首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review examines both recent and historical literature related to the biophysical chemistry of the proteins in the ageing eye, with a particular focus on cataract development. The lens is a vital component of the eye, acting as an optical focusing device to form clear images on the retina. The lens maintains the necessary high transparency and refractive index by expressing crystallin proteins in high concentration and eliminating all large cellular structures that may cause light scattering. This has the consequence of eliminating lens fibre cell metabolism and results in mature lens fibre cells having no mechanism for protein expression and a complete absence of protein recycling or turnover. As a result, the crystallins are some of the oldest proteins in the human body. Lack of protein repair or recycling means the lens tends to accumulate damage with age in the form of protein post-translational modifications. The crystallins can be subject to a wide range of age-related changes, including isomerisation, deamidation and racemisation. Many of these modification are highly correlated with cataract formation and represent a biochemical mechanism for age-related blindness.  相似文献   

2.
Human aging is associated with the deterioration of long-lived proteins. Gradual cumulative modifications to the life-long proteins of the lens may ultimately be responsible for the pronounced alterations to the optical and physical properties that characterize lenses from older people. γS crystallin, a major human lens protein, is known to undergo several age-dependent changes. Using proteomic techniques, a site of deamidation involving glutamine 92 has been characterized and its time course established. The proportion of deamidation increased from birth to teen-age years and then plateaud. Deamidation at this site increased again in the eighth decade of life. There was no significant difference in the extent of deamidation between cataract and age-matched normal lenses. Gln92 is located in the linker region between the two domains, and the introduction of a negative charge at this site may alter the interaction between the two regions of the protein. Gln170, which is located in another unstructured part of γS crystallin, showed a similar deamidation profile to that of Gln92. As the other Gln residues in β-sheet regions of γS crystallin appear to remain as amides, modification of Gln92 and Gln170 thus conforms to a pattern whereby deamidation is localized to the unstructured regions of long-lived proteins.  相似文献   

3.
Lapko VN  Purkiss AG  Smith DL  Smith JB 《Biochemistry》2002,41(27):8638-8648
A major component of human nuclear cataracts is water-insoluble, high molecular weight protein. A significant component of this protein is disulfide bonded gamma S-crystallin that can be reduced to monomers by dithiothreitol. Analysis of this reduced gamma S-crystallin showed that deamidation of glutamine and asparagine residues is a principal modification. Deamidation is one of the modifications of lens crystallins associated with aging and cataractogenesis. One proposed hypothesis of cataractogenesis is that it develops in response to altered surface charges that cause conformational changes, which, in turn, permit formation of disulfide bonds and crystallin insolubility. This report, showing deamidation among the disulfide bonded gamma S-crystallins from cataractous lenses, supports this hypothesis.  相似文献   

4.
Age‐related lens cataract is the major cause of blindness worldwide. The mechanisms whereby crystallins, the predominant lens proteins, assemble into large aggregates that scatter light within the lens, and cause cataract, are poorly understood. Due to the lack of protein turnover in the lens, crystallins are long‐lived. A major crystallin, γS, is heavily modified by deamidation, in particular at surface‐exposed N14, N76, and N143 to introduce negative charges. In this present study, deamidated γS was mimicked by mutation with aspartate at these sites and the effect on biophysical properties of γS was assessed via dynamic light scattering, chemical and thermal denaturation, hydrogen‐deuterium exchange, and susceptibility to disulfide cross‐linking. Compared with wild type γS, a small population of each deamidated mutant aggregated rapidly into large, light‐scattering species that contributed significantly to the total scattering. Under partially denaturing conditions in guanidine hydrochloride or elevated temperature, deamidation led to more rapid unfolding and aggregation and increased susceptibility to oxidation. The triple mutant was further destabilized, suggesting that the effects of deamidation were cumulative. Molecular dynamics simulations predicted that deamidation augments the conformational dynamics of γS. We suggest that these perturbations disrupt the native disulfide arrangement of γS and promote the formation of disulfide‐linked aggregates. The lens‐specific chaperone αA‐crystallin was poor at preventing the aggregation of the triple mutant. It is concluded that surface deamidations cause minimal structural disruption individually, but cumulatively they progressively destabilize γS‐crystallin leading to unfolding and aggregation, as occurs in aged and cataractous lenses.  相似文献   

5.
Crystallins are the major proteins in the lens of the eye and function to maintain transparency of the lens. Of the human crystallins, α, β, and γ, the β-crystallins remain the most elusive in their structural significance due to their greater number of subunits and possible oligomer formations. The β-crystallins are also heavily modified during aging. This review focuses on the functional significance of deamidation and the related modifications of racemization and isomerization, the major modifications in β-crystallins of the aged human lens. Elucidating the role of these modifications in cataract formation has been slow, because they are analytically among the most difficult post-translational modifications to study. Recent results suggest that many amides deamidate to similar extent in normal aged and cataractous lenses, while others may undergo greater deamidation in cataract. Mimicking deamidation at critical structural regions induces structural changes that disrupt the stability of the β-crystallins and lead to their aggregation in vitro. Deamidations at the surface disrupt interactions with other crystallins. Additionally, the α-crystallin chaperone is unable to completely prevent deamidated β-crystallins from insolubilization. Therefore, deamidation of β-crystallins may enhance their precipitation and light scattering in vivo contributing to cataract formation.  相似文献   

6.
Crystallins are small heat shock proteins with chaperone function that prevent heat- and oxidative stress-induced aggregation of proteins. This is the first report describing modifications of alphaA crystallin in the sensory retina, including altered content and truncation with aging. Proteins from adult, middle age, and old Fischer 344 Brown Norway rats were compared. Western immunoblotting was used to evaluate alphaA crystallin content and identify protein spots on two-dimensional gels containing alphaA crystallin. The type and site of multiple post-translational modifications were identified by mass spectrometry. We found the content of alphaA crystallin was significantly decreased in the oldest rats. On two-dimensional gels, retinal crystallins resolved into multiple spots with altered migration, indicative of changes in intrinsic charge and/or truncation. Post-translational modifications that were identified included oxidation, phosphorylation, deamidation, acetylation, and truncation. In samples from rats of all ages, a highly modified N-terminus containing these modifications was found. We also observed an age-dependent difference in the extent of N- and C-terminal truncation. These results suggest that protection against stress-induced protein aggregation is compromised in the aged retina.  相似文献   

7.
Nagaraj RH  Linetsky M  Stitt AW 《Amino acids》2012,42(4):1205-1220
The proteins of the human eye are highly susceptible to the formation of advanced glycation end products (AGEs) from the reaction of sugars and carbonyl compounds. AGEs progressively accumulate in the aging lens and retina and accumulate at a higher rate in diseases that adversely affect vision such as, cataract, diabetic retinopathy and age-related macular degeneration. In the lens AGEs induce irreversible changes in structural proteins, which lead to lens protein aggregation and formation of high-molecular-weight aggregates that scatter light and impede vision. In the retina AGEs modify intra- and extracellular proteins that lead to an increase in oxidative stress and formation of pro-inflammatory cytokines, which promote vascular dysfunction. This review outlines recent advances in AGE research focusing on the mechanisms of their formation and their role in cataract and pathologies of the retina. The therapeutic action and pharmacological strategies of anti-AGE agents that can inhibit or prevent AGE formation in the eye are also discussed.  相似文献   

8.
The eye lens is responsible for focusing and transmitting light to the retina. The lens does this in the absence of organelles, yet maintains transparency for at least 5 decades before onset of age-related nuclear cataract (ARNC). It is hypothesized that oxidative stress contributes significantly to ARNC formation. It is in addition hypothesized that transparency is maintained by a microcirculation system that delivers antioxidants to the lens nucleus and exports small molecule waste. Common data-dependent acquisition methods are hindered by dynamic range of lens protein expression and provide limited context to age-related changes in the lens. In this study, we utilized data-independent acquisition mass spectrometry to analyze the urea-insoluble membrane protein fractions of 16 human lenses subdivided into three spatially distinct lens regions to characterize age-related changes, particularly concerning the lens microcirculation system and oxidative stress response. In this pilot cohort, we measured 4788 distinct protein groups, 46,681 peptides, and 7592 deamidated sequences, more than in any previous human lens data-dependent acquisition approach. Principally, we demonstrate that a significant proteome remodeling event occurs at approximately 50 years of age, resulting in metabolic preference for anaerobic glycolysis established with organelle degradation, decreased abundance of protein networks involved in calcium-dependent cell–cell contacts while retaining networks related to oxidative stress response. Furthermore, we identified multiple antioxidant transporter proteins not previously detected in the human lens and describe their spatiotemporal and age-related abundance changes. Finally, we demonstrate that aquaporin-5, among other proteins, is modified with age by post-translational modifications including deamidation and truncation. We suggest that the continued accumulation of each of these age-related outcomes in proteome remodeling contribute to decreased fiber cell permeability and result in ARNC formation.  相似文献   

9.
We have employed recently developed blind modification search techniques to generate the most comprehensive map of post-translational modifications (PTMs) in human lens constructed to date. Three aged lenses, two of which had moderate cataract, and one young control lens were analyzed using multidimensional liquid chromatography mass spectrometry. In total, 491 modification sites in lens proteins were identified. There were 155 in vivo PTM sites in crystallins: 77 previously reported sites and 78 newly detected PTM sites. Several of these sites had modifications previously undetected by mass spectrometry in lens including carboxymethyl lysine (+58 Da), carboxyethyl lysine (+72 Da), and an arginine modification of +55 Da with yet unknown chemical structure. These new modifications were observed in all three aged lenses but were not found in the young lens. Several new sites of cysteine methylation were identified indicating this modification is more extensive in lens than previously thought. The results were used to estimate the extent of modification at specific sites by spectral counting. We tested the long-standing hypothesis that PTMs contribute to age-related loss of crystallin solubility by comparing spectral counts between the water-soluble and water-insoluble fractions of the aged lenses and found that the extent of deamidation was significantly increased in the water-insoluble fractions. On the basis of spectral counting, the most abundant PTMs in aged lenses were deamidations and methylated cysteines with other PTMs present at lower levels.  相似文献   

10.
The vertebrate lens evolved to collect light and focus it onto the retina. In development, the lens grows through massive elongation of epithelial cells possibly recapitulating the evolutionary origins of the lens. The refractive index of the lens is largely dependent on high concentrations of soluble proteins called crystallins. All vertebrate lenses share a common set of crystallins from two superfamilies (although other lineage specific crystallins exist). The α-crystallins are small heat shock proteins while the β- and γ-crystallins belong to a superfamily that contains structural proteins of uncertain function. The crystallins are expressed at very high levels in lens but are also found at lower levels in other cells, particularly in retina and brain. All these proteins have plausible connections to maintenance of cytoplasmic order and chaperoning of the complex molecular machines involved in the architecture and function of cells, particularly elongated and post-mitotic cells. They may represent a suite of proteins that help maintain homeostasis in such cells that are at risk from stress or from the accumulated insults of aging.  相似文献   

11.
Recent studies have suggested that the isomerization/racemization of aspartate residues in proteins increases in aged tissues. One such residue is Asp151 in lens‐specific αA‐crystallin. Although many isomerization/racemization sites have been reported in various proteins, the factors that lead to those modifications in proteins in vivo remain obscure. Therefore, an in vitro system is needed to assess the mechanisms of modifications of Asp under various conditions. Deamidation of Asn to Asp in proteins occurs more rapidly than isomerization/racemization of Asp, although the reaction passes through the same intermediate in both pathways. Here, therefore, we replaced Asp151 in human lens αA‐crystallin with Asn by using site‐directed mutagenesis. The recombinant protein was expressed in Escherichia coli and used to investigate the deamidation/isomerization/racemization of Asn151 after incubation at 50°C for various durations and under different pH. After incubation, the mutant αA‐crystallin was subjected to enzymatic digestion followed by liquid chromatography–MS/MS to evaluate the ratio of modifications in Asn151‐containing peptides. The Asp151Asn αA‐crystallin mutant showed rapid deamidation to Asp with the formation of specific Asp isomers. In particular, deamidation increased greatly under basic conditions. By contrast, subunit–subunit interactions between αA‐crystallin and αB‐crystallin had little effect on the modification of Asn151. Our findings suggest that the Asp151Asn αA‐crystallin mutant represents a good in vitro model protein to assess deamidation, isomerization, and the racemization intermediates. Furthermore, our in vitro results show a different trend from in vivo data, implying the presence of specific factors that induce racemization from L‐Asp to D‐Asp residues in vivo.  相似文献   

12.
The accumulation of crystallin fragments in vivo and their subsequent interaction with crystallins are responsible, in part, for protein aggregation in cataracts. Transgenic mice overexpressing acylpeptide hydrolase (APH) specifically in the lens were prepared to test the role of protease in the generation and accumulation of peptides. Cataract development was seen at various postnatal days in the majority of mice expressing active APH (wt-APH). Cataract onset and severity of the cataracts correlated with the APH protein levels. Lens opacity occurred when APH protein levels were >2.6% of the total lens protein and the specific activity, assayed using Ac-Ala-p-nitroanilide substrate, was >1 unit. Transgenic mice carrying inactive APH (mt-APH) did not develop cataract. Cataract development also correlated with N-terminal cleavage of the APH to generate a 57-kDa protein, along with an increased accumulation of low molecular weight (LMW) peptides, similar to those found in aging human and cataract lenses. Nontransgenic mouse lens proteins incubated with purified wt-APH in vitro resulted in a >20% increase in LMW peptides. Crystallin modifications and cleavage were quite dramatic in transgenic mouse lenses with mature cataract. Affected lenses showed capsule rupture at the posterior pole, with expulsion of the lens nucleus and degenerating fiber cells. Our study suggests that the cleaved APH fragment might exert catalytic activity against crystallins, resulting in the accumulation of distinct LMW peptides that promote protein aggregation in lenses expressing wt-APH. The APH transgenic model we developed will enable in vivo testing of the roles of crystallin fragments in protein aggregation.  相似文献   

13.
Advanced glycation end products (AGEs) contribute to lens protein pigmentation and cross-linking during aging and cataract formation. In vitro experiments have shown that ascorbate (ASC) oxidation products can form AGEs in proteins. However, the mechanisms of ASC oxidation and AGE formation in the human lens are poorly understood. Kynurenines are tryptophan oxidation products produced from the indoleamine 2,3-dioxygenase (IDO)-mediated kynurenine pathway and are present in the human lens. This study investigated the ability of UVA light-excited kynurenines to photooxidize ASC and to form AGEs in lens proteins. UVA light-excited kynurenines in both free and protein-bound forms rapidly oxidized ASC, and such oxidation occurred even in the absence of oxygen. High levels of GSH inhibited but did not completely block ASC oxidation. Upon UVA irradiation, pigmented proteins from human cataractous lenses also oxidized ASC. When exposed to UVA light (320–400 nm, 100 milliwatts/cm2, 45 min to 2 h), young human lenses (20–36 years), which contain high levels of free kynurenines, lost a significant portion of their ASC content and accumulated AGEs. A similar formation of AGEs was observed in UVA-irradiated lenses from human IDO/human sodium-dependent vitamin C transporter-2 mice, which contain high levels of kynurenines and ASC. Our data suggest that kynurenine-mediated ASC oxidation followed by AGE formation may be an important mechanism for lens aging and the development of senile cataracts in humans.  相似文献   

14.
Post-translational modifications in lens crystallins due to glycation and oxidation have been suggested to play a significant role in the development of cataracts associated with aging and diabetes. We have previously shown that alpha-keto acids, like pyruvate, can protect the lens against oxidation. We hypothesize that they can also prevent the glycation of proteins competitively by forming a Schiff base between their free keto groups and the free -NH(2) groups of protein as well as subsequently inhibit the oxidative conversion of the initial glycation product to advanced glycation end products (AGE). The purpose of this study was to investigate these possibilities using purified crystallins. The crystallins isolated from bovine lenses were incubated with fructose in the absence and presence of pyruvate. The post-incubation mixtures were analyzed for fructose binding to the crystallins, AGE formation, and the generation of high molecular weight (HMW) proteins. In parallel experiments, the keto acid was replaced by catalase, superoxide dismutase (SOD), or diethylene triaminepentaacetic acid (DTPA). This was done to ascertain oxidative mode of pyruvate effects. Interestingly, the glycation and consequent formation of AGE from alpha-crystallin was more pronounced than from beta-, and gamma-crystallins. The changes in the crystallins brought about by incubation with fructose were prevented by pyruvate. Catalase, SOD, and DTPA were also effective. The results suggest that pyruvate prevents against fructose-mediated changes by inhibiting the initial glycation reaction as well as the conversion of the initial glycated product to AGE. Hence it is effective in early as well as late phases of the reactions associated with the formation of HMW crystallin aggregates.  相似文献   

15.
Cataract is generally associated with the breakdown of the lens microarchitecture. Age-dependent chemical modifications and cross-linking of proteins are the major pathways for development of lens opacity. The specific alterations in lens proteins caused by glycation with four carbonyl metabolites, fructose, methylglyoxal, glyoxal, and ascorbic acid, were investigated. Decrease in intensity of tryptophan related fluorescence and level of reduced protein sulfhydryl groups, parameters that are indicative for changes in protein conformation, were observed after reaction with all studied carbonyl compounds. Protein carbonyl content, an index for oxidative damage to proteins, was strongly enhanced in methylglyoxal-treated proteins. Cross-linking of glycated proteins was confirmed by polyacrylamide electrophoresis. alpha-Oxoaldehydes were the most reactive in protein aggregation. They also formed specific chromophores absorbing UV light above 300 nm. Significant loss in lactate dehydrogenase activity resulted from incubation with methylglyoxal, followed by glyoxal and ascorbic acid. The results obtained showed that alterations in lens proteins do not follow the specific reactivity of studied carbonyl compounds. Despite the similarity in chemical structures of alpha-oxoaldehydes and ascorbic acid degradation products, they cause specific alterations in lens protein structure with different biological consequences.  相似文献   

16.
Takata T  Oxford JT  Brandon TR  Lampi KJ 《Biochemistry》2007,46(30):8861-8871
According to the World Health Organization, cataracts account for half of the blindness in the world, with the majority occurring in developing countries. A cataract is a clouding of the lens of the eye due to light scattering of precipitated lens proteins or aberrant cellular debris. The major proteins in the lens are crystallins, and they are extensively deamidated during aging and cataracts. Deamidation has been detected at the domain and monomer interfaces of several crystallins during aging. The purpose of this study was to determine the effects of two potential deamidation sites at the predicted interface of the betaA3-crystallin dimer on its structure and stability. The glutamine residues at the reported in vivo deamidation sites of Q180 in the C-terminal domain and at the homologous site Q85 in the N-terminal domain were substituted with glutamic acid residues by site-directed mutagenesis. Far-UV and near-UV circular dichroism spectroscopy indicated that there were subtle differences in the secondary structure and more notable differences in the tertiary structure of the mutant proteins compared to that of the wild type betaA3-crystallin. The Q85E/Q180E mutant also was more susceptible to enzymatic digestion, suggesting increased solvent accessibility. These structural changes in the deamidated mutants led to decreased stability during unfolding in urea and increased precipitation during heat denaturation. When simulating deamidation at both residues, there was a further decrease in stability and loss of cooperativity. However, multiangle-light scattering and quasi-elastic light scattering experiments showed that dimer formation was not disrupted, nor did higher-order oligomers form. These results suggest that introducing charges at the predicted domain interface in the betaA3 homodimer may contribute to the insolubilization of lens crystallins or favor other, more stable, crystallin subunit interactions.  相似文献   

17.
Lens proteins and lens gross morphology were examined during tadpole and adult development of the bullfrog, Rana catesbeiana. Significant increases in the lens physical parameters of diameter, wet weight, dry weight (94–97% protein), and percent water were observed to accompany both natural and thyroxine-induced metamorphosis. These increases in lens parameters were not accompanied by growth of tadpoles during metamorphic change. Lens proteins were isolated from whole lenses and also from specified layers within whole lenses by a new fractionation method. Electrophoretic examination of whole lenses showed that the lens proteins did not change rapidly, one for another, prior to or during metamorphosis. However, changes became apparent during post metamorphic development. These changes included an increase in the relative concentration and mobility of alpha crystallin, a decrease in the relative concentration of gamma crystallin and an increase in the relative concentration of beta crystallin. Examination of specified layers within tadpole and frog lenses demonstrated that changes in the patterns of lens protein synthesis and modification may occur during development. Rapid and reproducible methods for quantitating changes in lens gross morphology and lens proteins, and for fractionating both tadpole and frog lenses into a number of definable layers were devised in the course of this study.  相似文献   

18.
Tryptophan can be oxidized in the eye lens by both enzymatic and non-enzymatic mechanisms. Oxidation products, such as kynurenines, react with proteins to form yellow-brown pigments and cause covalent cross-linking. We generated a monoclonal antibody against 3-hydroxykynurenine (3OHKYN)-modified keyhole limpet hemocyanin and characterized it using 3OHKYN-modified amino acids and proteins. This monoclonal antibody reacted with 3OHKYN-modified N(alpha)-acetyl lysine, N(alpha)-acetyl histidine, N(alpha)-acetyl arginine, and N(alpha)-acetyl cysteine. Among the several tryptophan oxidation products tested, 3OHKYN produced the highest concentration of antigen when reacted with human lens proteins. A major antigen from the reaction of 3OHKYN and N(alpha)-acetyl lysine was purified by reversed phase high pressure liquid chromatography, which was characterized by spectroscopy and identified as 2-amino-3-hydroxyl-alpha-((5S)-5-acetamino-5-carboxypentyl amino)-gamma-oxo-benzene butanoic acid. Enzyme-digested cataractous lens proteins displayed 3OHKYN-derived modifications. Immunohistochemistry revealed 3OHKYN modifications in proteins associated with the lens fiber cell plasma membrane. The low molecular products (<10,000 Da) isolated from normal lenses after reaction with glucosidase followed by incubation with proteins generated 3OHKYN-derived products. Human lens epithelial cells incubated with 3OHKYN showed intense immunoreactivity. We also investigated the effect of glycation on tryptophan oxidation and kynurenine-mediated modification of lens proteins. The results showed that glycation products failed to oxidize tryptophan or generate kynurenine modifications in proteins. Our studies indicate that 3OHKYN modifies lens proteins independent of glycation to form products that may contribute to protein aggregation and browning during cataract formation.  相似文献   

19.
BackgroundCrystallin fragments are known to aggregate and cross-link that lead to cataract development. This study has been focused on determination of post-translational modifications (PTMs) of human lens crystallin fragments, and their aggregation properties.MethodsFour crystallin fragments-containing fractions (Fraction I [~3.5 kDa species], Fraction II [~3.5–7 kDa species], Fraction III [~7–10 kDa species] and Fraction IV [>10–18 kDa species]), and water soluble high molecular weight (WS-HMW) protein fraction were isolated from water soluble (WS) protein fraction of human lenses of 50–70 year old-donors. The crystallin fragments of the Fractions I–IV were separated by two-dimensional (2D)-gel electrophoresis followed by analysis of their gel-spots by mass spectrometry. The Fractions I–IV were examined for their molecular mass, particle-diameters, amyloid fibril formation, and for their aggregation by themselves and with WS-HMW proteins.ResultsCrystallin fragments in Fractions I–IV were derived from α-, β- and γ-crystallins, and their 2D-gel separated spots contained multiple crystallins with PTMs such as oxidation, deamidation, methylation and acetylation. Crystallin fragments from all the four fractions exhibited self-aggregated complexes ranging in Mr from 5.5×105 to 1.0×108 Da, with diameters of 10–28 nm, and amyloid fibril-like formation, and aggregation with WS-HMW proteins.ConclusionThe crystallin fragments exhibited several PTMs, and were capable of forming aggregated species by themselves and with WS-HMW proteins, suggesting their potential role in aggregation process during cataract development.General significanceCrystallin fragments play a major role in human cataract development.  相似文献   

20.
Human lens membranes contain the highest cholesterol concentration of any known biological membranes, but it significantly decreases with age. Oxygenation of cholesterol generates numerous forms of oxysterols (bile acids). We previously showed that two forms of the bile acid components—ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (TUDCA)—suppressed lens epithelial cell death and alleviated cataract formation in galactosemic rat lenses. We investigated whether these compounds also suppress the thermal aggregation of human lens crystallins. Total water-soluble (WS) proteins were prepared from human lenses, and recombinant human crystallins (αA-, αB-, βB2-, and γC-crystallin) were generated by a prokaryotic expression system and purified by liquid chromatography. The light scattering of proteins in the presence or absence of UDCA or TUDCA was measured using a spectrofluorometer set at Ex/Em = 400/400 nm. Protein blot analysis was conducted for detection of α-crystallins in the human lens WS proteins. High concentrations of UDCA and TUDCA significantly suppressed thermal aggregation of total lens WS proteins, which contained a low level of αA-/αB-crystallin. Spectroscopic analysis with each recombinant human lens crystallin indicated that the bile acids did not suppress the thermal aggregation of γC-, βB2-, αA-, or αB-crystallin. Combination of α-crystallin and bile acid (either UDCA or TUDCA) suppressed thermal aggregation of each individual crystallin as well as a non-crystallin protein, insulin. These results suggest that UDCA or TUDCA protects the chaperone activity of α-crystallin. It is believed that these two naturally occurring intermediate waste products in the lens enhance the chaperone activity of α-crystallin. This finding may lead to the development of UDCA and TUDCA as anticataract agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号