首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of the plasma selenium levels associated with optimised concentration or activity of specific selenoproteins can provide considerable insights from epidemiological data on the possible involvement of those selenoproteins in health, most notably with respect to cancer. For cohort studies, if selenoproteins such as glutathione peroxidase and selenoprotein P are relevant to cancer, one might only expect to see an effect on risk when the concentrations in the cohort range from below, to above, the level needed to optimise the activity or concentration of these enzymes. Similarly, trials would only show a beneficial effect of supplementation if selenium status were raised from below, to above, the optimal concentration for the selenoproteins likely to be implicated in cancer risk, as occurred in the NPC trial but not in SELECT. The most powerful evidence for the involvement of selenoproteins in human health comes from epidemiological studies that have related single nucleotide polymorphisms in selenoproteins to disease risk. The totality of the evidence currently implicates GPx1, GPx4, SEPS1, Sep15, SEPP1 and TXNRD1 in conditions such as cardiovascular disease, pre-eclampsia and cancer. Future studies therefore need to determine not only selenium status, but genotype, both in selenoproteins and related pathways, when investigating the relationship of selenium with disease risk.  相似文献   

2.
Despite the widely accepted belief that selenium toxicity in plants is manifested by the misincorporation of selenocysteine into selenoproteins, there is a lack of data suggesting that selenoproteins are malformed or misfolded. Plant mechanisms to prevent the formation of selenoproteins are associated with increased selenium tolerance, yet there is no evidence to suggest that selenoproteins are malformed or potentially misfolded. We reasoned that if selenoproteins are malformed, then they might be degraded by the ubiquitin-proteasome pathway. The data demonstrate that selenate treatment induced the accumulation of both oxidized and ubiquitinated proteins, thus implicating both the 20S and 26S proteasome of Stanleya pinnata, a selenium-hyperaccumulating plant, in a selenate response. Inhibition of the proteasome increases the amount of selenium incorporated into protein, but not other elements. Furthermore, a higher percentage of selenium was found in a ubiquitinated protein fraction compared with other elements, suggesting that malformed selenoproteins are preferentially ubiquitinated and removed by the proteasome. Additionally, levels of the 20S and 26S proteasome and two heat shock proteins increase upon selenate treatment. Arabidopsis mutants with defects in the 26S proteasome have decreased selenium tolerance, which further supports the hypothesis that the 26S proteasome probably prevents selenium toxicity by removing selenoproteins.  相似文献   

3.
Dietary selenium is known to protect skin against UV-induced damage and cancer and its topical application improves skin surface parameters in humans, while selenium deficiency compromises protective antioxidant enzymes in skin. Furthermore, skin and hair abnormalities in humans and rodents may be caused by selenium deficiency, which are overcome by dietary selenium supplementation. Most important biological functions of selenium are attributed to selenoproteins, proteins containing selenium in the form of the amino acid, selenocysteine (Sec). Sec insertion into proteins depends on Sec tRNA; thus, knocking out the Sec tRNA gene (Trsp) ablates selenoprotein expression. We generated mice with targeted removal of selenoproteins in keratin 14 (K14) expressing cells and their differentiated descendents. The knockout progeny had a runt phenotype, developed skin abnormalities and experienced premature death. Lack of selenoproteins in epidermal cells led to the development of hyperplastic epidermis and aberrant hair follicle morphogenesis, accompanied by progressive alopecia after birth. Further analyses revealed that selenoproteins are essential antioxidants in skin and unveiled their role in keratinocyte growth and viability. This study links severe selenoprotein deficiency to abnormalities in skin and hair and provides genetic evidence for the role of these proteins in keratinocyte function and cutaneous development.  相似文献   

4.
Selenium (Se) is an essential micronutrient. Its biological functions are associated with selenoproteins, which contain this trace element in the form of the 21st amino acid, selenocysteine. Genetic defects in selenocysteine insertion into proteins are associated with severe health issues. The consequences of selenoprotein deficiency are more variable, with several selenoproteins being essential, and several showing no clear phenotypes. Much of these functional studies benefited from the use of rodent models and diets employing variable levels of Se. This review summarizes the data obtained with these models, focusing on mouse models with targeted expression of individual selenoproteins and removal of individual, subsets or all selenoproteins in a systemic or organ-specific manner. This article is part of a Special Issue entitled: Cell Biology of Metals.  相似文献   

5.
Selenocysteine (Sec) and pyrrolysine (Pyl) are rare amino acids that are cotranslationally inserted into proteins and known as the 21st and 22nd amino acids in the genetic code. Sec and Pyl are encoded by UGA and UAG codons, respectively, which normally serve as stop signals. Herein, we report on unusually large selenoproteomes and pyrroproteomes in a symbiont metagenomic dataset of a marine gutless worm, Olavius algarvensis. We identified 99 selenoprotein genes that clustered into 30 families, including 17 new selenoprotein genes that belong to six families. In addition, several Pyl-containing proteins were identified in this dataset. Most selenoproteins and Pyl-containing proteins were present in a single deltaproteobacterium, δ1 symbiont, which contained the largest number of both selenoproteins and Pyl-containing proteins of any organism reported to date. Our data contrast with the previous observations that symbionts and host-associated bacteria either lose Sec utilization or possess a limited number of selenoproteins, and suggest that the environment in the gutless worm promotes Sec and Pyl utilization. Anaerobic conditions and consistent selenium supply might be the factors that support the use of amino acids that extend the genetic code.  相似文献   

6.
Selenocysteine (Sec) is the 21st amino acid in the genetic code. Its tRNA is variably methylated on the 2'-O-hydroxyl site of the ribosyl moiety at position 34 (Um34). Herein, we identified a role of Um34 in regulating the expression of some, but not all, selenoproteins. A strain of knock-out transgenic mice was generated, wherein the Sec tRNA gene was replaced with either wild type or mutant Sec tRNA transgenes. The mutant transgene yielded a tRNA that lacked two base modifications, N(6)-isopentenyladenosine at position 37 (i(6)A37) and Um34. Several selenoproteins, including glutathione peroxidases 1 and 3, SelR, and SelT, were not detected in mice rescued with the mutant transgene, whereas other selenoproteins, including thioredoxin reductases 1 and 3 and glutathione peroxidase 4, were expressed in normal or reduced levels. Northern blot analysis suggested that other selenoproteins (e.g. SelW) were also poorly expressed. This novel regulation of protein expression occurred at the level of translation and manifested a tissue-specific pattern. The available data suggest that the Um34 modification has greater influence than the i(6)A37 modification in regulating the expression of various mammalian selenoproteins and Um34 is required for synthesis of several members of this protein class. Many proteins that were poorly rescued appear to be involved in responses to stress, and their expression is also highly dependent on selenium in the diet. Furthermore, their mRNA levels are regulated by selenium and are subject to nonsense-mediated decay. Overall, this study described a novel mechanism of regulation of protein expression by tRNA modification that is in turn regulated by levels of the trace element, selenium.  相似文献   

7.
Incorporation of selenium into ∼25 mammalian selenoproteins occurs by translational recoding whereby in-frame UGA codons are redefined to encode the selenium containing amino acid, selenocysteine (Sec). Here we applied ribosome profiling to examine the effect of dietary selenium levels on the translational mechanisms controlling selenoprotein synthesis in mouse liver. Dietary selenium levels were shown to control gene-specific selenoprotein expression primarily at the translation level by differential regulation of UGA redefinition and Sec incorporation efficiency, although effects on translation initiation and mRNA abundance were also observed. Direct evidence is presented that increasing dietary selenium causes a vast increase in ribosome density downstream of UGA-Sec codons for a subset of selenoprotein mRNAs and that the selenium-dependent effects on Sec incorporation efficiency are mediated in part by the degree of Sec-tRNA[Ser]Sec Um34 methylation. Furthermore, we find evidence for translation in the 5′-UTRs for a subset of selenoproteins and for ribosome pausing near the UGA-Sec codon in those mRNAs encoding the selenoproteins most affected by selenium availability. These data illustrate how dietary levels of the trace element selenium can alter the readout of the genetic code to affect the expression of an entire class of proteins.  相似文献   

8.
In the genetic code, UGA serves as either a signal for termination or a codon for selenocysteine (Sec). Sec rarely occurs in protein and is different from other amino acids in that much of the biosynthetic machinery governing its incorporation into protein is unique to this amino acid. Sec-containing proteins have diverse functions and lack a common amino acid motif or consensus sequence. Sec has previously been considered to be a relic of the primordial genetic code that was counter-selected by the presence of oxygen in the atmosphere. In the present report, it is proposed that Sec was added to the already existing genetic code and its use has accumulated during evolution of eukaryotes culminating in vertebrates. The more recently evolved selenoproteins appear to take advantage of unique redox properties of Sec that are superior to those of Cys for specific biological functions. Further understanding of the evolution of selenoproteins as well as biological properties and biomedical applications of the trace element selenium requires identification and functional characterization of all mammalian selenoproteins.  相似文献   

9.
Selenoprotein expression is regulated at multiple levels in prostate cells   总被引:2,自引:0,他引:2  
Selenium supplementation in a population with low basal blood selenium levels has been reported to decrease the incidence of several cancers including prostate cancer. Based on the clinical findings, it is likely that the antioxidant function of one or more selenoproteins is responsible for the chemopreventive effect, although low molecular weight seleno-compounds have also been posited to selectively induce apoptosis in transformed cells. To address the effects of selenium supplementation on selenoprotein expression in prostate cells, we have undertaken an analysis of antioxidant selenoprotein expression as well as selenium toxicity in non-tumorigenic prostate epithelial cells (RWPE- 1 ) and prostate cancer cells (LNCaP and PC-3). Our results show that two of the glutathione peroxidase family members (GPX1 and GPX4) are highly induced by supplemental selenium in prostate cancer cells but only slightly induced in RWPE-1 cells. In addition, GPX 1 levels are dramatically lower in PC-3 cells as compared to RWPE- 1 or LNCaP cells. GPX2 protein and mRNA, however, are only detectable in RWPE-1 cells. Of the three selenium compounds tested (sodium selenite, sodium selenate and selenomethionine), only sodium selenite shows toxicity in a physiological range of selenium concentrations. Notably and in contrast to previous studies, RWPE-1 cells were significantly more sensitive to selenite than either of the prostate cancer cell lines. These results demonstrate that selenoproteins and selenium metabolism are regulated at multiple levels in prostate cells.  相似文献   

10.
Of the many health benefits attributed to selenium, the one that has received the most attention is its role in cancer prevention. Selenium-containing proteins (selenoproteins) have been shown in recent years to have roles in cancer prevention. However, selenoproteins have diverse functions and their view as antioxidants is oversimplified. Some selenoproteins appear to have a split personality in having roles both in preventing and promoting cancer. The contrasting roles of one selenoprotein, thioredoxin reductase 1, in cancer are discussed in detail, but as also noted, at least one other selenoprotein may also have such a dual function. In addition, we discuss examples of inhibition of cancer development by selenoprotein deficiency in mouse models. These studies highlight the complex nature of selenium in relation to cancer.  相似文献   

11.
Selenium is an essential trace element for many organisms by serving important catalytic roles in the form of the 21st co-translationally inserted amino acid selenocysteine. It is mostly found in redox-active proteins in members of all three domains of life and analysis of the ever-increasing number of genome sequences has facilitated identification of the encoded selenoproteins. Available data from biochemical, sequence, and structure analyses indicate that Gram-positive bacteria synthesize and incorporate selenocysteine via the same pathway as enterobacteria. However, recent in vivo studies indicate that selenocysteine-decoding is much less stringent in Gram-positive bacteria than in Escherichia coli. For years, knowledge about the pathway of selenocysteine synthesis in Archaea and Eukarya was only fragmentary, but genetic and biochemical studies guided by analysis of genome sequences of Sec-encoding archaea has not only led to the characterization of the pathways but has also shown that they are principally identical. This review summarizes current knowledge about the metabolic pathways of Archaea and Gram-positive bacteria where selenium is involved, about the known selenoproteins, and about the respective pathways employed in selenoprotein synthesis.  相似文献   

12.

Background

Despite selenium''s toxicity in plants at higher levels, crops supply most of the essential dietary selenium in humans. In plants, inorganic selenium can be assimilated into selenocysteine, which can replace cysteine in proteins. Selenium toxicity in plants has been attributed to the formation of non-specific selenoproteins. However, this paradigm can be challenged now that there is increasingly abundant evidence suggesting that selenium-induced oxidative stress also contributes to toxicity in plants.

Scope

This Botanical Briefing summarizes the evidence indicating that selenium toxicity in plants is attributable to both the accumulation of non-specific selenoproteins and selenium-induced oxidative stress. Evidence is also presented to substantiate the claim that inadvertent selenocysteine replacement probably impairs or misfolds proteins, which supports the malformed selenoprotein hypothesis. The possible physiological ramifications of selenoproteins and selenium-induced oxidative stress are discussed.

Conclusions

Malformed selenoproteins and oxidative stress are two distinct types of stress that drive selenium toxicity in plants and could impact cellular processes in plants that have yet to be thoroughly explored. Although challenging, deciphering whether the extent of selenium toxicity in plants is imparted by selenoproteins or oxidative stress could be helpful in the development of crops with fortified levels of selenium.  相似文献   

13.
Selenium is an essential trace element for which both beneficial and toxic effects in human health have been described. It is now clear that the importance of having adequate amounts of this micronutrient in the diet is primarily due to the fact that selenium is required for biosynthesis of selenocysteine, the twenty first naturally occurring amino acid in protein. In this review, we provide an overview of eukaryotic selenoproteins and selenoproteomes, which are sets of selenoproteins in these organisms. In eukaryotes, selenoproteins show a mosaic occurrence, with some organisms, such as vertebrates and algae, having dozens of these proteins, while other organisms, such as higher plants and fungi, having lost all selenoproteins during evolution. We also discuss selenoprotein functions and evolutionary trends in the use of these proteins in eukaryotes. Functional analysis of selenoproteins is critical for better understanding of the role of selenium in human health and disease.  相似文献   

14.
Selenium deficiency causes a fall in the concentrations of selenoproteins but selenoprotein P and type I iodothyronine 5'-deiodinase (5'-deiodinase) are more resistant to this effect than is glutathione peroxidase. To investigate the differential regulation of these selenoproteins, a selenium-deficient diet was fed to weanling rats for 14.5 weeks and their hepatic mRNAs were measured by Northern analysis. Levels of all 3 mRNAs fell progressively with time. Selenoprotein P and 5'-deiodinase mRNAs remained higher at all time points relative to control than glutathione peroxidase mRNA. mRNA decreases were mirrored by decreases in glutathione peroxidase activity and selenoprotein P concentration. However, the decreases in the protein levels were greater than the decreases in their mRNAs, suggesting that synthesis of both proteins was limited to a similar extent at the translational level by the availability of selenium. In addition to this apparently unregulated translational effect, these results point to a pretranslational regulation, affecting mRNA levels, which could account for the differential effect of selenium deficiency on glutathione peroxidase and the other selenoproteins. This regulation might serve to direct selenium to selenoprotein P and 5'-deiodinase when limited amounts of the element are available.  相似文献   

15.
Proteins containing the 21st amino acid selenocysteine (Sec) are present in the three domains of life. However, within lower eukaryotes, particularly parasitic protists, the dependence on the trace element selenium is variable as many organisms lost the ability to utilize Sec. Herein, we analyzed the genomes of Trypanosoma and Leishmania for the presence of genes coding for Sec-containing proteins. The selenoproteomes of these flagellated protozoa have three selenoproteins, including distant homologs of mammalian SelK and SelT, and a novel multidomain selenoprotein designated SelTryp. In SelK and SelTryp, Sec is near the C-terminus, and in all three selenoproteins, it is within predicted redox motifs. SelTryp has neither Sec- nor cysteine-containing homologs in the human host and appears to be a Kinetoplastida-specific protein. The use of selenium for protein synthesis was verified by metabolically labeling Trypanosoma cells with 75Se. In addition, genes coding for components of the Sec insertion machinery were identified in the Kinetoplastida genomes. Finally, we found that Trypanosoma brucei brucei cells were highly sensitive to auranofin, a compound that specifically targets selenoproteins. Overall, these data establish that Trypanosoma, Leishmania and likely other Kinetoplastida utilize and depend on the trace element selenium, and this dependence is due to occurrence of selenium in at least three selenoproteins.  相似文献   

16.
Selenium (Se), a dietary trace metal essential for human health, is incorporated into ~25 selenoproteins including selenoprotein S (SelS) and the 15-kDa selenoprotein (Sep15) both of which have functions in the endoplasmic reticulum protein unfolding response. The aim of this study was to investigate whether genetic variants in such selenoprotein genes are associated with altered risk of colorectal cancer (CRC). A Korean population of 827 patients with CRC and 733 healthy controls was genotyped for 7 SNPs in selenoprotein genes and one SNP in the gene encoding manganese superoxide dismutase using Sequenom technology. Multivariate logistic regression analysis showed that after adjustment for lifestyle factors three SNP variants were associated with altered disease risk. There was a mean odds ratio of 2.25 [95% CI 1.13,4.48] in females homozygous TT for rs34713741 in SELS with the T variant being associated with higher risk of rectal cancer, and odds ratios of 2.47 and 2.51, respectively, for rs5845 and rs5859 in SEP15 with the minor A and T alleles being associated with increased risk of male rectal cancer. The data indicate that the minor alleles for rs5845, rs5859 and rs34713741 are associated with increased rectal cancer risk and that the effects of the three SNPs are dependent on gender. The results highlight potential links between Se, the function of two selenoproteins involved in the protein unfolding response and CRC risk. Further studies are required to investigate whether the effects of the variants on CRC risk are also modulated by dietary Se intake.  相似文献   

17.
The human selenoproteome consists of 25 known selenoproteins, but functions of many of these proteins are not known. Selenoprotein H (SelH) is a recently discovered 14-kDa mammalian protein with no sequence homology to functionally characterized proteins. By sensitive sequence and structure analyses, we identified SelH as a thioredoxin fold-like protein in which a conserved CXXU motif (cysteine separated by two other residues from selenocysteine) corresponds to the CXXC motif in thioredoxins. These data suggest a redox function of SelH. Indeed, a recombinant SelH shows significant glutathione peroxidase activity. In addition, SelH has a conserved RKRK motif in the N-terminal sequence. We cloned wild-type and cysteine mutant forms of SelH either upstream or downstream of green fluorescent protein (GFP) and localized this fusion protein to the nucleus in transfected mammalian cells, whereas mutations in the RKRK motif resulted in the cytosolic protein. Interestingly, the full-length SelH-GFP fusion protein localized specifically to nucleoli, whereas the N-terminal sequence of SelH fused to GFP had a diffuse nucleoplasm location. Northern blot analyses revealed low expression levels of SelH mRNA in various mouse tissues, but it was elevated in the early stages of embryonic development. In addition, SelH mRNA was overexpressed in human prostate cancer LNCaP and mouse lung cancer LCC1 cells. Down-regulation of SelH by RNA interference made LCC1 cells more sensitive to hydrogen peroxide but not to other peroxides tested. Overall, these data establish SelH as a novel nucleolar oxidoreductase and suggest that some functions in this compartment are regulated by redox and dependent on the trace element selenium.  相似文献   

18.
Selenium (Se) is an essential nutrient required by Se-dependent proteins, termed selenoproteins. The selenoprotein family is small but diverse and includes key proteins in antioxidant, redox signaling, thyroid hormone metabolism, and protein folding pathways. Methylmercury (MeHg) is a toxic environmental contaminant that affects seafood safety. Selenium can reduce MeHg toxicity, but it is unclear how selenoproteins are affected in this interaction. In this study we explored how Se and MeHg interact to affect the mRNA expression of selenoprotein genes in whole zebrafish (Danio rerio) embryos. Embryos were obtained from adult zebrafish fed MeHg with or without elevated Se in a 2×2 factorial design. The embryo mRNA levels of 30 selenoprotein genes were then measured. These genes cover most of the selenoprotein families, including members of the glutathione peroxidase (GPX), thioredoxin reductase, iodothyronine deiodinase, and methionine sulfoxide reductase families, along with selenophosphate synthetase 2 and selenoproteins H, J-P, T, W, sep15, fep15, and fam213aa. GPX enzyme activity and larval locomotor activity were also measured. We found that around one-quarter of the selenoprotein genes were downregulated by elevated MeHg. These downregulated genes were dominated by selenoproteins from antioxidant pathways that are also susceptible to Se-deficiency-induced downregulation. MeHg also decreased GPX activity and induced larval hypoactivity. Elevated Se partially prevented MeHg-induced disruption of selenoprotein gene mRNA levels, GPX activity, and larval locomotor activity. Overall, the MeHg-induced downregulation and subsequent rescue by elevated Se levels of selenogenes regulated by Se status suggest that Se deficiency is a contributing factor to MeHg toxicity.  相似文献   

19.
Selenocysteine is a rare amino acid in protein that is encoded by UGA with the requirement of a downstream mRNA stem-loop structure, the selenocysteine insertion sequence element. To detect selenoproteins in Drosophila, the entire genome was analyzed with a novel program that searches for selenocysteine insertion sequence elements, followed by selenoprotein gene signature analyses. This computational screen and subsequent metabolic labeling with (75)Se and characterization of selenoprotein mRNA expression resulted in identification of three selenoproteins: selenophosphate synthetase 2 and novel G-rich and BthD selenoproteins that had no homology to known proteins. To assess a biological role for these proteins, a simple chemically defined medium that supports growth of adult Drosophila and requires selenium supplementation for optimal survival was devised. Flies survived on this medium supplemented with 10(-8) to 10(-6) m selenium or on the commonly used yeast-based complete medium at about twice the rate as those on a medium without selenium or with >10(-6) m selenium. This effect correlated with changes in selenoprotein mRNA expression. The number of eggs laid by Drosophila was reduced approximately in half in the chemically defined medium compared with the same medium supplemented with selenium. The data provide evidence that dietary selenium deficiency shortens, while supplementation of the diet with selenium normalizes the Drosophila life span by a process that may involve the newly identified selenoproteins.  相似文献   

20.
Subcellular distribution of selenoproteins in the liver of the rat   总被引:6,自引:0,他引:6  
After in vivo labeling with [75Se]selenite, the intracellular distribution of selenoproteins in the liver was investigated in selenium-adequate and selenium-deficient rats. In the subcellular fractions, which were obtained by differential centrifugation, the proteins were separated by means of SDS-PAGE and the selenium compounds were identified via their 75Se activity. In this way twelve selenium-containing proteins or protein subunits with molecular weights between 12,100 and 75,400 were found. Glutathione peroxidase was concentrated in the cytosol and in the mitochondria. With the newly detected selenoproteins, some were enriched in the cytosol, one was mainly found in the nuclear fraction and some, which were present mainly in the mitochondrial and microsomal fractions, are most probably membrane-bound. In the liver of selenium-depleted rats the selenium administered was used predominantly to restore the levels of some of the newly found selenoproteins, while in the liver of selenium-adequate animals most of the selenium retained was incorporated into the glutathione peroxidase. The differences in the distribution among the subcellular fractions and the specific incorporation of the element in selenium deficiency into certain compounds suggest that there are several metabolic pathways for selenium and that the selenoproteins are involved in several different processes of intracellular metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号