首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hepatitis C virus (HCV) is a major cause of viral hepatitis that can progress to hepatic fibrosis, steatosis, hepatocellular carcinoma, and liver failure. HCV infection is characterized by a systemic oxidative stress that is most likely caused by a combination of chronic inflammation, iron overload, liver damage, and proteins encoded by HCV. The increased generation of reactive oxygen and nitrogen species, together with the decreased antioxidant defense, promotes the development and progression of hepatic and extrahepatic complications of HCV infection. This review discusses the possible mechanisms of HCV-induced oxidative stress and its role in HCV pathogenesis.  相似文献   

2.
Hepatitis C viral infection affects 170 million people worldwide. It causes serious chronic liver diseases. HCV infection has been implicated in iron accumulation in the liver and iron overload has been shown to be a potential cofactor for HCV associated hepatocellular carcinoma progression. The underlying mechanisms are not understood. Human hepcidin, a 25 amino acid peptide mainly produced by hepatocytes, is a key regulator of iron metabolism. Alteration of hepcidin expression levels has been reported in the setting of chronic HCV infection and hepatocellular carcinoma. In this study, we aim to examine the interactions between HCV infection and hepcidin expression in liver cells. We found that hepcidin expression was suppressed in HCV infected cells. The suppressive effect appears to be regulated by histone acetylation but not DNA methylation. Moreover, we found that hepcidin had a direct antiviral activity against HCV replication in cell culture. The antiviral effect is associated with STAT3 activation. In conclusion, hepcidin can induce intracellular antiviral state while HCV has a strategy to suppress hepcidin expression. This may be a novel mechanism by which HCV circumvents hepatic innate antiviral defense.  相似文献   

3.
Excessive tissue iron levels are associated with the increase of oxidative/nitrative stress which contributes to tissue damage that may elevate the risk of diabetes. Therefore, we investigated the effects of iron on diabetes-associated liver injury and whether iron-related tyrosine nitration participated in this process. Rats were randomly divided into four groups: control, iron overload (300 mg/kg iron dextran, i.p.), diabetic (35 mg/kg of streptozotocin i.p. after administration of a high-fat diet) and diabetic simultaneously treated with iron. Iron supplement markedly increased diabetes-mediated liver damage and hepatic dysfunction by increasing liver/body weight ratio, serum levels of aspartate and alanine aminotransferase, and histological examination, which were correlated with elevated levels of lipid peroxidation, protein carbonyls and tyrosine nitration, oxidative metabolism of nitric oxide, and reduced antioxidant capacity. Consequently, the extent of oxidized/nitrated glucokinase was markedly increased in the iron-treated diabetic rats that contribute to a decrease in its expression and activity. Further studies revealed a significant contribution of iron-induced specific glucokinase nitration sites to its inactivation. In conclusion, iron facilitates diabetes-mediated elevation of oxidative/nitrative stress, simultaneously impairs liver GK, and can be a link between enzymatic changes and hepatic dysfunction. These findings may provide new insight on the role of iron in the pathogenesis of diabetes mellitus.  相似文献   

4.
Hepatocellular carcinoma (HCC) is the most common liver cancer and a leading cause of cancer-related mortality in the world. Hepatitis C virus (HCV) is a major etiologic agent of HCC. A majority of HCV infections lead to chronic infection that can progress to cirrhosis and, eventually, HCC and liver failure. A common pathogenic feature present in HCV infection, and other conditions leading to HCC, is oxidative stress. HCV directly increases superoxide and H2O2 formation in hepatocytes by elevating Nox protein expression and sensitizing mitochondria to reactive oxygen species generation while decreasing glutathione. Nitric oxide synthesis and hepatic iron are also elevated. Furthermore, activation of phagocytic NADPH oxidase (Nox) 2 of host immune cells is likely to exacerbate oxidative stress in HCV-infected patients. Key mechanisms of HCC include genome instability, epigenetic regulation, inflammation with chronic tissue injury and sustained cell proliferation, and modulation of cell growth and death. Oxidative stress, or Nox proteins, plays various roles in these mechanisms. Nox proteins also function in hepatic fibrosis, which commonly precedes HCC, and Nox4 elevation by HCV is mediated by transforming growth factor β. This review summarizes mechanisms of oncogenesis by HCV, highlighting the roles of oxidative stress and hepatic Nox enzymes in HCC.  相似文献   

5.
Hepatic oxidative stress occurs in chronic hepatitis C (CH-C), but little is known about its producing mechanisms and precise role in the pathogenesis of the disease. To determine the relevance of hepatic oxidatively generated DNA damage in CH-C, 8-hydroxy-2'-deoxyguanosine (8-OHdG) adducts were quantified in liver biopsy specimens by immunohistochemical staining, and its relationship with clinical, biochemical, and histological parameters, and treatment response was assessed in 40 CH-C patients. Hepatic 8-OHdG counts were significantly correlated with serum transaminase levels (r=0.560, p=0.0005) and histological grading activity (p=0.0013). Remarkably, 8-OHdG levels were also significantly related to body and hepatic iron storage markers (vs serum ferritin, r=0.565, p=0.0004; vs hepatic total iron score, r=0.403, p=0.0119; vs hepatic hepcidin messenger RNA, r=0.516, p=0.0013). Baseline hepatic oxidative stress was more prominent in nonsustained virological responder (non-SVR) than in SVR to interferon (IFN)/ribavirin treatment (50.8 vs 32.7 cells/10(5) microm2, p=0.0086). After phlebotomy, hepatic 8-OHdG levels were significantly reduced from 53.4 to 21.1 cells/10(5) microm2 (p=0.0125) with concomitant reductions of serum transaminase and iron-related markers in CH-C patients. In conclusion, this study showed that hepatic oxidatively generated DNA damage frequently occurs and is strongly associated with increased iron deposition and hepatic inflammation in CH-C patients, suggesting that iron overload is an important mediator of hepatic oxidative stress and disease progression in chronic HCV infection.  相似文献   

6.
Hepatitis C virus (HCV) infection is a leading cause of liver-related mortality. Chronic hepatitis C (CHC) is frequently associated with disturbances in iron homeostasis, with serum iron and hepatic iron stores being elevated. Accumulating evidence indicates that chronic HCV infection suppresses expression of hepatic hepcidin, a key mediator of iron homeostasis, leading to iron overload conditions. Since hepcidin mediates degradation of ferroportin, a basolateral transporter involved in the release of iron from cells, diminished hepcidin expression probably leads to up-regulation of ferroportin-1 (Fpn1) in patients with CHC. In this study, we determined the protein levels of duodenal Fpn1, and found that its expression was significantly up-regulated in patients with CHC. The expression of duodenal Fpn1 is negatively correlated with mRNA levels of hepcidin, and positively correlated with serum iron parameters. Although iron is a critical factor for growth of a variety of pathogenic bacteria, our results suggest that iron overload in blood does not increase the infection rate of bacteria in patients with CHC.  相似文献   

7.
Hepatitis C virus (HCV)‐induced iron overload has been shown to promote liver fibrosis, steatosis, and hepatocellular carcinoma. The zonal‐restricted histological distribution of pathological iron deposits has hampered the attempt to perform large‐scale in vivo molecular investigations on the comorbidity between iron and HCV. Diagnostic and prognostic markers are not yet available to assess iron overload‐induced liver fibrogenesis and progression in HCV infections. Here, by means of Spike‐in SILAC proteomic approach, we first unveiled a specific membrane protein expression signature of HCV cell cultures in the presence of iron overload. Computational analysis of proteomic dataset highlighted the hepatocytic vitronectin expression as the most promising specific biomarker for iron‐associated fibrogenesis in HCV infections. Next, the robustness of our in vitro findings was challenged in human liver biopsies by immunohistochemistry and yielded two major results: (i) hepatocytic vitronectin expression is associated to liver fibrogenesis in HCV‐infected patients with iron overload; (ii) hepatic vitronectin expression was found to discriminate also the transition between mild to moderate fibrosis in HCV‐infected patients without iron overload.  相似文献   

8.
Patients with chronic hepatitis C frequently have serum and hepatic iron overload, but the mechanism is unknown. Recently identified hepcidin, exclusively synthesized in the liver, is thought to be a key regulator for iron homeostasis and is induced by infection and inflammation. This study was conducted to determine the hepatic hepcidin expression levels in patients with various liver diseases. We investigated hepcidin mRNA levels of liver samples by real-time detection-polymerase chain reaction; 56 were hepatitis C virus (HCV) positive, 34 were hepatitis B virus (HBV) positive, and 42 were negative for HCV and HBV (3 cases of auto-immune hepatitis, 7 alcoholic liver disease, 13 primary biliary cirrhosis, 9 nonalcoholic fatty liver disease, and 10 normal liver). We analyzed the relation of hepcidin to clinical, hematological, histological, and etiological findings. Hepcidin expression levels were strongly correlated with serum ferritin (P < 0.0001) and the degree of iron deposit in liver tissues (P < 0.0001). Hepcidin was also correlated with hematological parameters (vs. hemoglobin, P = 0.0073; vs. serum iron, P = 0.0012; vs. transferrin saturation, P < 0.0001) and transaminase levels (P = 0.0013). The hepcidin-to-ferritin ratio was significantly lower in HCV(+) patients than in HBV(+) patients (P = 0.0129) or control subjects (P = 0.0080). In conclusion, hepcidin expression levels in chronic liver diseases were strongly correlated with either the serum ferritin concentration or degree of iron deposits in the liver. When adjusted by either serum ferritin values or hepatic iron scores, hepcidin indices were significantly lower in HCV(+) patients than in HBV(+) patients, suggesting that hepcidin may play a pivotal role in the pathogenesis of iron overload in patients with chronic hepatitis C.  相似文献   

9.
PurposeDiets rich in fat and energy are associated with metabolic syndrome (MS). Increased body iron stores have been recognized as a feature of MS. High-fat diets (HFs), excess iron loading and MS are closely associated, but the mechanism linking them has not been clearly defined. We investigated the interaction between dietary fat and dietary Fe in the context of glucose and lipid metabolism in the body.MethodsC57BL6/J mice were divided into four groups and fed the modified AIN-93G low-fat diet (LF) and HF with adequate or excess Fe for 7 weeks. The Fe contents were increased by adding carbonyl iron (2% of diet weight) (LF+Fe and HF+Fe).ResultsHigh iron levels increased blood glucose levels but decreased high-density lipoprotein cholesterol levels. The HF group showed increases in plasma levels of glucose and insulin and insulin resistance. HF+Fe mice showed greater changes. Representative indices of iron status, such hepatic and plasma Fe levels, were not altered further by the HF. However, both the HF and excess iron loading changed the hepatic expression of hepcidin and ferroportin. The LF+Fe, HF and HF+Fe groups showed greater hepatic fat accumulation compared with the LF group. These changes were paralleled by alterations in the levels of enzymes related to hepatic gluconeogenesis and lipid synthesis, which could be due to increases in mitochondrial dysfunction and oxidative stress.ConclusionsHigh-fat diets and iron overload are associated with insulin resistance, modified hepatic lipid and iron metabolism and increased mitochondrial dysfunction and oxidative stress.  相似文献   

10.
Iron-mediated organ damage is common in patients with iron overload diseases, namely, hereditary hemochromatosis. Massive iron deposition in parenchymal organs, particularly in the liver, causes organ dysfunction, fibrosis, cirrhosis, and also hepatocellular carcinoma. To obtain deeper insight into the poorly understood and complex cellular response to iron overload and consequent oxidative stress, we studied iron overload in liver-derived HepG2 cells. Human hepatoma HepG2 cells were exposed to a high concentration of iron for 3 days, and protein expression changes initiated by the iron overload were studied by two-dimensional electrophoresis and mass spectrometry. From a total of 1,060 spots observed, 21 spots were differentially expressed by iron overload. We identified 19 of them; 11 identified proteins were upregulated, whereas 8 identified proteins showed a decline in response to iron overload. The differentially expressed proteins are involved in iron storage, stress response and protection against oxidative stress, protein folding, energy metabolism, gene expression, cell cycle regulation, and other processes. Many of these molecules have not been previously suggested to be involved in the response to iron overload and the consequent oxidative stress.  相似文献   

11.
12.
Liver oxidative stress, Kupffer cell functioning, and cell injury were studied in control rats and in animals subjected to L-3,3',5-tri-iodothyronine (T3) and/or acute iron overload. Thyroid calorigenesis with increased rates of hepatic O2 uptake was not altered by iron treatment, whereas iron enhanced serum and liver iron levels independently of T3. Liver thiobarbituric acid reactants formation increased by 5.8-, 5.7-, or 11.0-fold by T3, iron, or their combined treatment, respectively. Iron enhanced the content of protein carbonyls independently of T3 administration, whereas glutathione levels decreased in T3- and iron-treated rats (54%) and in T3Fe-treated animals (71%). Colloidal carbon infusion into perfused livers elicited a 109% and 68% increase in O2 uptake in T3 and iron-treated rats over controls. This parameter was decreased (78%) by the joint T3Fe administration and abolished by gadolinium chloride (GdCl3) pretreatment in all experimental groups. Hyperthyroidism and iron overload did not modify the sinusoidal efflux of lactate dehydrogenase, whereas T3Fe-treated rats exhibited a 35-fold increase over control values, with a 54% reduction by GdCl3 pretreatment. Histological studies showed a slight increase in the number or size of Kupffer cells in hyperthyroid rats or in iron overloaded animals, respectively. Kupffer cell hypertrophy and hyperplasia with presence of inflammatory cells and increased hepatic myeloperoxidase activity were found in T3Fe-treated rats. It is concluded that hyperthyroidism increases the susceptibility of the liver to the toxic effects of iron, which seems to be related to the development of a severe oxidative stress status in the tissue, thus contributing to the concomitant liver injury and impairment of Kupffer cell phagocytosis and particle-induced respiratory burst activity.  相似文献   

13.
Iron overload toxicity was shown to associate with chronic liver diseases which lead to hepatic fibrosis and subsequently the progression to cancer through oxidative stress and apoptotic pathways. Green tea potential activity as chelating, anti-oxidative, or anti-apoptotic mechanisms against metal toxicity was poorly clarified. Here, we are trying to evaluate the anti-oxidant and anti-apoptotic properties of green tea in the regulation of serum hepcidin levels, reduction in iron overloads, and improve of liver fibrosis in iron overloaded experimental rats. Three groups of male adult rats were randomly classified into three groups and treated as follows: control rats, iron treated rats for two months in drinking water followed by either vehicle or green tea extract (AGTE; 100 mg/kg) treatment for 2 more months. Thereafter, we studied the effects of AGTE on iron overload-induced lipid peroxidation, anti-oxidant depletion, liver cell injury and apoptosis. Treatment of iron-overloaded rats with AGTE resulted in marked decreases in iron accumulation within liver, depletion in serum ferritin, and hepcidin levels. Iron-overloaded rats had significant increase in malonyldialdehyde (MDA), a marker of lipid peroxidation and nitric oxide (NO) in liver when compared to control group. Also, significant change in cytochrome c and DNA content as apoptotic markers were reported in iron treated rats. The effects of iron overload on lipid peroxidation, NO levels, cytochrome c and DNA content were significantly reduced by the intervention treatment with AGTE (P < 0.001). Furthermore, the endogenous anti-oxidant capacities/levels (TAC) in liver were also significantly decreased in chronic iron overload and administration of AGTE restored the decrease in the hepatic antioxidant activities/levels. Also, hepatic hepcidin was shown to be significantly correlated with oxidative and apoptotic relating biomarkers as well as an improvement in liver fibrosis of iron treated rats following AGTE treatment. In-vitro analysis showed that, the improvement in iron toxicity of the liver depend mainly on antioxidant and protective ability of green tea polyphenolic compounds especiallyepigallocatechin-3-gallate (EGCG). Our study showed that green tea extract (GTE) ameliorates iron overload induced hepatotoxicity, apoptosis and oxidative stress in rat liver via inhibition of hepatic iron accumulation; improve of liver antioxidant capacity, and down regulation of serum hepcidin as well as reduction in the release of apoptotic relating proteins.  相似文献   

14.
15.
Iron-mediated oxidative stress has been implicated in the pathology of the neurodegenerative disease Friedreich ataxia (FRDA). Here, we show that normal upregulation of the stress defense protein manganese superoxide dismutase (MnSOD) fails to occur in FRDA fibroblasts exposed to iron. This impaired induction was observed at iron levels in which increased activation of the redox-sensitive factor NF-kappaB was absent. Furthermore, MnSOD induction could only be partially suppressed by antioxidants. We conclude that an NF-kappaB-independent pathway that may not require free radical signaling is responsible for the reduction of MnSOD induction. This impairment could constitute both a novel defense mechanism against iron-mediated oxidative stress in cells with mitochondrial iron overload and conversely, an alternative source of free radicals that could contribute to the disease pathology.  相似文献   

16.
Tamoxifen (TX), a drug used in the treatment of breast cancer, may cause hepatic changes in some patients. The consequences of its use on the liver tissues of rats with or without diabetes mellitus (DM) have not been fully explored. The purpose of this study was to evaluate the correlation between plasma hepatic enzyme levels and the presence of iron overload in the hepatic tissue of female Wistar rats with or without streptozotocin-induced DM and using TX. Female rats were studied in control groups: C-0 (non-drug users), C-V (sorbitol vehicle only) and C-TX (using TX). DM (diabetic non-drug users) and DM-TX (diabetics using TX) were the test groups. Sixty days after induced DM, blood samples were collected for glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST) alkaline phosphatase (ALP) and bilirubin measures. Hepatic fragments were processed and stained with hematoxylin and eosin, Masson’s trichrome, Perls. The hepatic iron content was quantified by atomic absorption spectrometry. AST, ALT and ALP levels were significantly elevated in the DM and DM-TX groups, with unchanged bilirubin levels. Liver iron overload using Perls stain and atomic absorption spectrometry were observed exclusively in groups C-TX and DM-TX. There was positive correlation between AST, ALT and ALP levels and microscopic hepatic siderosis intensity in group DM-TX. In conclusion, TX administration is associated with liver siderosis in diabetic and non-diabetic rats. In addition, TX induced liver iron overload with unaltered hepatic function in non-diabetic rats and may be a useful tool for investigating the biological control of iron metabolism.  相似文献   

17.
Liver iron overload can be found in hereditary hemochromatosis, chronic liver diseases such as alcoholic liver disease, and chronic viral hepatitis or secondary to repeated blood transfusions. The excess iron promotes liver damage, including fibrosis, cirrhosis, and hepatocellular carcinoma. Despite significant research effort, we remain largely ignorant of the cellular consequences of liver iron overload and the cellular processes that result in the observed pathological changes. In addition, the variability in outcome and the compensatory response that likely modulates the effect of increased iron levels are not understood. To provide insight into these critical questions, we undertook a study to determine the consequences of iron overload on protein levels in liver using a proteomic approach. Using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) combined with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), we studied hepatic iron overload induced by carbonyl iron-rich diet in mice and identified 30 liver proteins whose quantity changes in condition of excess liver iron. Among the identified proteins were enzymes involved in several important metabolic pathways, namely the urea cycle, fatty acid oxidation, and the methylation cycle. This pattern of changes likely reflects compensatory and pathological changes associated with liver iron overload and provides a window into these processes.  相似文献   

18.
Diquat toxicity causes iron-mediated oxidative stress; however, it remains unclear how diquat affects iron metabolism. Here, we examined the effect of diquat-induced oxidative stress on iron metabolism in male Fischer-344 rats, with particular focus on gene expression. Hepatic nonheme iron content was unchanged until 20?h after diquat treatment. Hepatic free iron levels increased markedly in the early stages following treatment and remained elevated for at least 6?h, resulting in severe hepatotoxicity, until returning to control levels at 20?h. The level of hepatic ferritin, especially the H-subunit, increased 20?h after diquat treatment due to elevated hepatic ferritin-H mRNA expression. These results indicate that early elevated levels of free iron in the liver of diquat-treated rats cause hepatotoxicity, and that this free iron is subsequently sequestered by ferritin synthesized under conditions of oxidative stress, thus limiting the pro-oxidant challenge of iron. The plasma iron concentration decreased at 6 and 20?h after diquat treatment, whereas the level of plasma interleukin-6 increased markedly at 3?h and remained high until 20?h. In the liver of diquat-treated rats, expression of hepcidin mRNA was markedly upregulated at 3 and 6?h, whereas ferroportin mRNA expression was downregulated slightly at 20?h. Transferrin receptor 1 mRNA expression was significantly upregulated at 3, 6, and 20?h. These results indicate that inhibition of iron release from iron-storage tissues, through stimulation of the interleukin-6-hepcidin-ferroportin axis, and enhanced iron uptake into hepatocytes, mediated by transferrin receptor 1, cause hypoferremia.  相似文献   

19.
20.
Cardiac complications including arrhythmia and especially atrial fibrillation (AF) are common causes of death in β-thalassemia patients. The main factor in the etiopathogenesis of these complications is iron overload, which results in increased oxidative stress. Although there is a known association between cardiac complications and iron overload in β-thalassemia patients, there is no comprehensive review on AF and excessive iron with a focus on oxidative stress in these patients. The aim of this article was to review the different aspects of AF in β-thalassemia patients with a focus on the prevention and treatment of AF by using iron chelators and/or anti-oxidants. AF in β-thalassemia patients is more common than in the general population. One of the most important causes of AF is cardiac iron overload and the harmful effects of increased oxidative stress. Iron-induced AF can be reversed by using an intensive iron chelation regimen. Based on a few experimental studies, the combination of iron chelators with some anti-oxidants, including NAC, vitamin C, and acetaminophen, can lead to improved cardiac protection. However, the effect of such combinations on cardiac arrhythmias should be further evaluated with animal and human studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号