首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetraethylammonium (TEA), a K+ channel blocker, induced prolactin (PRL) secretion in GH4C1 cells in a dose-dependent manner when applied at a concentration from 1-20 mM. During continuous exposure to TEA, a significant increase in PRL secretion occurred by 20 min and the response was sustained until the end of a 60-min exposure. Blocking Ca2+ influx by employing a Ca(2+)-depleted medium or the Ca2+ channel blocker, nifedipine, prevented induction of PRL secretion by 20 mM TEA. Preincubation of the cells for 10 min with 20 mM TEA did not inhibit PRL secretion induced by thyrotropin-releasing hormone (TRH), phorbol 12-myristate 13-acetate (TPA) or by cell swelling produced by 30% medium hyposmolarity, but significantly depressed that induced by depolarizing 30 mM K+. BaCl2, another K+ channel blocker, had the same effect on PRL secretion as TEA. The data suggest that blocking K+ channels may cause membrane depolarization, thereby inducing Ca2+ influx which is a potent stimulus for PRL secretion in GH4C1 cells.  相似文献   

2.
The effects of the natural polyamines, putrescine, spermidine and spermine on single calcium-activated potassium channels from clonal rat pituitary tumor cells (GH3) were studied. Applied to inside-out patches, polyamines were found to reduce the current amplitude and open probability of the channels in a dose- and voltage-dependent manner, indicating that polyamines act as fast blockers which sense a fraction of the electrical field in the channel pore. The K d for spermine was 11.2 mm for the reduction of unitary current amplitude and 0.7 mm for the reduction of the open probability. The order of effectiveness was spermine > spermidine > putrescine. From fitting -functions to current amplitude histograms, blocking and unblocking rates were determined as 11.4 × 104 sec–1 and 21.9 × 104 sec–1, respectively. The reduction of the channel open probability was relieved by an increase of the Ca2+ concentration of the internal solution, indicating that polyamines compete with Ca2+ at the Ca2+ sensor of the channel. Putrescine antagonized the effect of spermine on the channel current amplitude. The results suggest that polyamines at intracellular millimolar concentrations suppress ion channel activity and therefore may effect electrical discharge behavior of excitable cells.This work was supported in part by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung, P8587.  相似文献   

3.
The aim of the study was to investigate the relationship between thyrotropin-releasing hormone (TRH)-induced changes in intracellular free Ca2+ ([Ca2+]i), and influx of extracellular Ca2+ in Fura 2 loaded pituitary GH4C1 cells. Stimulating the cells with TRH in a Ca(2+)-containing buffer induced a biphasic change in [Ca2+]i. First, a transient increase in [Ca2+]i, followed by a sustained phase. In cells stimulated with TRH in a Ca(2+)-free buffer, the transient increase in [Ca(2+)]i was decreased (p less than 0.05), and the sustained phase was totally abolished. Addition of Ni2+ prior to TRH blunted the component of the TRH-induced transient increase in [Ca2+]i dependent on influx of Ca2+. In the presence of extracellular Mn2+, TRH stimulated quenching of Fura 2 fluorescence. This quenching was blocked by Ni2+. The results indicate that both the TRH-induced transient increase in [Ca2+]i as well as the sustained phase in [Ca2+]i in GH4C1 cells is dependent on influx of extracellular Ca2+.  相似文献   

4.
The effects of changes in membrane cholesterol on ion currents were investigated in pituitary GH3 cells. Depletion of membrane cholesterol by exposing cells to methyl-beta-cyclodextrin (MbetaCD), an oligosaccharide, resulted in an increase in the density of Ca2+-activated K+ current (IK(Ca)). However, no significant change in IK(Ca) density was demonstrated in GH3 cells treated with a mixture of MbetaCD and cholesterol. Cholesterol depletion with MbetaCD (1.5 mg/ml) slightly suppressed the density of voltage-dependent L-type Ca2+ current. In inside-out patches recorded from MbetaCD-treated cells, the activity of large-conductance Ca2+-activated K+ (BK(Ca)) channels was enhanced with no change in single-channel conductance. In MbetaCD-treated cells, voltage-sensitivity of BK(Ca) channels was increased; however, no change in Ca2+-sensitivity could be demonstrated. A negative correlation between adjacent closed and open times in BK(Ca) channels was observed in MbetaCD-treated cells. In inside-out patches from MbetaCD-treated cells, dexamethasone (30 microM) applied to the intracellular surface did not increase BK(Ca)-channel activity, although caffeic acid phenethyl ester and cilostazol still opened its probability effectively. However, no modification in the activity of ATP-sensitive K+ channels could be seen in MbetaCD-treated cells. Current-clamp recordings demonstrated that the cholesterol depletion maneuver with MbetaCD reduced the firing of action potentials. Therefore, the increase in BK(Ca)-channel activity induced by membrane depletion may influence the functional activities of neurons or neuroendocrine cells if similar results occur in vivo.  相似文献   

5.
GH3 cells showed spontaneous rhythmic oscillations in intracellular calcium concentration ([Ca2+]i) and spontaneous prolactin release. The L-type Ca2+ channel inhibitor nimodipine reduced the frequency of Ca2+ oscillations at lower concentrations (100nM-1 microM), whereas at higher concentrations (10 microM), it completely abolished them. Ca2+ oscillations persisted following exposure to thapsigargin, indicating that inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores were not required for spontaneous activity. The K+ channel inhibitors Ba2+, Cs+, and tetraethylammonium (TEA) had distinct effects on different K+ currents, as well as on Ca2+ oscillations and prolactin release. Cs+ inhibited the inward rectifier K+ current (KIR) and increased the frequency of Ca2+ oscillations. TEA inhibited outward K+ currents activated at voltages above -40 mV (grouped within the category of Ca2+ and voltage-activated currents, KCa,V) and increased the amplitude of Ca2+ oscillations. Ba2+ inhibited both KIR and KCa,V and increased both the amplitude and the frequency of Ca2+ oscillations. Prolactin release was increased by Ba2+ and Cs+ but not by TEA. These results indicate that L-type Ca2+ channels and KIR channels modulate the frequency of Ca2+ oscillations and prolactin release, whereas TEA-sensitive KCa,V channels modulate the amplitude of Ca2+ oscillations without altering prolactin release. Differential regulation of these channels can produce frequency or amplitude modulation of calcium signaling that stimulates specific pituitary cell functions.  相似文献   

6.
A clonal strain of rat pituitary tumor cells (GH3) that spontaneously synthesizes and secretes prolactin (PRL) and growth hormone (GH) was used as model system to study the mechanism of action of 1,25-(OH)2D3. We have previously demonstrated that these cells possess specific cytosol binding proteins for 1,25-(OH)2D3 (Haug and Gautvik, 1985). When the GH3 cells were incubated in a serum-free, chemically defined medium of low extracellular Ca2+ concentration, 1,25-(OH)2D3 stimulated PRL production in a dose-dependent manner. The stimulation was detectable at 10(-11) M, and the maximum effect (2-fold increase) was observed at 10(-9) M (ED50 = 2 x 10(-11) M). The dose-response curve was bell-shaped, and at 10(-6) M 1,25-(OH)2D3 even suppressed PRL production to about 75% of controls. The stimulatory effect was first seen after 2 days and was maximal after 4 days. On a molar basis 25-OHD3 and 1-OHD3 were at least 100 times less potent than 1,25-(OH)2D3, while 24,25-(OH)2D3 had no effect on PRL production. At an extracellular concentration of Ca2+ as low as 4 x 10(-5) M the stimulatory effect of 1,25-(OH)2D3 was small (1.3-fold). Increasing extracellular Ca2+ to 1.5 x 10(-4) M increased the 1,25-(OH)2D3-induced PRL response to 2.1-fold. In contrast to the biphasic effect of 1,25-(OH)2D3 on PRL production, GH production was decreased to about 60% of controls at 10(-8) M and above. These findings indicate that in serum-free medium the stimulatory effect of 1,25-(OH)2D3 on PRL production is critically dependent on the concentration of extracellular Ca2+.  相似文献   

7.
The hormones bombesin and thyrotropin-releasing hormone (TRH) stimulated formation of inositol- monophosphate, bisphosphate, trisphosphate and tetrakisphosphate with parallel time courses in GH4C1 cells, while a more polar inositol polyphosphate peak, consisting of inositol-pentakisphosphate and perhaps also inositol-hexakisphosphate, was unaffected by either hormone. Although bombesin and TRH had similar potencies in stimulating inositol trisphosphate production (Km = 30 nM and 40 nM, respectively), TRH was significantly more efficacious than bombesin. Maximal stimulation of inositol-1,4,5-trisphosphate formation by TRH was not further increased by addition of a maximally effective dose of bombesin, suggesting that the two hormones act through stimulation of a common pool of phospholipase C, and this enzyme pool can be fully stimulated by TRH, alone.  相似文献   

8.
Ca2+ influx via voltage-dependent Ca2+ channels is known to be elicited during action potentials but possibly also occurs at the resting potential. The steady-state current through voltage-dependent Ca2+ channels and its role for the electrical activity was, therefore, investigated in pituitary GH3 cells. Applying the recently developed 'nystatin-modification' of the patch-clamp technique, most GH3 cells (18 out of 23 cells) fired spontaneous action potentials from a baseline membrane potential of 43.7 +/- 4.6 mV (mean +/- s.d., n = 23). The frequency of action potentials was stimulated about twofold by Bay K 8644 (100 nM), a Ca(2+)-channel stimulator, and action potentials were completely suppressed by the Ca(2+)-channel blocker PN 200-110 (100 nM). Voltage clamping GH3 cells at fixed potentials for several minutes and with 1 mM Ba2+ as divalent charge carrier, we observed steady-state Ca(2+)-channel currents that were dihydropyridine-sensitive and displayed a U-shaped current-voltage relation. The results strongly suggest that the observed long lasting, dihydropyridine-sensitive Ca(2+)-channel currents provide a steady-state conductivity for Ca2+ at the resting potential and are essential for the generation of action potentials in GH3 pituitary cells.  相似文献   

9.
Ca2+-induced Ca2+ release (CICR) is a well characterized activity in skeletal and cardiac muscles mediated by the ryanodine receptors. The present study demonstrates CICR in the non-excitable parotid acinar cells, which resembles the mechanism described in cardiac myocytes. Partial depletion of internal Ca2+ stores leads to a minimal activation of Ca2+ influx. Ca2+ influx through this pathway results in an explosive mobilization of Ca2+ from the majority of the stores by CICR. Thus, stimulation of parotid acinar cells in Ca2+ -free medium with 0.5 microm carbachol releases approximately 5% of the Ca2+ mobilizable by 1 mm carbachol. Addition of external Ca2+ induced the same Ca2+ release observed in maximally stimulated cells. Similar results were obtained by a short treatment with 2.5-10 microm cyclopiazonic acid, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase pump. The Ca2+ release induced by the addition of external Ca2+ was largely independent of IP(3)Rs because it was reduced by only approximately 30% by the inhibition of the inositol 1,4,5-trisphosphate receptors with caffeine or heparin. Measurements of Ca2+ -activated outward current and [Ca2+](i) suggested that most CICR triggered by Ca2+ influx occurred away from the plasma membrane. Measurement of the response to several concentrations of cyclopiazonic acid revealed that Ca2+ influx that regulates CICR is associated with a selective portion of the internal Ca2+ pool. The minimal activation of Ca2+ influx by partial store depletion was confirmed by the measurement of Mn2+ influx. Inhibition of Ca2+ influx with SKF96365 or 2-aminoethoxydiphenyl borate prevented activation of CICR observed on addition of external Ca2+. These findings provide evidence for activation of CICR by Ca2+ influx in non-excitable cells, demonstrate a previously unrecognized role for Ca2+ influx in triggering CICR, and indicate that CICR in non-excitable cells resembles CICR in cardiac myocytes with the exception that in cardiac cells Ca2+ influx is mediated by voltage-regulated Ca2+ channels whereas in non-excitable cells Ca2+ influx is mediated by store-operated channels.  相似文献   

10.
Summary The artificial sweetener saccharin inhibits binding of epidermal growth factor (EGF) to cultured rat pituitary tumor cells (GH4C1 cells). Saccharin also causes morphological alterations in these cells, resulting in pronounced elongation, stretching, and firmer attachment of cells to the culture dishes. These alterations in cell shape are similar to those observed after treatment of GH4C1 cells with EGF and with thyrotropin-releasing hormone (TRH), both of which enhance prolactin (PRL) production in these cells. After assaying for PRL in saccharin-treated cultures, it was observed that this sweetener is also capable of stimulating PRL production two-to sixfold in a dose-dependent manner. Enhancement of PRL production can be observed at 0.5 mM saccharin, yet this is 10 times less than the saccharin concentration required to alter cell shape. These effects of saccharin on cell morphology and on PRL production are reversible in GH4C1 cell cultures. When added to cultures along with maximal concentrations of EGF or TRH, the effects of saccharin on PRL production are additive, suggesting that the actions of saccharin are mediated by a somewhat different pathway from that of the peptide hormones. Pulse labeling studies indicate that the enhancement of PRL production is highly specific inasmuch as saccharin was found to decrease the overall rate of protein synthesis in these cells. Saccharin also causes a decrease in the rate of DNA synthesis under these treatment conditions. Mitomycin C, which similarly inhibited DNA synthesis, had no effect on cell morphology or PRL production. This investigation was supported by a Faculty Research Grant from Wheaton College  相似文献   

11.
We have previously shown that sphingosine inhibits depolarisation-induced calcium influx through voltage-operated calcium channels (VOCCs) in GH(4)C(1) cells, whereas sphingosine-1-phosphate (S1P) does not. In the present study we investigated whether sphingosine kinase modulates VOCC activity in GH(4)C(1) cells by removing inhibitory sphingosine. Sphingosine and the structurally similar sphingosine kinase inhibitor dimethylsphingosine (DMS) both rapidly attenuated the calcium influx evoked by depolarisation. The inhibitory effect declined over time to a greater extent in cells treated with sphingosine than in cells treated with DMS, indicating that sphingosine is being metabolised more rapidly. When the specific sphingosine kinase inhibitor 2-(p-Hydroxyanilino)-4-(p-chlorophenyl) thiazole (SKi) was added to the cells after depolarisation there was likewise a reduction of the calcium response. This inhibitory effect was slow and reached a plateau about 3 min after application. In contrast, the sphingosine-mediated inhibition was immediate, suggesting that the SKi-induced inhibition was due to build-up of cellular sphingosine. In experiments on cells overexpressing sphingosine kinase, the inhibitory effect of sphingosine was reversed faster than in control cells. The effect was not due to the produced S1P, since S1P did not have any effect on VOCCs even at concentrations as high as 50 microM. In patch-clamp experiments the calcium entry through VOCCs was attenuated in GH(4)C(1) cells overexpressing a kinase-dead sphingosine kinase, compared with cells overexpressing the wild type sphingosine kinase. In addition, in cells treated with SKi the calcium entry through VOCCs was attenuated compared with control cells. Our results provide compelling evidence that sphingosine kinase regulates the function of voltage-operated calcium channels in GH(4)C(1) cells, not through its catalytic product, but by removal of the substrate sphingosine.  相似文献   

12.
The two dihydropyridine enantiomers, (+)202-791 and (-)202-791, that act as voltage-sensitive Ca2+ channel agonist and antagonist, respectively, were examined for effects on cytosolic Ca2+ concentrations ([Ca2+]i) and on hormones secretion in dispersed bovine parathyroid cells and a rat medullary thyroid carcinoma (rMTC) cell line. In both cell types, small increases in the concentration of extracellular Ca2+ evoked transient followed by sustained increases in [Ca2+]i, as measured with fura-2. Increases in [Ca2+]i obtained by raised extracellular Ca2+ were associated with a stimulation of secretion of calcitonin (CT) and calcitonin gene-related peptide (CGRP) in rMTC cells, but an inhibition of secretion of parathyroid hormone (PTH) in parathyroid cells. The Ca2+ channel agonist (+)202-791 stimulated whereas the antagonist (-)202-791 inhibited both transient and sustained increases in [Ca2+]i induced by extracellular Ca2+ in rMTC cells. Secretion of CT and CGRP was correspondingly enhanced and depressed by (+)202-791 and (-)202-791, respectively. In contrast, neither the agonist nor the antagonist affected [Ca2+]i and PTH secretion in parathyroid cells. Depolarizing concentrations of extracellular K+ increased [Ca2+]i and hormone secretion in rMTC cells and both these responses were potentiated or inhibited by the Ca2+ channel agonist or antagonist, respectively. The results suggest a major role of voltage-sensitive Ca2+ influx in the regulation of cytosolic Ca2+ and hormones secretion in rMTC cells. Parathyroid cells, on the other hand, appear to lack voltage-sensitive Ca2+ influx pathways and regulate PTH secretion by some alternative mechanism.  相似文献   

13.
Rhodamine 123 is a lipophilic cationic fluorescent dye that localizes in mitochondria. We found that 17 beta-estradiol changes the ability of GH4C1 cells, clonal rat pituitary tumor cells, to retain rhodamine 123. Cells incubated with 10 micrograms/ml rhodamine 123 for 30 min at 37 C took up about equal amounts of rhodamine 123, as determined by fluorescence microscopy, regardless of whether they had been treated with estradiol. After three 5-min washes at 37 C, cells treated with 1 nM estradiol for 7 days before incubation with rhodamine 123 had lost more fluorescence than untreated cells. We further characterized the effect by flow cytometry. The difference in fluorescence between control and treated cells ranged from 50- to 500-fold. The effect of estradiol was maximal at 10(-10) M and took a week to develop fully. The effect is specific for estradiol, because estradiol and diethylstilbestrol reduced retention of rhodamine 123 fluorescence at 10(-10) M, but the same concentrations of dihydrotestosterone, progesterone, dexamethasone, and cholesterol did not. To test if the effect on rhodamine 123 fluorescence was caused by activation of the multidrug resistance transport system, we examined the effect of estradiol on the retention of daunomycin, a known substrate of the transport system. Estradiol treatment caused a 3-fold decrease in daunomycin fluorescence. We isolated clones resistant to estradiol-induced loss of rhodamine 123 fluorescence by flow cytometry and found that two clones still showed an estradiol-induced decrease in daunomycin fluorescence equivalent to that of the parent line.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
We previously demonstrated the expression of bitter taste receptors of the type 2 family (T2R) and the -subunits of the G protein gustducin (Ggust) in the rodent gastrointestinal (GI) tract and in GI endocrine cells. In this study, we characterized mechanisms of Ca2+ fluxes induced by two distinct T2R ligands: denatonium benzoate (DB) and phenylthiocarbamide (PTC), in mouse enteroendocrine cell line STC-1. Both DB and PTC induced a marked increase in intracellular [Ca2+] ([Ca2+]i) in a dose- and time-dependent manner. Chelating extracellular Ca2+ with EGTA blocked the increase in [Ca2+]i induced by either DB or PTC but, in contrast, did not prevent the effect induced by bombesin. Thapsigargin blocked the transient increase in [Ca2+]i induced by bombesin, but did not attenuate the [Ca2+]i increase elicited by DB or PTC. These results indicate that Ca2+ influx mediates the increase in [Ca2+]i induced by DB and PTC in STC-1 cells. Preincubation with the L-type voltage-sensitive Ca2+ channel (L-type VSCC) blockers nitrendipine or diltiazem for 30 min inhibited the increase in [Ca2+]i elicited by DB or PTC. Furthermore, exposure to the L-type VSCCs opener BAY K 8644 potentiated the increase in [Ca2+]i induced by DB and PTC. Stimulation with DB also induced a marked increase in the release of cholecystokinin from STC-1 cells, an effect also abrogated by prior exposure to EGTA or L-type VSCC blockers. Collectively, our results demonstrate that bitter tastants increase [Ca2+]i and cholecystokinin release through Ca2+ influx mediated by the opening of L-type VSCCs in enteroendocrine STC-1 cells. type 2 family taste receptors; gastrointestinal peptides; phospholipase C 2; Ca2+ fluxes; enteroendocrine cells; cholecystokinin secretion  相似文献   

16.
The neurosecretory anterior pituitary GH(4)C(1) cells exhibit the high voltage-activated dihydropyridine-sensitive L-type and the low voltage-activated T-type calcium currents. The activity of L-type calcium channels is tightly coupled to secretion of prolactin and other hormones in these cells. Depolarization induced by elevated extracellular K(+) reduces the dihydropyridine (+)-[(3)H]PN200-110 binding site density and (45)Ca(2+) uptake in these cells (). This study presents a functional analysis by electrophysiological techniques of short term regulation of L-type Ca(2+) channels in GH(4)C(1) cells by membrane depolarization. Depolarization of GH(4)C(1) cells by 50 mm K(+) rapidly reduced the barium currents through L-type calcium channels by approximately 70% and shifted the voltage dependence of activation by 10 mV to more depolarized potentials. Down-regulation depended on the strength of the depolarizing stimuli and was reversible. The currents recovered to near control levels on repolarization. Down-regulation of the calcium channel currents was calcium-dependent but may not have been due to excessive accumulation of intracellular calcium. Membrane depolarization by voltage clamping and by veratridine also produced a down-regulation of calcium channel currents. The down-regulation of the currents had an autocrine component. This study reveals a calcium-dependent down-regulation of the L-type calcium channel currents by depolarization.  相似文献   

17.
Selective protein kinase C (PKC) activators and inhibitors were used to investigate the involvement of specific PKC isoforms in the modulation of voltage-sensitive Ca(2+) channels (VSCCs) in bovine adrenal chromaffin cells. Exposure to the phorbol ester phorbol-12,13-dibutyrate (PDBu) inhibited the Ca(2+) currents elicited by depolarizing voltage steps. This inhibition was occluded by the PKC-specific inhibitor Ro 31-8220 but remained unaffected by G? 6976, a selective inhibitor of conventional PKC isoforms. PDBu treatment caused the translocation of PKC-alpha and -epsilon isoforms from cytosol to membranes. PKC-iota and -zeta showed no signs of translocation. It is concluded that VSCCs are specifically inhibited by the activation of PKC-epsilon in chromaffin cells. This may be relevant to the action of phospholipase-linked receptors involved in the control of Ca(2+) influx, both in catecholaminergic cells and other cell types.  相似文献   

18.
We have used GH3 cells permeabilized by electric field discharge to examine the effects of Ca2+ and protein kinase C activators (phorbol ester and diacylglycerol) on prolactin (PRL) release. Ca2+ was found to stimulate PRL release approximately 4 fold at 3 microM Ca2+ with a half-maximal response at approximately .5 microM estimated free Ca2+. 12-O-tetradecanoyl phorbol-13-acetate and 1-oleoyl-2-acetyl-sn-glycerol stimulated PRL release throughout a range of Ca2+ concentrations (1 nM -3 microM), but stimulation was greater at higher Ca2+ concentrations (.1 microM to 1 microM). Both agents decreased by 1.8 fold the apparent [Ca2+] at which half-maximal stimulation of secretion occurred. Quin 2 was used to measure the free [Ca2+] of intact and permeable cells; PRL secretion at a free [Ca2+] corresponding to resting cytoplasmic [Ca2+] was 10% of maximal, while secretion at the [Ca2+] corresponding to the Ca2+ spike induced by thyrotropin-releasing hormone was approximately 25% of maximal.  相似文献   

19.
20.
In this report, the secretory response to Ca2+ in GH3 rat pituitary cells permeabilized by electric field discharge has been compared in both magnitude and Ca2+ sensitivity to prolactin (PRL) release from intact GH3 cells. The half-maximally effective [Ca2+] for stimulating PRL release in permeable cells was approximately 0.5 microM, and maximal stimulation was obtained at 3-10 microM Ca2+. The magnitude of Ca2+ stimulation in permeable cells was in the same range as that obtained from an equal number of intact cells stimulated by depolarizing K+. Moreover, the Ca2+ sensitivity of PRL release in intact GH3 cells (measured by Quin 2 fluorescence) closely resembled the Ca2+ sensitivity determined in permeable cells. Release of a sulfated proteoglycan whose release is stimulated by secretagogues in intact cells was stimulated by Ca2+ in permeable cells with the same Ca2+ sensitivity as for PRL release. Maximal Ca2+ stimulation of PRL release in permeable cells required the addition of MgATP. Other energy sources (ADP, GTP, and inorganic phosphate) also supported Ca2+-stimulated secretion but were less effective. The above results indicated that PRL release from permeable cells resembles the physiological process in intact cells. The permeable cell system should prove useful in investigating the mechanism mediating the effect of Ca2+ on secretion, although our studies with pharmacological agents have so far proved inconclusive. Among calmodulin antagonists tested, only trifluoroperazine inhibited Ca2+-stimulated secretion, whereas pimozide and calmidazolium did not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号