首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Huntington's and Parkinson's diseases are both neurodegenerative disorders caused at least in part by misfolding and aggregation of huntingtin (htt) and alpha-synuclein, respectively. Here we use a single chain antibody fragment (scFv) isolated against oligomeric alpha-synuclein to probe similarities and differences between the aggregation and toxic mechanisms of htt and alpha-synuclein. When incubated with htt, the scFv both blocks formation of and promotes dissociation of fibrillar aggregates, but stabilizes formation of cytotoxic oligomeric aggregates. Previous studies with monomeric alpha-synuclein showed the scFv prevented fibrillar aggregation, but blocked toxicity of oligomeric aggregates. These divergent effects suggest the toxic mechanisms of oligomeric aggregates differ among amyloidogenic protein species.  相似文献   

3.
Recently, antibody-based fluorescent biosensors are receiving considerable attention as a suitable biomolecule for diagnostics, namely, homogeneous immunoassay and also as an imaging probe. To date, several strategies for “reagentless biosensors” based on antibodies and natural and engineered binding proteins have been described. In this review, several approaches are introduced including a recently described fluorescent antibody-based biosensor Quenchbody, which works on the principle of fluorescence quenching of attached dye and its antigen-dependent release. The merits and possible demerits of each approach are discussed. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.  相似文献   

4.
Reddy RR  Srinivasan K 《Steroids》2011,76(5):455-463
Formation of cholesterol gallstones in gallbladder is controlled by procrystallising and anticrystallising factors present in bile. Dietary fenugreek seed has been recently observed to possess anti-lithogenic potential in experimental mice. In the current animal study, we evaluated the effect of dietary fenugreek on the compositional changes in the bile, particularly its effect on glycoproteins, low-molecular-weight (LMW) and high-molecular-weight (HMW) proteins, cholesterol nucleation time and cholesterol crystal growth. Groups of Wistar rats were fed for 10 weeks with diets: (1) basal control (C), (2) C + fenugreek (12%), (3) high cholesterol diet (HCD) and (4) HCD + fenugreek (12%). Feeding of HCD containing 0.5% cholesterol for 10 weeks rendered the bile lithogenic. Incorporation of fenugreek into HCD decreased the cholesterol content (70.5%), total protein (58.3%), glycoprotein (27.5%), lipid peroxides (13.6%) and cholesterol saturation index (from 1.98 to 0.75) in bile, increased the bile flow rate (19.5%), prolonged the cholesterol nucleation time and reduced the vesicular form of cholesterol (65%), which was accompanied with an increase in smaller vesicular form (94%). There was an increase in biliary phospholipid (33%) and total bile acid (49%) contents in the HCD + fenugreek group as compared with the HCD group. Electrophoretic separation of biliary LMW proteins showed the presence of a high concentration of 28-kDa protein, which might be responsible for the prolongation of cholesterol nucleation time in the fenugreek-fed groups. These findings indicate that the beneficial anti-lithogenic effect of dietary fenugreek, which primarily is due to reduction in the cholesterol content in bile, was additionally affected through a modulation of the nucleating and anti-nucleating proteins, which, in turn, affect cholesterol crystallisation.  相似文献   

5.
To cultivate the use of trans-splicing as a novel means to rapidly express various antibody fusion proteins, we tried to express antibody-reporter enzyme fusions in a COS-1 co-transfection model. When a vector designed to induce trans-splicing with IgH pre-mRNA was co-transfected with a vector encoding the mouse IgM locus, the expression of VH-secreted human placental alkaline phosphatase (SEAP) as well as Fab-SEAP were successfully expressed both in mRNA and protein levels. Especially, the vectors encoding complementary sequence to Sμ as a binding domain was accurate and efficient, producing trans-spliced mRNA of up to 2% of cis-spliced one. Since Sμ sequence should exist in every IgH pre-mRNA, our finding will lead to the rapid production and analysis of various antibody-enzyme fusions suitable for enzyme-linked immunosorbent assay (ELISA) or antibody-dependent enzyme prodrug therapy (ADEPT).  相似文献   

6.
Bacterial tyrosine-kinases have been demonstrated to participate in the regulation of capsule polysaccharides (CPS) and exopolysaccharides (EPS) production and export. However, discrepant data have been reported on the molecular mechanism responsible for this regulation depending on the bacterial species analyzed. Special attention was previously paid to the tyrosine-kinase Wzcca of Escherichia coli K-12, which is involved in the production of the exopolysaccharide, colanic acid, and autophosphorylates by using a cooperative two-step process. In this work, we took advantage of these observations to investigate in further detail the effect of Wzcca phosphorylation on the colanic acid production. First, it is shown that expression of the phosphorylated form of Wzc prevents production of colanic acid whereas expression of the non-phosphorylated form allows biosynthesis of this exopolysaccharide. However, we provide evidence that, in the latter case, the size distribution of the colanic acid polymer is less scattered than in the case of the wild-type strain expressing both phosphorylated and non-phosphorylated forms of Wzc. It is then demonstrated that colanic acid production is not merely regulated by an on/off mechanism and that, instead, both phosphorylated and non-phosphorylated forms of Wzc are required to promote colanic acid synthesis. Moreover, a series of data suggests that besides the involvement of phosphorylated and non-phosphorylated forms of Wzc in the production of colanic acid, two particular regions of this kinase play as such an important role in the synthesis of this exopolysaccharide: a proline-rich domain located in the N-terminal part of Wzcca, and a tyrosine cluster present in the C-terminal portion of the enzyme. Furthermore, considering that polysaccharides are known to facilitate bacterial resistance to certain environmental stresses, it is shown that the resistance of E. coli to desiccation is directly connected with the phosphorylation state of Wzcca.  相似文献   

7.
Chromosomal DNA replication intermediates, revealed in ligase-deficient conditions in vivo, are of low molecular weight (LMW) independently of the organism, suggesting discontinuous replication of both the leading and the lagging DNA strands. Yet, in vitro experiments with purified enzymes replicating sigma-structured substrates show continuous synthesis of the leading DNA strand in complete absence of ligase, supporting the textbook model of semi-discontinuous DNA replication. The discrepancy between the in vivo and in vitro results is rationalized by proposing that various excision repair events nick continuously synthesized leading strands after synthesis, producing the observed LMW intermediates. Here, we show that, in an Escherichia coli ligase-deficient strain with all known excision repair pathways inactivated, new DNA is still synthesized discontinuously. Furthermore, hybridization to strand-specific targets demonstrates that the LMW replication intermediates come from both the lagging and the leading strands. These results support the model of discontinuous leading strand synthesis in E. coli.  相似文献   

8.
BCF2, a monoclonal antibody raised against scorpion toxin Cn2, is capable of neutralizing both, the toxin and the whole venom of the Mexican scorpion Centruroides noxius Hoffmann. The single chain antibody fragment (scFv) of BCF2 was constructed and expressed in Escherichia coli. Although its affinity for the Cn2 toxin was shown to be in the nanomolar range, it was non-neutralizing in vivo due to a low stability. In order to recover the neutralizing capacity, the scFv of BCF2 was evolved by error-prone PCR and the variants were panned by phage display. Seven improved mutants were isolated from three different libraries. One of these mutants, called G5 with one mutation at CDR1 and another at CDR2 of the light chain, showed an increased affinity to Cn2, as compared to the parental scFv. A second mutant, called B7 with a single change at framework 2 of heavy chain, also had a higher affinity. Mutants G5 and B7 were also improved in their stability but they were unable to neutralize the toxin. Finally, we constructed a variant containing the changes present in G5 and B7. The purpose of this construction was to combine the increments in affinity and stability borne by these mutants. The result was a triple mutant capable of neutralizing the Cn2 toxin. This variant showed the best affinity constant (KD=7.5x10(-11) M), as determined by surface plasmon resonance (BIAcore). The k(on) and k(off) were improved threefold and fivefold, respectively, leading to 15-fold affinity improvement. Functional stability determinations by ELISA in the presence of different concentrations of guanidinium hydrochloride (Gdn-HCl) revealed that the triple mutant is significantly more stable than the parental scFv. These results suggest that not only improving the affinity but also the stability of our scFv were important for recovering its neutralization capacity. These findings pave the way for the generation of recombinant neutralizing antisera against scorpion stings based on scFvs.  相似文献   

9.
Ribosome display is a powerful approach for affinity and stability maturation of recombinant antibodies. However, since ribosome display is performed entirely in vitro, there are several limitations to this approach including technical challenges associated with: (i) efficiently expressing and stalling antibodies on ribosomes using cell-free translation mixtures; and (ii) folding of antibodies in buffers where the concentration and composition of factors varies from that found in the intracellular milieu. We have developed a novel method for intracellular ribosome display that takes advantage of the recently discovered Escherichia coli SecM translation arrest mechanism. Specifically, we provide the first evidence that the encoding mRNA of SecM-stalled heterologous proteins remains stably attached to ribosomes, thereby enabling creation of stalled antibody-ribosome-mRNA (ARM) complexes entirely inside of living cells. Since ARM complexes faithfully maintain a genotype-phenotype link between the arrested antibody and its encoding mRNA, we demonstrate that this method is ideally suited for isolating stability-enhanced single-chain variable fragment (scFv) antibodies that are efficiently folded and functional in the bacterial cytoplasm.  相似文献   

10.
Members of the typical 2-Cys peroxiredoxin (Prx) subfamily represent an intriguing example of protein moonlighting behavior since this enzyme shifts function: indeed, upon chemical stimuli, such as oxidative stress, Prx undergoes a switch from peroxidase to molecular chaperone, associated to a change in quaternary structure from dimers/decamers to higher-molecular-weight (HMW) species. In order to detail the structural mechanism of this switch at molecular level, we have designed and expressed mutants of peroxiredoxin I from Schistosoma mansoni (SmPrxI) with constitutive HMW assembly and molecular chaperone activity. By a combination of X-ray crystallography, transmission electron microscopy and functional experiments, we defined the structural events responsible for the moonlighting behavior of 2-Cys Prx and we demonstrated that acidification is coupled to local structural variations localized at the active site and a change in oligomerization to HMW forms, similar to those induced by oxidative stress. Moreover, we suggest that the binding site of the unfolded polypeptide is at least in part contributed by the hydrophobic surface exposed by the unfolding of the active site. We also find an inverse correlation between the extent of ring stacking and molecular chaperone activity that is explained assuming that the binding occurs at the extremities of the nanotube, and the longer the nanotube is, the lesser the ratio binding sites/molecular mass is.  相似文献   

11.
The adipose tissue derived protein adiponectin exerts anti-diabetic, anti-inflammatory and anti-atherosclerotic effects. Adiponectin serum concentrations are in the microgram per milliliter range in healthy humans and inversely correlate with obesity and metabolic disorders. Accordingly, raising circulating adiponectin levels by direct administration may be an intriguing strategy in the treatment of obesity-related metabolic disorders. However production of large amounts of recombinant adiponectin protein is a primary obstacle so far.Here, we report a novel method for large amount production of globular adiponectin from E. coli inclusion bodies utilizing an alkaline-shock solubilization method without chaotropic agents followed by precipitation of the readily renaturing protein. Precipitation of the mildly solubilized protein capitalizes on advantages of inclusion body formation. This approach of inclusion body protein recovery provides access to gram scale amounts of globular adiponectin with standard laboratory equipment avoiding vast dilution or dialysis steps to neutralize the pH and renature the protein, thus saving chemicals and time. The precipitated protein is readily renaturing in buffer, is of adequate purity without a chromatography step and shows biological activity in cultured MCF7 cells and significantly lowered blood glucose levels in mice with streptozotocin induced type 1 diabetes.  相似文献   

12.
Programmed death-1 (PD-1), expressed by activated T cells, is a negative regulator of T lymphocytes. The associations of the immune response-related genes with cancer have been demonstrated. In this study, the PD-1.5 C/T (+7785) polymorphism was investigated in 200 colorectal cancer patients and 200 healthy individuals as controls by nested polymerase chain reaction-restriction fragment length polymorphism method. The genotype and allele frequencies at PD-1.5 position were not significantly different between control individuals and the overall colorectal cancer patients. However, subdivision of the patients by the location (175 colon cancer and 25 rectal cancer) revealed a significant difference between colon cancer patients and healthy individuals (p=0.026), and between colon and rectal cancer patients (p=0.017). The frequency of the CT genotype was significantly higher in colon cancer patients than in control individuals (58.3% vs. 44.8%, Bonferroni corrected p-value=0.024; OR=1.74; 95% CI=1.15-2.62), and in rectal cancer patients (58.3% vs. 28.0%, Bonferroni corrected p-value=0.012; OR=3.59; 95% CI=1.42-9.04). Characteristics of the patients including age, sex, tumor grade and stage were not associated with the PD-1.5 polymorphism. Our results show a significant association between PD-1.5 polymorphism and colon cancer. Larger numbers of patients are required to investigate comprehensively the association of rectal cancer with PD-1.5 polymorphism.  相似文献   

13.
Primary lactase deficiency (PLD), the physiological decline of lactase, is associated with the LC-13910C/T and LCT-22018G/A polymorphisms. PLD is the most common phenotype in humans and varies widely as a function of ethnicity. Israel is a multiethnic country. We analyzed the genetic frequencies of PLD in different Israeli ethnicities.  相似文献   

14.
Liu S  Zhu X  Tan Y  Liu S 《Gene》2012,499(1):154-159
The St genome, which is present in nearly half of all Triticeae species, originates from the genus Pseudoroegneria. However, very little is known about the high molecular weight (HMW) subunits of glutenin which are encoded by the St genome. In this paper, we report the isolation from Pd. libanotica of four sequences encoding HMW subunits of glutenin. The four genes were all small compared to standard glutenin genes. All four sequences resemble y-type glutenins rather than x-types. However, their N-terminal domains contain a glutamine residue which is present in all x-type, but very few y-type subunits, and their central repetitive domains included some irregular motifs. The indication is therefore that the Glu-1St genes evolved earlier than other modern day homoeologues, so that they represent an intermediate state in the divergence between x- and y-type subunits. No x-type Glu-1St subunit genes were identified.  相似文献   

15.
Tropomyosin (Tm) is a key factor in the molecular mechanisms that regulate the binding of myosin motors to actin filaments (F-Actins) in most eukaryotic cells. This regulation is achieved by the azimuthal repositioning of Tm along the actin (Ac):Tm:troponin (Tn) thin filament to block or expose myosin binding sites on Ac. In striated muscle, including involuntary cardiac muscle, Tm regulates muscle contraction by coupling Ca2 + binding to Tn with myosin binding to the thin filament. In smooth muscle, the switch is the posttranslational modification of the myosin. Depending on the activation state of Tn and the binding state of myosin, Tm can occupy the blocked, closed, or open position on Ac. Using native cryogenic 3DEM (three-dimensional electron microscopy), we have directly resolved and visualized cardiac and gizzard muscle Tm on filamentous Ac in the position that corresponds to the closed state. From the 8-Å-resolution structure of the reconstituted Ac:Tm filament formed with gizzard-derived Tm, we discuss two possible mechanisms for the transition from closed to open state and describe the role Tm plays in blocking myosin tight binding in the closed-state position.  相似文献   

16.
Cocaine is a powerful and addictive stimulant whose abuse remains a prevalent health and societal crisis. Unfortunately, no pharmacological therapies exist and therefore alternative protein-based therapies have been examined. One such approach is immunopharmacotherapy, wherein antibodies are utilized to either bind or hydrolyze cocaine thereby blocking it from exerting its euphoric effect. Towards this end, antibodies capable of binding and hydrolyzing cocaine were identified by phage display from a biased single chain antibody library generated from the spleens of mice previously immunized with a cocaine phosphonate transition state analog hapten. Two classes of antibodies emerged based on sequence homology and mode of action. Alanine scanning mutagenesis and kinetic analysis revealed that residues H97, H99, and L96 are crucial for antibodies 3F5 and 3H9 to accelerate the hydrolysis of cocaine. Antibodies 3F1 through 3F4, which are similar to our previously identified 3A6 class of antibodies, catalyze hydrolysis through transition state stabilization by tyrosine or histidine residues H50 and L94. Mutation of either one or both tyrosine residues to histidine conferred hydrolytic activity on previously inactive antibody 3F4. Mutational analysis of residue H50 of antibody 3F3 resulted in a glutamine mutant with a rate enhancement three times greater than wild-type. A double mutant, containing glutamineH50 and lysineH52, showed a tenfold rate enhancement over wild-type. These results indicate the power of initial selection of catalytic antibodies from a biased antibody library in both rapid generation and screening of mutants for improved catalysis.  相似文献   

17.
Accumulating evidences indicate that the functional FAS− 1377G > A, − 670A > G and FASL− 844T > C polymorphisms affect the risk of several kinds of cancers. However, their roles in the development of larynx and hypopharynx squamous cell carcinoma (SCC) were still unknown in the Chinese. In the current study, we examined whether these functional genetic variants were associated with the risk of larynx and hypopharynx squamous SCC in a Han Chinese population. The FAS and FASL polymorphisms were genotyped in 300 patients with laryngeal and hypopharyngeal SCC and 300 control subjects by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Logistic regression analysis revealed that subjects carrying the FASL–844CT or TT genotype had a significantly decreased risk of developing laryngeal and hypopharyngeal SCC [odds ratio (OR) = 0.69; 95% confidence interval (CI) = 0.51–0.93; P = 0.016; or, OR = 0.41; 95% CI = 0.20–0.86; P = 0.009] compared with those carrying the CC genotype. Joint gene-smoking and gene-drinking effects were also observed, with the OR of CC genotype for smokers or drinkers were 5.15 (95%CI = 3.24–8.97) or 12.52 (95%CI = 7.31–22.47), respectively. Therefore, the FASL− 844T > C polymorphism is associated with genetic susceptibility of developing laryngeal and hypopharyngeal SCC in a Han Chinese population.  相似文献   

18.
A low molecular weight anti-platelet peptide (6.9 kDa) has been purified from Naja kaouthia venom and was named KT-6.9. MALDI-TOF/TOF mass spectrometry analysis revealed the homology of KT-6.9 peptide sequence with many three finger toxin family members. KT-6.9 inhibited human platelet aggregation process in a dose dependent manner. It has inhibited ADP, thrombin and arachidonic acid induced platelet aggregation process in dose dependent manner, but did not inhibit collagen and ristocetin induced platelet aggregation. Strong inhibition (70%) of the ADP induced platelet aggregation by KT-6.9 suggests competition with ADP for its receptors on platelet surface. Anti-platelet activity of KT-6.9 was found to be 25 times stronger than that of anti-platelet drug clopidogrel. Binding of KT-6.9 to platelet surface was confirmed by surface plasma resonance analysis using BIAcore X100. Binding was also observed by a modified sandwich ELISA method using anti-KT-6.9 antibodies. KT-6.9 is probably the first 3FTx from Indian monocled cobra venom reported as a platelet aggregation inhibitor.  相似文献   

19.
Tropomyosins are believed to function in part by stabilizing actin filaments. However, accumulating evidence suggests that fundamental differences in function exist between tropomyosin isoforms, which contributes to the formation of functionally distinct filament populations. We investigated the functions of the high-molecular-weight isoform Tm3 and examined the molecular properties of Tm3-containing actin filament populations. Overexpression of the Tm3 isoform specifically induced the formation of filopodia and changes in actin solubility. We observed alterations in actin-binding protein recruitment to filaments, co-incident with changes in expression levels, which can account for this functional outcome. Tm3-associated filaments recruit active actin depolymerizing factor and are bundled into filopodia by fascin, which is both up-regulated and preferentially associated with Tm3-containing filaments in the Tm3 overexpressing cells. This study provides further insight into the isoform-specific roles of different tropomyosin isoforms. We conclude that variation in the tropomyosin isoform composition of microfilaments provides a mechanism to generate functionally distinct filament populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号