 0.01), but this sex difference was only significant using single images cranial to L4‐L5 + 2 cm. Age‐related increases in VAT tended to be greatest 5 to 10 cm above L4‐L5 in men and near L4‐L5 in women. Discussion: A single MR image 5 to 10 cm above L4‐L5 may allow more accurate conclusions than the L4‐L5 image regarding group differences in visceral adiposity.  相似文献   

6.
Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is a receptor for oxidized LDL, and is strongly expressed in endothelial cells at an early stage of atherosclerosis. LOX-1 expression in adipocytes is induced by PPARγ (ligands and appears to be involved in adipocyte cholesterol metabolism. However, the role of adipose tissue LOX-1 in high-fat diet-induced obesity is unknown. We found that mRNA levels of adipose tissue LOX-1 were markedly increased in obese mice fed a high-fat diet (HFD) compared with those fed normal chow. The levels were closely correlated with those of a proinflammatory cytokine, monocyte chemoattractant protein-1 (MCP-1). Then, LOX-1 knockout (LOX-1-KO) and wild-type (WT) mice were fed HFD for 16 weeks. HFD feeding increased the body and mesenteric fat weights similarly in WT and LOX-1-KO mice. HFD-induced expressions of proinflammatory cytokines such as MCP-1, MIP-1α, and IL-6 were significantly less in LOX-1-KO than WT mice. Thus, LOX-1 is required for the HFD-induced expression of proinflammatory cytokines in the adipose tissue of obese mice.  相似文献   

7.
目的分析利拉鲁肽联合二甲双胍对2型糖尿病(T2DM)合并肥胖患者胰岛β细胞功能以及内脏脂肪水平的影响。 方法选取重庆两江新区第一人民医院2016年3月至2018年3月收治的194例T2DM合并肥胖患者,将其随机分为研究组、对照组,各97例,均给予为期16周的二甲双胍治疗,研究组加用利拉鲁肽皮下注射。比较两组患者治疗前后血糖、胰岛β细胞功能指数(HOMA-β)、内脏脂肪水平(VFL)等指标变化,总结利拉鲁肽在T2DM合并肥胖治疗中的临床价值。计数资料采用卡方检验,计量资料采用t检验。 结果研究组不良反应发生率为29.90﹪,对照组为23.71﹪,组间比较差异无统计学意义(χ2= 0.946,P > 0.05)。两组患者治疗后FPG、2 hPG、BMI均较治疗前下降,研究组治疗后FPG、2 hPG、BMI分别为(7.12±1.35)?mmol/?L、(9.03±2.66)?mmol/L、(26.32±1.60)kg/m2,均低于对照组的(7.83± 1.19)?mmol/L、(10.57±2.39)?mmol/?L、(27.74±1.66)kg/m2,差异有统计学意义(t = 3.886、4.241、6.066,P均?< 0.05)。两组患者治疗后HOMA-β较治疗前升高,HOMA-IR较治疗前下降,研究组治疗后HOMA-β为155.69±24.55,高于对照组的117.49±21.98,其HOMA-IR为2.30±0.71,低于后者的3.20±0.64,差异有统计学意义(t = 11.407、9.273,P均< 0.05)。两组患者治疗后VFL、脂肪率均较治疗前下降,研究组治疗后VFL、脂肪率低于对照组,且其治疗后肌肉含量较治疗前下降,差异有统计学意义(P < 0.05)。 结论在二甲双胍的基础上联合利拉鲁肽能够通过改善胰岛β细胞功能、减少内脏脂肪,达到改善T2DM合并肥胖患者的胰岛素抵抗的目的,是一种安全、有效的治疗方案。  相似文献   

8.
Adipose tissue (AT) is a key organ in the regulation of total body lipid homeostasis, which is responsible for the storage and release of fatty acids according to metabolic needs. We aimed to investigate the effect of the quantity and quality of dietary fat on the lipogenesis and lipolysis processes in the AT of metabolic syndrome (MetS) patients. A randomized, controlled trial conducted within the LIPGENE study assigned MetS patients to one of four diets: (a) high-saturated fatty acid (HSFA) (b) high-monounsaturated fatty acid, and (c, d) two low-fat, high-complex carbohydrate diets supplemented with long chain (LC) n-3 (LFHCC n-3) polyunsaturated fatty acids (PUFA) or placebo (LFHCC), for 12 weeks each. A fat challenge reflecting the same fatty acid composition as the original diets was conducted post-intervention. Long-term consumption of the LFHCC diet induced an increase in the fasting expression levels of the sterol regulatory element binding protein-1 and stearoyl-CoA desaturase D9-desaturase genes, whereas the supplementation of this diet with n-3 PUFA reversed this effect (p = 0.007). In contrast, long-term consumption of the HSFA diet increased the expression of the adipose triglyceride lipase (ATGL) gene, at both fasting and postprandial states (both, p < 0.001). Our results showed the anti-lipogenic effect exerted by LC n-3 PUFA when administered together with a LFHCC diet. Conversely, a diet high in saturated fat increased the expression of the lipolytic gene ATGL relative to the other diets.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0409-3) contains supplementary material, which is available to authorized users.  相似文献   

9.
PurposeStudies associate specific fatty-acids (FA) with the pathophysiology of inflammation. We aimed to analyze the impact of exercise on adipose tissue FA profile in response to a high-fat diet (HFD) and to ascertain whether these exercise-induced changes in specific FA have repercussions on obesity-related inflammation.MethodsSprague-Dawley rats were assigned into sedentary, voluntary physical-activity (VPA) and endurance training (ET) groups fed a standard (S, 35kcal% fat) or high-fat (71kcal% fat) diets. VPA-animals had unrestricted access to wheel-running. After 9-wks, ET-animals engaged a running protocol for 8-wks, while maintained dietary treatments. The FA content in epididymal white-adipose tissue (eWAT) triglycerides was analyzed by gas-chromatography and the expression of inflammatory markers was determined using RT-qPCR, Western and slot blotting.ResultsEight-wks of ET reversed obesity-related anatomical features. HFD increased plasma tumor necrosis factor (TNF)-α content and eWAT monocyte chemoattractant protein (MCP)-1 protein expression. HFD decreased eWAT content of saturated FA and monounsaturated FA, while increased linoleic acid and prostaglandin E2 (PGE2) levels in eWAT. VPA decreased visceral adiposity, adipocyte size and MCP-1 in HFD-fed animals. The VPA and ET interventions diminished palmitoleic acid and increased linoleic acid in HFD-fed groups. Moreover, both interventions increased PGE2 levels in standard diet-fed groups and decreased in HFD. ET increased eWAT fatty acid desaturase 1 (FADS1) and elongase 5 (ELOVL5) protein content in both diet types. ET reduced eWAT inflammatory markers (TNF-α, IL-6), macrophage recruitment (MCP-1 and F4/80) and increased IL-10/TNF-α ratio in plasma and in eWAT in both diet types.ConclusionsExercise induced FA-specific changes independently of dietary FA composition, but only ET attenuated the inflammatory response in VAT of HFD-fed rats. Moreover, the exercise-induced FA changes did not correlate with the inflammatory response in VAT of rats submitted to HFD.  相似文献   

10.
Langin D 《Comptes rendus biologies》2006,329(8):598-607; discussion 653-5
Adipose tissue lipolysis is the catabolic process leading to the breakdown of triglycerides stored in fat cells and the release of fatty acids and glycerol. Recent work has revealed that lipolysis is not a simple metabolic pathway stimulated by catecholamines and inhibited by insulin. New discoveries on the regulation of lipolysis by endocrine and paracrine factors and on the proteins involved in triglyceride hydrolysis have led to a reappraisal of the complexity of the various signal transduction pathways. The steps involved in the dysregulation of lipolysis observed in obesity have partly been identified.  相似文献   

11.
Conjugation of bile acids (BAs) to the amino acids taurine or glycine increases their solubility and promotes liver BA secretion. Supplementing diets with taurine or glycine modulates BA metabolism and enhances fecal BA excretion in rats. However, it is still unclear whether dietary proteins varying in taurine and glycine contents alter BA metabolism, and thereby modulate the recently discovered systemic effects of BAs. Here we show that rats fed a diet containing saithe fish protein hydrolysate (saithe FPH), rich in taurine and glycine, for 26 days had markedly elevated fasting plasma BA levels relative to rats fed soy protein or casein. Concomitantly, the saithe FPH fed rats had reduced liver lipids and fasting plasma TAG levels. Furthermore, visceral adipose tissue mass was reduced and expression of genes involved in fatty acid oxidation and energy expenditure was induced in perirenal/retroperitoneal adipose tissues of rats fed saithe FPH. Our results provide the first evidence that dietary protein sources with different amino acid compositions can modulate the level of plasma bile acids and our data suggest potential novel mechanisms by which dietary protein sources can affect energy metabolism.  相似文献   

12.
Aquaporin 7 (AQP7) is an aquaglyceroprotein responsible for the secretion and uptake of glycerol from the adipocyte. The modulation of the expression of this membrane transport protein might play an important role in the susceptibility to the development of obesity. The aim of the present study was to compare the AQP7 gene expression in subcutaneous abdominal fat in lean vs. obese high fat intakers with a similar daily physical activity pattern. Twelve young men, 6 lean (BMI=23.2+/-0.4kg/m(2)) and 6 obese (35.0+/-1.1kg/m(2)) with a similar habitual dietary intake of fat (45.5+/-2.5 vs. 43.5+/-1.7% daily energy from fat for lean and obese, respectively) and physical activity (16.0+/-5.7 vs. 17.2+/-5.1 METsh/week for lean and obese, respectively), were recruited. Subcutaneous abdominal fat biopsies were obtained and total RNA was extracted and purified. Pools of RNA from lean and obese individuals were probed into Affymetrix GeneChip Human U133A. The microarray analysis revealed that AQP7 gene was down-regulated in obese compared to lean subjects. The results of the microarray analysis were confirmed by real-time PCR studies. In summary, our data show that the AQP7 gene is differentially expressed in adipose tissue of lean and obese individuals. The down-regulation of the AQP7 gene could be implicated in the susceptibility to obesity by reducing glycerol release and promoting the accumulation of lipids in the adipose tissue.  相似文献   

13.
Despite the magnitude of the obesity epidemic, the mechanisms that contribute to increases in fat mass and to differences in fat depots are still poorly understood. Prostanoids have been proposed as potent adipogenic hormones, e.g. metabolites of prostaglandin J2 (PGJ2) bind and activate PPARγ. We hypothesize that an altered expression of enzymes in PGJ2 synthesis may represent a novel pathogenic mechanism in human obesity. We characterized adipose depot-specific expression of enzymes in PGJ2 synthesis, prostaglandin transporter and PPARγ isoforms. Paired omental and subcutaneous adipose tissue samples were obtained from 26 women undergoing elective abdominal surgery and gene expression examined in whole tissue and cultured preadipocytes using an Affymetrix cDNA microarray technique and validated with quantitative real-time PCR. All enzymes involved in prostaglandin synthesis were expressed in both adipose tissues. Expression of prostaglandin synthase-1 (PGHS1), prostaglandin D synthase (PTGDS), human prostaglandin transporter (hPGT) and PPARγ2 was higher in OM adipose tissue compared to SC, whereas 17β-hydroxysteroid dehydrogenase 5 (AKR1C3) showed predominance in SC adipose tissue. In SC adipose tissue, PGHS1 mRNA expression increased with BMI. The differential, depot-specific expression of key enzymes involved in transport, synthesis and metabolism of prostaglandins may have an important impact upon fat cell biology and may help to explain some of the observed depot-specific differences. In addition, the positive correlation between PGHS1 and BMI offers the novel hypothesis that the regulation of PG synthesis may have a role in determining fat distribution in human obesity.  相似文献   

14.
Recently, vaspin was identified as an adipokine with insulin-sensitizing effects, which is predominantly secreted from visceral adipose tissue in a rat model of type 2 diabetes. In this study, we examined whether vaspin mRNA expression is a marker of visceral obesity and correlates with anthropometric and metabolic parameters in paired samples of visceral and subcutaneous adipose tissue from 196 subjects with a wide range of obesity, body fat distribution, insulin sensitivity, and glucose tolerance. Vaspin mRNA expression was only detectable in 23% of the visceral and in 15% of the subcutaneous (SC) adipose tissue samples. Vaspin mRNA expression was not detectable in lean subjects (BMI<25) and was more frequently detected in patients with type 2 diabetes. No significant correlations were found between visceral vaspin gene expression and visceral fat area or SC vaspin expression. However, visceral vaspin expression significantly correlates with BMI, % body fat, and 2 h OGTT plasma glucose. Subcutaneous vaspin mRNA expression is significantly correlated with WHR, fasting plasma insulin concentration, and glucose infusion rate during steady state of an euglycemic-hyperinsulinemic clamp. Multivariate linear regression analysis revealed % body fat as strongest predictor of visceral vaspin and insulin sensitivity as strongest determinant of SC vaspin mRNA expression. In conclusion, our data indicate that induction of human vaspin mRNA expression in adipose tissue is regulated in a fat depot-specific manner and could be associated with parameters of obesity, insulin resistance, and glucose metabolism.  相似文献   

15.
Obesity is a complex disorder caused by several factors. Thus, the aim of the present study was to assess whether the expression of genes in the omental white adipose tissue (AT) of subjects with insulin resistance (IR) or metabolic syndrome (MetS) is associated with an elevation in serum branched-chain amino acids (BCAAs) and whether this response depends on specific genetic variants. Serum BCAA concentration, the adipocyte area, and gene variants of PPARγ, ABCA1, FTO, TCF7L2, GFOD2,BCAT2, and BCKDH were determined in 115 Mexican subjects. The gene expression in the AT and adipocytes of BCAT, BCKDH E1α, C/EBPα, PPARγ2, SREBP-1, PPARα, UCP1, leptin receptor, leptin, adiponectin, and TNFα was measured in 51 subjects. Subjects with IR showed higher values for the BMI, HOMA-IR, and adipocyte area and higher levels of serum glucose, insulin, leptin, and C-reactive protein, as well as an elevation of the AT gene expression of SREBP-1, leptin, and TNFα and a significant reduction in the expression of adiponectin, BCAT2, and BCKDH E1α, compared with non-IR subjects. The presence of MetS was associated with higher HOMA-IR as well as higher serum BCAA concentrations. Subjects with the genetic variants for BCAT2 and BCKDH E1 α showed a lower serum BCAA concentration, and those with the ABCA1 and FTO gene variant showed higher levels of insulin and HOMA-IR than non-IR subjects. AT dysfunction is the result of a combination of the presence of some genetic variants, altered AT gene expression, the presence of MetS risk factors, IR, and serum BCAA concentrations.  相似文献   

16.
Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p<0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p<0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-delta. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-delta. Furthermore, selective silencing of PPAR-delta by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00+/-0.06 (n=3) to 1.91+/-0.06 (n=3; p<0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-delta significantly reduced CB1 expression to 0.39+/-0.03 (n=3; p<0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-delta. Both CB1 and PPAR-delta are intimately involved in therapeutic interventions against a most important cardiovascular risk factor.  相似文献   

17.
Lee LQ Pu 《Organogenesis》2009,5(3):138-142
The main obstacle to achieving favorable outcome of soft-tissue augmentation after autologous fat transplantation is unpredictable long-term results due to the high rate of absorption in the grafted site. At the present time, adipose aspirates can only be used for immediate autologous fat grafting during the same procedure in which liposuction is performed; therefore adipose aspirates obtained from the procedure are usually discarded. it has been a strong desire of both surgeons and patients to be able to preserve the adipose aspirates, if an optimal technique were available, for potential future applications. For the last several years, cryopreservation of adipose tissue has been studied extensively in the author''s laboratory. Several findings from this exciting translational research will lead to develop a reliable method for long-term preservation of adipose tissue in the future. in addition, successful long-term preservation of adipose tissue may open a new era in adipose tissue related tissue regeneration.  相似文献   

18.
Adipose tissue is an endocrine organ involved in storage and release of energy but also in regulation of energy metabolism in other organs via secretion of peptide and protein hormones (adipokines). Especially visceral adipose tissue has been implicated in the development of metabolic syndrome and type 2 diabetes. Factors secreted by the stromal-vascular fraction contribute to the secretome and modulate adipokine secretion by adipocytes. Therefore, we aimed at the characterization of the adipose tissue secretome rather than the adipocyte cell secretome. The presence of serum proteins and intracellular proteins from damaged cells, released during culture, may dramatically influence the dynamic range of the sample and thereby identification of secreted proteins. Part of the study was therefore dedicated to the influence of the culture setup on the quality of the final sample. Visceral adipose tissue was cultured in five experimental setups, and the quality of resulting samples was evaluated in terms of protein concentration and protein composition. The best setup involved one wash after the 1st h in culture followed by two or three additional washes within an 8-h period, starting after overnight culture. Thereafter tissue was maintained in culture for an additional 48-114 h to obtain the final sample. For the secretome experiment, explants were cultured in media containing L-[(13)C(6),(15)N(2)]lysine to validate the origin of the identified proteins (adipose tissue- or serum-derived). In total, 259 proteins were identified with > or =99% confidence. 108 proteins contained a secretion signal peptide of which 70 incorporated the label and were considered secreted by adipose tissue. These proteins were classified into five categories according to function. This is the first study on the (human) adipose tissue secretome. The results of this study contribute to a better understanding of the role of adipose tissue in whole body energy metabolism and related diseases.  相似文献   

19.
《Cytokine》2015,72(2):405-408
Women with pre-gravid obesity are at risk for pregnancy complications. While the macrophage response of obese pregnant women categorized by body mass index (BMI) has been documented, the relationship between the peripheral CD4+ T cell cytokine profile and body fat compartments during pregnancy is unknown. In this study, third trimester peripheral CD4+ T cell cytokine profiles were measured in healthy pregnant women [n = 35; pre-pregnancy BMI: 18.5–40]. CD4+ T cells were isolated from peripheral blood mononuclear cells and stimulated to examine their capacity to generate cytokines. Between 1 and 3 weeks postpartum, total body fat was determined by dual-energy X-ray absorptiometry and abdominal subcutaneous and visceral fat masses were determined by magnetic resonance imaging. Pearson’s correlation was performed to assess relationships between cytokines and fat mass. Results showed that greater abdominal visceral fat mass was associated with a decrease in stimulated CD4+ T cell cytokine expression. IFN-gamma, TNF-alpha, IL-12p70, IL-10 and IL-17A were inversely related to visceral fat mass. Chemokines CCL3 and IL-8 and growth factors G-CSF and FLT-3L were also inversely correlated. Additionally, total body fat mass was inversely correlated with FGF-2 while abdominal subcutaneous fat mass and BMI were unrelated to any CD4+ T cell cytokine. In conclusion, lower responsiveness of CD4+ T cell cytokines associated with abdominal visceral fat mass is a novel finding late in gestation.  相似文献   

20.
Metabolic Syndrome (MetS) is a risk to develop metabolic-chronic degenerative disease, it is important to find natural alternatives to help decrease the risk. Mexican oregano has a traditional use in Mexican food, moreover, has pharmacologic effects that can help to reduce risk the metabolic syndrome. The aim of this work was to determine the effect of Mexican oregano ethanolic extract in metabolic syndrome in murine model.Ethanolic extract of Mexican oregano (Lippia graveolens) stem (Ext) had a favorable effect on biochemical markers in a murine model of MetS, induced by injection of monosodium glutamate (MSG). From newborn female mice, two groups were formed: control and the MSG groups, which received a dosage of 2 mg/kg of MSG via subcutaneous injection at the second and fourth postnatal day (PD 2,4), and 4 mg/kg at the PD 6, 8, 10 to induce obesity. On week 13, a part of the MSG group received Ext (group MSG + Ext) at 300 mg/kg, administered orally daily from week 13 to week 18. The results indicated that ethanolic extract of Lippia graveolens stem decreases the percentage of body fat, waist circumference, and body weight gain as well as cholesterol, serum triglyceride concentrations and systolic and diastolic pressure. Insulin and leptin hormone values showed a significant effect with the Ext administration. However, hepatic lipoperoxidation levels of MSG and MSG + Ext groups did not show any statistically significant differences between them, both being higher than the control group. Taking in consideration the results obtained in this study, it is concluded that the administration of Ext had a beneficial effect in the murine model with MetS. This is the first study demonstrating the potential of the polar fraction Lippia graveolens stem in MetS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号