首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Lignin peroxidase production by several strains of Phanerochaete chrysosporium was determined during growth on glycerol under conditions of nitrogen sufficiency. Fungal strains which grew poorest on glycerol produced the highest titres of lignin peroxidase whereas enzyme levels were much lower when marginally greater biomass values were recorded. In the case of P. chrysosporium strain INA-12, the nature of the nitrogen source had a pronounced effect on both growth and enzyme production. Highest biomass values were obtained when l-glutamate or l-glutamine served as the major nitrogen source but enzyme synthesis was normally repressed completely. Lignin peroxidase activity in this strain was maximal when the initial pH of the culture medium was adjusted to pH 5.0.  相似文献   

2.
The ligninolytic enzymes synthesized by Phanerochaete chrysosporium BKM-F-1767 immobilized on polyurethane foam were characterized under limiting, sufficient, and excess nutrient conditions. The fungus was grown in a nonimmersed liquid culture system under conditions close to those occurring in nature, with nitrogen concentrations ranging from 2.4 to 60 mM. This nonimmersed liquid culture system consisted of fungal mycelium immobilized on porous pieces of polyurethane foam saturated with liquid medium and highly exposed to gaseous oxygen. Lignin peroxidase (LIP) activity decreased to almost undetectable levels as the initial NH4+ levels were increased over the range from 2.4 to 14 mM and then increased with additional increases in initial NH4+ concentration. At 45 mM NH4+, LIP was overproduced, reaching levels of 800 U/liter. In addition, almost simultaneous secretion of LIP and secretion of manganese-dependent lignin peroxidase were observed on the third day of incubation. Manganese-dependent lignin peroxidase activity was maximal under nitrogen limitation conditions (2.4 mM NH4+) and then decreased to 40 to 50% of the maximal level in the presence of sufficient or excess initial NH4+ concentrations. Overproduction of LIP in the presence of a sufficient nitrogen level (24 mM NH4+) and excess nitrogen levels (45 to 60 mM NH4+) seemed to occur as a response to carbon starvation after rapid glucose depletion. The NH4+ in the extracellular fluid reappeared as soon as glucose was depleted, and an almost complete loss of CO2 was observed, suggesting that an alternative energy source was generated by self-proteolysis of cell proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The well-documented ability to degrade lignin and a variety of complex chemicals showed by the white-rot fungus Phanerochaete chrysosporium has made it the subject of many studies in areas of environmental concern, including pulp bioleaching and bioremediation technologies. However, until now, most of the work in this field has been focused on the ligninolytic sub-system but, due to the great complexity of the involved processes, less progress has been made in understanding the biochemical regulatory structure that could explain growth dynamics, the substrate utilization and the ligninolytic system production itself. In this work we want to tackle this problem from the perspectives and approaches of systems biology, which have been shown to be effective in the case of complex systems. We will use a top-down approach to the construction of this model aiming to identify the cellular sub-systems that play a major role in the whole process. We have investigated growth dynamics, substrate consumption and lignin peroxidase production of the P. chrysosporium wild type under a set of definite culture conditions. Based on data gathered from different authors and in our own experimental determinations, we built a model using a GMA power-law representation, which was used as platform to make predictive simulations. Thereby, we could assess the consistency of some current assumptions about the regulatory structure of the overall process. The model parameters were estimated from a time series experimental measurements by means of an algorithm previously adapted and optimized for power-law models. The model was subsequently checked for quality by comparing its predictions with the experimental behavior observed in new, different experimental settings and through perturbation analysis aimed to test the robustness of the model. Hence, the model showed to be able to predict the dynamics of two critical variables such as biomass and lignin peroxidase activity when in conditions of nutrient deprivation and after pulses of veratryl alcohol. Moreover, it successfully predicts the evolution of the variables during both, the active growth phase and after the deprivation shock. The close agreement between the predicted and observed behavior and the advanced understanding of its kinetic structure and regulatory features provides the necessary background for the design of a biotechnological set-up designed for the continuous production of the ligninolityc system and its optimization.  相似文献   

4.
黄孢原毛平革菌合成木素过氧化物酶的营养调控   总被引:31,自引:1,他引:31  
本文研究了营养条件对黄孢原毛平革茵(Phanerochale chrysosporium)ME-116合成木素过氧化物酶及其同工酶组分的影响.在最适培养条件下获得1500U/L的酶活.高效液相色谱分离的5个同工酶组分中以P_2组分含量最高.低碳高氮培养基最适于酶的合成.降低氮和KH_2PO_4含量致使各组分含量下降,而改变MgSO_4和CaCl_2浓度对P_2组分无影响.表面活性剂吐温80主要通过提高细胞膜透性而增加酶的合成.黎芦醇对5种同工酶组分的合成均有诱导作用.培养基中各营养因子对木素过氧化物酶的合成存在着复杂的交互作用.  相似文献   

5.
Liginin peroxidase (ligninase) of the white rot fungus Phanerochaete chrysosporium Burdsall was discovered in 1982 as a secondary metabolite. Today multiple isoenzymes are known, which are often collectively called as lignin peroxidase. Lignin peroxidase has been characterized as a veratryl alcohol oxidizing enzyme, but it is a relatively unspecific enzyme catalyzing a variety of reactions with hydrogen peroxide as the electron acceptor. P. chrysosporium ligninases are heme glycoproteins. At least a number of isoenzymes are also phosphorylated. Two of the major isoenzymes have been crystallized. Until recently lignin peroxidase could only be produced in low yields in very small scale stationary cultures owing to shear sensitivity. Most strains produce the enzyme only after grown under nitrogen or carbon limitation, although strains producing lignin peroxidase under nutrient sufficiency have also been isolated. Activities over 2000 U dm(-3) (as determined at 30 degrees to 37 degrees C) have been reported in small scale Erlenmeyer cultures with the strain INA-12 grown on glycerol in the presence of soybean phospholipids under nitrogen sufficiency. In about 8 dm(3) liquid volume pilot scale higher than 100 U dm(-3) (as determined at 23 degrees C) have been obtained under agitation with immobilized P. chrysosporium strains ATCC 24725 or TKK 20512. Good results have been obtained for example with nylon web, polyurethane foam, sintered glass or silicon tubing as the carrier. The immobilized biocatalyst systems have also made large scale repeated batch and semicontinuous production possible. With nylon web as the carrier, lignin peroxidase production has recently been scaled up to 800 dm(3) liquid volume semicontinuous industrial production process.  相似文献   

6.
Summary A solid state fermentation (SSF) process for the production of lignin peroxidase was optimized to enhance enzyme production by Phanerochaete chrysosporium. Optimization of the corncob SSF medium caused a significant reduction in fermentation time to give maximum lignin peroxidase yield. Supplementation of the SSF medium by low concentrations of peptone, yeast extract and Tween-80 enhanced lignin peroxidase production. Maximum yield of lignin peroxidase was 13.7 U/gds (units per gram dry substrate) noted after 5 days of SSF with 70% moisture and 20% (v/w) inoculum.  相似文献   

7.
以黄孢原毛平革菌 (Phanerochaetechrysosporium)RNA为模板 ,克隆LipH8基因片段 ,研究LipH8基因在甲醇毕赤酵母中的表达。构建了甲醇酵母表达质粒pMETA_LipH8载体 ,并将其线性化后用电穿孔法导入PichiamethabolicaPMAD16 ,部分阳性克隆的PCR结果表明LipH8基因已经整合到甲醇毕赤酵母染色体上 ,经摇瓶培养筛选出表达水平较高的酵母工程菌株。胞外木质素过氧化物酶活力达 932U L。  相似文献   

8.
Phanerochaete chrysosporium decolorized several polyaromatic azo dyes in ligninolytic culture. The oxidation rates of individual dyes depended on their structures. Veratryl alcohol stimulated azo dye oxidation by pure lignin peroxidase (ligninase, LiP) in vitro. Accumulation of compound II of lignin peroxidase, an oxidized form of the enzyme, was observed after short incubations with these azo substrates. When veratryl alcohol was also present, only the native form of lignin peroxidase was observed. Azo dyes acted as inhibitors of veratryl alcohol oxidation. After an azo dye had been degraded, the oxidation rates of veratryl alcohol recovered, confirming that these two compounds competed for ligninase during the catalytic cycle. Veratryl alcohol acts as a third substrate (with H2O2 and the azo dye) in the lignin peroxidase cycle during oxidations of azo dyes.  相似文献   

9.
Methods based on UV-visible diffuse reflectance spectroscopy were used to study the physiological aspects of lignin-peroxidase biosynthesis by Phanerochaete chrysosporium. Here we introduce the use of cytochrome aa3 as an indicator of active fungal biomass and of its redox state to calculate the oxygen mass transport coefficient between the growth medium and the fungal cell interior. When lignin peroxidase biosynthesis was enhanced by the addition of Tween 80 or Tween 20 to the growth medium, a higher proportion of reduced cytochrome aa3 and a higher oxygen diffusion barrier were observed compared with control cultures. In cultures supplemented with Tween 80 or Tween 20, a higher oxygen mass transport coefficient between the growth medium and the interior of the fungal cell was also found. The beginning of the lignin peroxidase activity in these cultures was found to coincide with a temporary cessation in the dry biomass increase and a reduction in the relative active-biomass concentration. During the lignin peroxidase activity, a decrease in the intracellular pH and an increase in the growth medium pH were determined in cultures supplemented with Tween 80.  相似文献   

10.
《Process Biochemistry》2014,49(3):365-373
A three-stage control strategy independent of the organic substrate was developed for automated substrate feeding in a two-phase fed-batch culture of Cupriavidus necator DSM 545 for the production of the biopolymer polyhydroxybutyrate (PHB). The optimal feeding strategy was determined using glucose as the substrate. A combined substrate feeding strategy consisting of exponential feeding and a novel method based on alkali-addition monitoring resulted in a maximal cell concentration in the biomass growth phase. In the PHB accumulation phase, a constant substrate feeding strategy based on the estimated amount of biomass produced in the first phase and a specific PHB accumulation rate was implemented to induce PHB under limiting nitrogen at different biomass concentrations. Maximal cell and PHB concentrations of 164 and 125 g/L were obtained when nitrogen feeding was stopped at 56 g/L of residual biomass; the glucose concentration was maintained within its optimal range. The developed feeding strategy was validated using waste glycerol as the sole carbon source for PHB production, and the three-stage control strategy resulted in a PHB concentration of 65.6 g/L and PHB content of 62.7% while keeping the glycerol concentration constant. It can thus be concluded that the developed feeding strategy is sensitive, robust, inexpensive, and applicable to fed-batch culture for PHB production independent of the carbon source.  相似文献   

11.
The oxidation of fluorene, a polycyclic hydrocarbon which is not a substrate for fungal lignin peroxidase, was studied in liquid cultures of Phanerochaete chrysosporium and in vitro with P. chrysosporium extracellular enzymes. Intact fungal cultures metabolized fluorene to 9-hydroxyfluorene via 9-fluorenone. Some conversion to more-polar products was also observed. Oxidation of fluorene to 9-fluorenone was also obtained in vitro in a system that contained manganese(II), unsaturated fatty acid, and either crude P. chrysosporium peroxidases or purified recombinant manganese peroxidase. The oxidation of fluorene in vitro was inhibited by the free-radical scavenger butylated hydroxytoluene but not by the lignin peroxidase inhibitor NaVO(inf3). Manganese(III)-malonic acid complexes could not oxidize fluorene. These results indicate that fluorene oxidation in vitro was a consequence of lipid peroxidation mediated by P. chrysosporium manganese peroxidase. The rates of fluorene and diphenylmethane disappearance in vitro were significantly faster than those of true polycyclic aromatic hydrocarbons or fluoranthenes, whose rates of disappearance were ionization potential dependent. This result indicates that the initial oxidation of fluorene proceeds by mechanisms other than electron abstraction and that benzylic hydrogen abstraction is probably the route for oxidation.  相似文献   

12.
Nine proteins with lignin peroxidase activity were separated from cultures of Phanerochaete chrysosporium INA-12 in glycerol as carbon source and non-nitrogen limited. Four lignin peroxidase isozymes (4, 5, 8, 9) were purified and characterized. Although differences in kinetic parameters could be shown, antibody reaction showed homology between isozymes. However, thermal stability studied, peptide mapping results, and N-terminal sequence analyses established a higher degree of homology between isozymes 4/5 and 8/9 types. Protein characterization and kinetic data indicate that lignin peroxidase isozymes 4, 5, 8, and 9 differ from described isozymes in strain BKM. The higher specific activity of lignin peroxidase isozymes in cultures with glycerol than in nitrogen-starved cultures accounts for the higher lignin peroxidase activity obtained in these conditions.  相似文献   

13.
An orthogonal 23-factorial experimental design was employed in the multivariate optimization of lignin peroxidase production by Phanerochaete chrysosporium in shake cultures both as free pellets and as immobilized on nylon-web, and to provide knowledge on the process for scale-up and control. It was observed that a short starving period after the growth of the mycelium and the depletion of the initial carbon source, followed by the addition of glucose to about 1 g/dm3 level together with the activator markedly enhanced lignin peroxidase production. The optimum concentration of veratryl alcohol as an activator, 2.5 mM with the immobilized fungus system was about double of that with free pellets, and about 6 to 10 times that most often previously employed. Benzyl alcohol could also be used as an activator at an optimal level of about 5.2 mM, although the lignin peroxidase activities obtained were somewhat lower than those with veratryl alcohol. The immobilization appeared to stabilize P. chrysosporium against shear effects, and in the presence of the surfactant Tween 80 in particular high lignin peroxidase activities were obtained already one to two days after the activation.  相似文献   

14.
The relative contributions of lignin peroxidase (LiP) and manganese peroxidase (MnP) to the decolorization of olive mill wastewaters (OMW) by Phanerochaete chrysosporium were investigated. A relatively low level (25%) of OMW decolorization was found with P. chrysosporium which was grown in a medium with a high Mn(II) concentration and in which a high level of MnP (0.65 (mu)M) was produced. In contrast, a high degree of OMW decolorization (more than 70%) was observed with P. chrysosporium which was grown in a medium with a low Mn(II) concentration but which resulted in a high level of LiP activity (0.3 (mu)M). In this culture medium, increasing the Mn(II) concentration resulted in decreased levels of OMW decolorization and LiP activity. Decolorization by reconstituted cultures of P. chrysosporium was found to be more enhanced by the addition of isolated LiP than by the addition of isolated MnP. The highest OMW decolorization levels were obtained at low initial chemical oxygen demands combined with high levels of extracellular LiP. These data, plus the positive effect of veratryl alcohol on OMW decolorization and LiP activity, indicate that culture conditions which yield high levels of LiP activity lead to high levels of OMW decolorization.  相似文献   

15.
Batch cultures of the thermophilic bacterium Geobacillus thermoleovorans T80 attained extremely high-specific glucose utilization rates leading to high specific growth rates, followed by extensive cell death and lysis with the onset of substrate exhaustion. The dramatic decrease in live cell numbers, as determined by flow cytometry, was accompanied by the release of soluble protein. Once the growth phase reached the point of commitment to lysis created by the impending exhaustion of substrate, the addition of extra carbon substrate did not halt the rapid death rate and lysis, although, towards the end of the exponential growth phase, the substrate was utilized producing only a small additional biomass concentration as a result of the net effect of cell growth and death. This lytic phenomenon was observed when a range of different carbon substrates (glucose, pyruvate, acetate, n-hexadecane, nutrient broth), as well as ammonium (the nitrogen source) in the presence of excess carbon source, reached near exhaustion. The rate and extent of cell death and the ensuing lysis depend on the culture growth rate. Cultures batch grown with a lower initial substrate concentration, or at a lower temperature, or at lower dilution rates for continuous-flow cultures, exhibited a lower rate and extent of cell death and lysis. Batch re-culture of the persister cells resulted in a behavior identical to that of the original culture indicating that these cells were not genetically modified. The glucose utilization, cell growth and death rates were mathematically described based on Monod kinetics and estimated values of pertinent biokinetic constants are reported.  相似文献   

16.
Wang H  Lu F  Sun Y  Du L 《Biotechnology letters》2004,26(20):1569-1573
The cDNA encoding for lignin peroxidase of Phanerochaete chrysosporium was expressed in the Pichia methanolica under the control of the alcohol oxidase (AUG1) promoter which was followed by either the lignin peroxidase leader peptide of Phanerochaete chrysosporium or the Saccharomyces cerevisiae alpha-factor signal peptide. Both peptides efficiently directed the secretion of lignin peroxidase from the recombinant yeast cell. The extracellular lignin peroxidase activity in two recombinants was 932 U l(-1) and 1933 U l(-1). The purity of the recombinant product was confirmed by SDS-PAGE.  相似文献   

17.
A B Orth  D J Royse    M Tien 《Applied microbiology》1993,59(12):4017-4023
Phanerochaete chrysosporium is rapidly becoming a model system for the study of lignin biodegradation. Numerous studies on the physiology, biochemistry, chemistry, and genetics of this system have been performed. However, P. chrysosporium is not the only fungus to have a lignin-degrading enzyme system. Many other ligninolytic species of fungi, as well as other distantly related organisms which are known to produce lignin peroxidases, are described in this paper. In this study, we demonstrated the presence of the peroxidative enzymes in nine species not previously investigated. The fungi studied produced significant manganese peroxidase activity when they were grown on an oak sawdust substrate supplemented with wheat bran, millet, and sucrose. Many of the fungi also exhibited laccase and/or glyoxal oxidase activity. Inhibitors present in the medium prevented measurement of lignin peroxidase activity. However, Western blots (immunoblots) revealed that several of the fungi produced lignin peroxidase proteins. We concluded from this work that lignin-degrading peroxidases are present in nearly all ligninolytic fungi, but may be expressed differentially in different species. Substantial variability exists in the levels and types of ligninolytic enzymes produced by different white not fungi.  相似文献   

18.
S Kawai  K A Jensen  Jr  W Bao    K E Hammel 《Applied microbiology》1995,61(9):3407-3414
Lignin model dimers are valuable tools for the elucidation of microbial ligninolytic mechanisms, but their low molecular weight (MW) makes them susceptible to nonligninolytic intracellular metabolism. To address this problem, we prepared lignin models in which unlabeled and alpha-14C-labeled beta-O-4-linked dimers were covalently attached to 8,000-MW polyethylene glycol (PEG) or to 45,000-MW polystyrene (PS). The water-soluble PEG-linked model was mineralized extensively in liquid medium and in solid wood cultures by the white rot fungus Phanerochaete chrysosporium, whereas the water-insoluble PS-linked model was not. Gel permeation chromatography showed that P. chrysosporium degraded the PEG-linked model by cleaving its lignin dimer substructure rather than its PEG moiety. C alpha-C beta cleavage was the major fate of the PEG-linked model after incubation with P. chrysosporium in vivo and also after oxidation with P. chrysosporium lignin peroxidase in vitro. The brown rot fungus Gloeophyllum trabeum, which unlike P. chrysosporium lacks a vigorous extracellular ligninolytic system, was unable to degrade the PEG-linked model efficiently. These results show that PEG-linked lignin models are a marked improvement over the low-MW models that have been used in the past.  相似文献   

19.
20.
Zeng J  Singh D  Chen S 《Bioresource technology》2011,102(3):3206-3214
Inorganic salts and tween 80 are known to induce the lignin degrading peroxidase expression of Phanerochaete chrysosporium in submerged culture. In this study, the wheat straw pretreatment supplemented with inorganic salts (salts group), tween 80 (plus) and no supplementation to the biomass (minus) were examined. Among the solid state fermentation groups, salts group resulted in a substantial degradation of wheat straw within one week, along with the highest lignin loss (25%) and ~250% higher efficiency for the total sugar release through enzymatic hydrolysis. The results were correlated with pyrolysis GC-MS (Py-GC-MS), thermogravimetric (TG)/differential thermogravimetric (DTG) and X-ray diffraction (XRD). The results suggested that the supplementation of inorganic salts in the solid state fermentation of wheat straw significantly enhances the degradation rate of the biomass by P. chrysosporium which can be exploited as an alternative means to existing pretreatment technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号