首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Legionella pneumophila, a human intracellular pathogen, encodes about 290 effector proteins that are translocated into host cells through a secretion machinery. Some of these proteins have been shown to manipulate or subvert cellular processes during infection, but functional roles of a majority of them remain unknown. Lpg0393 is a newly identified Legionella effector classified as a hypothetical protein. Through X-ray crystallographic analysis, we show that Lpg0393 contains a Vps9-like domain, which is structurally most similar to the catalytic core of human Rabex-5 that activates the endosomal Rab proteins Rab5, Rab21 and Rab22. Consistently, Lpg0393 exhibited a guanine-nucleotide exchange factor activity toward the endosomal Rabs. This work identifies the first example of a bacterial guanine-nucleotide exchange factor that is active towards the Rab5 sub-cluster members, implying that the activation of these Rab proteins might be advantageous for the intracellular survival of Legionella.  相似文献   

3.
Synaptotagmin-like proteins 1-4 (Slp1-4) are new members of the carboxyl-terminal-type (C-type) tandem C2 proteins and are classified as a subfamily distinct from the synaptotagmin and the Doc2 families, because the Slp family contains a unique homology domain at the amino terminus, referred to as the Slp homology domain (SHD). We previously showed that the SHD functions as a binding site for Rab27A, which is associated with human hemophagocytic syndrome (Griscelli syndrome) [J. Biol. Chem. 277 (2002) 9212; J. Biol. Chem. 277 (2002) 12432]. In the present study, we identified a novel member of the Slp family, Slp5. The same as other Slp family members, the SHD of Slp5 preferentially interacted with the GTP-bound form of Rab27A and marginally with Rab3A and Rab6A, both in vitro and in intact cells, but not with other Rabs tested (Rab1, Rab2, Rab4A, Rab5A, Rab7, Rab8, Rab9, Rab10, Rab11A, Rab17, Rab18, Rab20, Rab22, Rab23, Rab25, Rab28, and Rab37). However, unlike other members of the Slp family, expression of Slp5 mRNA was highly restricted to human placenta and liver. Expression of Slp5 protein and in vivo association of Slp5 with Rab27A in the mouse liver were further confirmed by immunoprecipitation. The results suggest that Slp5 might be involved in Rab27A-dependent membrane trafficking in specific tissues.  相似文献   

4.

Background

Gliomas are commonly malignant tumors that arise in the human central nervous system and have a low overall five-year survival rate. Previous studies reported that several members of Rab GTPase family are involved in the development of glioma, and abnormal expression of Rab small GTPases is known to cause aberrant tumor cell behavior. In this study, we characterized the roles of Rab21 (Rab GTPase 21), a member of Rab GTPase family, in glioma cells.

Methods

The study involved downregulation of Rab21 in two glioma cell lines (T98G and U87) through transfection with specific-siRNA. Experiments using the MTT assay, cell cycle analysis, apoptosis assay, real-time PCR and western blot were performed to establish the expression levels of related genes.

Results

The results show that downregulation of Rab21 can significantly inhibit cell growth and remarkably induce cell apoptosis in T98G and U87 cell lines. Silencing Rab21 resulted in significantly increased expression of apoptosis-related proteins (caspase7, Bim and Bax) in glioma cells.

Conclusions

We inferred that Rab21 silencing can induce apoptosis and inhibit proliferation in human glioma cells, indicating that Rab21 might act as an oncogene and serve as a novel target for glioma therapy.
  相似文献   

5.
《PloS one》2012,7(11)
Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB).  相似文献   

6.
Deregulation of the endocytic machinery has been implicated in human cancers. However, the mechanism by which endocytic defects drive cancer development remains to be clarified. Here, we find through a genetic screen in Drosophila that loss of Rab5, a protein required for early endocytic trafficking, drives non-autonomous cell proliferation in imaginal epithelium. Our genetic data indicate that dysfunction of Rab5 leads to cell-autonomous accumulation of Eiger (a TNF homolog) and EGF receptor (EGFR), which causes activation of downstream JNK and Ras signaling, respectively. JNK signaling and its downstream component Cdc42 cooperate with Ras signaling to induce upregulation of a secreted growth factor Upd (an IL-6 homolog) through inactivation of the Hippo pathway. Such non-autonomous tissue growth triggered by Rab5 defect could contribute to epithelial homeostasis as well as cancer development within heterogeneous tumor microenvironment.  相似文献   

7.
Zebrafish models have significantly contributed to our understanding of vertebrate development and, more recently, human disease. The growing number of genetic tools available in zebrafish research has resulted in the identification of many genes involved in developmental and disease processes. In particular, studies in the zebrafish have clarified roles of the p53 tumor suppressor in the formation of specific tumor types, as well as roles of p53 family members during embryonic development. The zebrafish has also been instrumental in identifying novel mechanisms of p53 regulation and highlighting the importance of these mechanisms in vivo. This article will summarize how zebrafish models have been used to reveal numerous, important aspects of p53 function.The zebrafish, Danio rerio, is a small model organism that has long been used to study vertebrate development. Zebrafish embryos are optically clear and develop externally to the mother, facilitating the study of early developmental processes. In addition, zebrafish have increasingly been used in modeling human diseases, including a number of cancers. The availability of forward and reverse genetic tools in the zebrafish has resulted in the identification and characterization of many genes involved in development and disease. One gene that has been extensively studied is the p53 tumor suppressor gene, which is structurally and functionally conserved in the zebrafish. This article will discuss how studies in the zebrafish have increased our understanding of how p53 contributes to the formation of specific tumor types, resulted in the identification of novel mechanisms of p53 regulation, and showed how p53 and p53 family members are involved in embryonic development.  相似文献   

8.
ER-derived COPII-coated vesicles are conventionally targeted to the Golgi. However, during cell stress these vesicles also become a membrane source for autophagosomes, distinct organelles that target cellular components for degradation. How the itinerary of COPII vesicles is coordinated on these pathways remains unknown. Phosphorylation of the COPII coat by casein kinase 1 (CK1), Hrr25, contributes to the directional delivery of ER-derived vesicles to the Golgi. CK1 family members are thought to be constitutively active kinases that are regulated through their subcellular localization. Instead, we show here that the Rab GTPase Ypt1/Rab1 binds and activates Hrr25/CK1δ to spatially regulate its kinase activity. Consistent with a role for COPII vesicles and Hrr25 in membrane traffic and autophagosome biogenesis, hrr25 mutants were defective in ER–Golgi traffic and macroautophagy. These studies are likely to serve as a paradigm for how CK1 kinases act in membrane traffic.  相似文献   

9.
10.
11.
Targeting non‐native‐ligand binding sites for potential investigative and therapeutic applications is an attractive strategy in proteins that share common native ligands, as in Rab1 protein. Rab1 is a subfamily member of Rab proteins, which are members of Ras GTPase superfamily. All Ras GTPase superfamily members bind to native ligands GTP and GDP, that switch on and off the proteins, respectively. Rab1 is physiologically essential for autophagy and transport between endoplasmic reticulum and Golgi apparatus. Pathologically, Rab1 is implicated in human cancers, a neurodegenerative disease, cardiomyopathy, and bacteria‐caused infectious diseases. We have performed structural analyses on Rab1 protein using a unique ensemble of clustering methods, including multi‐step principal component analysis, non‐negative matrix factorization, and independent component analysis, to better identify representative Rab1 proteins than the application of a single clustering method alone does. We then used the identified representative Rab1 structures, resolved in multiple ligand states, to map their known and novel binding sites. We report here at least a novel binding site on Rab1, involving Rab1‐specific residues that could be further explored for the rational design and development of investigative probes and/or therapeutic small molecules against the Rab1 protein. Proteins 2017; 85:859–871. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
ATAD2, a remarkably conserved, yet poorly characterized factor is found upregulated and associated with poor prognosis in a variety of independent cancers in human. Studies conducted on the yeast Saccharomyces cerevisiae ATAD2 homologue, Yta7, are now indicating that the members of this family may primarily be regulators of chromatin dynamics and that their action on gene expression could only be one facet of their general activity. In this review, we present an overview of the literature on Yta7 and discuss the possibility of translating these findings into other organisms to further define the involvement of ATAD2 and other members of its family in regulating chromatin structure and function both in normal and pathological situations.  相似文献   

13.
Truncating germline mutations in the tumor suppressor gene BRCA-1 associated protein-1 (BAP1) have been reported in families predisposed to developing a wide range of different cancer types including uveal melanoma and cutaneous melanoma. There has also been an association between amelanotic tumor development and germline BAP1 mutation suggesting a possible phenotypic characteristic of BAP1 mutation carriers. Though there have been many types of cancer associated with germline BAP1 mutation, the full spectrum of disease association is yet to be ascertained. Here we describe a Danish family with predominantly uveal melanoma but also a range of other tumor types including lung, neuroendocrine, stomach, and breast cancer; as well as pigmented skin lesions. Whole-exome sequencing identified a BAP1 splice mutation located at c.581-2A>G, which leads to a premature truncation of BAP1 in an individual with uveal melanoma. This mutation was carried by several other family members with melanoma or various cancers. The finding expands on the growing profile of BAP1 as an important uveal and cutaneous melanoma tumor suppressor gene and implicates its involvement in the development of lung, and stomach cancer.  相似文献   

14.
15.
The Rab family, the largest branch of Ras small GTPases, plays a crucial role in the vesicular transport in plants. The members of Rab family act as molecular switches that regulate the fusion of vesicles with target membranes through conformational changes. However, little is known about the Rab5 gene involved in fruit ripening and stress response. In this study, the MiRab5 gene was isolated from stress-induced Mangifera indica. The full-length cDNA sequence was 984 bp and contained an open reading frame of 600 bp, which encoded a 200 amino acid protein with a molecular weight of 21.83 kDa and a theoretical isoelectric point of 6.99. The deduced amino acid sequence exhibited high homology with tomato (91% similarity) and contains all five characteristic Rab motifs. Real-time quantitative RT-PCR analysis demonstrated that MiRab5 was ubiquitously expressed in various mango tree tissues at different levels. The expression of MiRab5 was up-regulated during later stages of fruit ripening. Moreover, MiRab5 was generally up-regulated in response to various abiotic stresses (cold, salinity, and PEG treatments). Recombinant MiRab5 protein was successfully expressed and purified. SDS-PAGE and western blot analysis indicated that the expressed protein was recognized by the anti-6-His antibody. These results provide insights into the role of the MiRab5 gene family in fruit ripening and stress responses in the mango plant.  相似文献   

16.
17.
WNT7A (wingless-type MMTV integration site family, member 7A) is a known tumor suppressor gene of non-small cell lung carcinomas (NSCLC) and is frequently inactivated due to CpG-island hypermethylation in human cancers. The members of WNT family are involved in cell signaling and play crucial roles in cancer development. In the present work hypermethylation of the WNT7A gene was detected in 66% (29/44) of analyzed clear cell renal cell carcinomas (RCCs) using methyl-specific PCR (MSP). Moreover, bisulfite sequencing confirmed intensive hypermethylation of the 5′-CpG island of the WNT7A gene. Methylation analysis revealed positive correlations between tumor stage, Fuhrman nuclear grade and WNT7A hypermethylation. Additionally, restoration of WNT7A gene expression in the A498 cell line by 5-aza-2′-deoxycytidine treatment confirmed a direct contribution of hypermethylation in silencing of the WNT7A gene. High frequency of loss of heterozygosity (LOH) was demonstrated on chromosome 3p25 in regions surrounding the WNT7A gene. The frequent down-regulation of WNT7A gene expression was detected in 88% (15/17) of clear cell RCCs. We have also shown that the WNT7A gene possesses tumor suppression function by colony-formation and cell proliferation assays in RCC cell lines. In summary, the WNT7A gene is inactivated by genetic/epigenetic alterations in clear cell RCC and demonstrates tumor suppressor properties.  相似文献   

18.
NTRK3 is a member of the neurotrophin receptor family and regulates cell survival. It appears to be a dependence receptor, and thus has the potential to act as an oncogene or as a tumor suppressor gene. NTRK3 is a receptor for NT-3 and when bound to NT-3 it induces cell survival, but when NT-3 free, it induces apoptosis. We identified aberrantly methylated NTRK3 in colorectal cancers through a genome-wide screen for hypermethylated genes. This discovery led us to assess whether NTRK3 could be a tumor suppressor gene in the colon. NTRK3 is methylated in 60% of colon adenomas and 67% of colon adenocarcinomas. NTRK3 methylation suppresses NTRK3 expression. Reconstitution of NTRK3 induces apoptosis in colorectal cancers, if NT-3 is absent. Furthermore, the loss of NTRK3 expression associates with neoplastic transformation in vitro and in vivo. We also found that a naturally occurring mutant NTRK3 found in human colorectal cancer inhibits the tumor suppressor activity of NTRK3. In summary, our findings suggest NTRK3 is a conditional tumor suppressor gene that is commonly inactivated in colorectal cancer by both epigenetic and genetic mechanisms whose function in the pathogenesis of colorectal cancer depends on the expression status of its ligand, NT-3.  相似文献   

19.
The majority of Rab proteins are posttranslationally modified with two geranylgeranyl lipid moieties that enable their stable association with membranes. In this study, we present evidence to demonstrate that there is a specific lipid requirement for Rab protein localization and function. Substitution of different prenyl anchors on Rab GTPases does not lead to correct function. In the case of YPT1 and SEC4, two essential Rab genes in Saccharomyces cerevisiae, alternative lipid tails cannot support life when present as the sole source of YPT1 and SEC4. Furthermore, our data suggest that double geranyl-geranyl groups are required for Rab proteins to correctly localize to their characteristic organelle membrane. We have identified a factor, Yip1p that specifically binds the di-geranylgeranylated Rab and does not interact with mono-prenylated Rab proteins. This is the first demonstration that the double prenylation modification of Rab proteins is an important feature in the function of this small GTPase family and adds specific prenylation to the already known determinants of Rab localization.  相似文献   

20.
Rab GTPases serve as multifaceted organizers during vesicle trafficking. Rab7, a member of the Rab GTPase family, has been shown to perform various essential functions in endosome trafficking and in endosome-to-lysosome trafficking in mammalian systems. The Arabidopsis thaliana genome encodes eight putative Rab7 homologs; however, the detailed function and activation mechanism of Rab7 in plants remain unknown. Here, we demonstrate that Arabidopsis RABG3f, a member of the plant Rab7 small GTPase family, localizes to prevacuolar compartments (PVCs) and the tonoplast. The proper activation of Rab7 is essential for both PVC-to-vacuole trafficking and vacuole biogenesis. Expression of a dominant-negative Rab7 mutant (RABG3fT22N) induces the formation of enlarged PVCs and affects vacuole morphology in plant cells. We also identify Arabidopsis MON1 (MONENSIN SENSITIVITY1) and CCZ1 (CALCIUM CAFFEINE ZINC SENSITIVITY1) proteins as a dimeric complex that functions as the Rab7 guanine nucleotide exchange factor. The MON1-CCZ1 complex also serves as the Rab5 effector to mediate Rab5-to-Rab7 conversion on PVCs. Loss of functional MON1 causes the formation of enlarged Rab5-positive PVCs that are separated from Rab7-positive endosomes. Similar to the dominant-negative Rab7 mutant, the mon1 mutants show pleiotropic growth defects, fragmented vacuoles, and altered vacuolar trafficking. Thus, Rab7 activation by the MON1-CCZ1 complex is critical for vacuolar trafficking, vacuole biogenesis, and plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号