首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zagrobelny M  Møller BL 《Phytochemistry》2011,72(13):1585-1592
Cyanogenic glucosides are important components of plant defense against generalist herbivores due to their bitter taste and the release of toxic hydrogen cyanide upon tissue disruption. Some specialized herbivores, especially insects, preferentially feed on cyanogenic plants. Such herbivores have acquired the ability to metabolize cyanogenic glucosides or to sequester them for use in their own predator defense. Burnet moths (Zygaena) sequester the cyanogenic glucosides linamarin and lotaustralin from their food plants (Fabaceae) and, in parallel, are able to carry out de novo synthesis of the very same compounds. The ratio and content of cyanogenic glucosides is tightly regulated in the different stages of the Zygaena filipendulae lifecycle and the compounds play several important roles in addition to defense. The transfer of a nuptial gift of cyanogenic glucosides during mating of Zygaena has been demonstrated as well as the possible involvement of hydrogen cyanide in male assessment and nitrogen metabolism. As the capacity to de novo synthesize cyanogenic glucosides was developed independently in plants and insects, the great similarities of the pathways between the two kingdoms indicate that cyanogenic glucosides are produced according to a universal route providing recruitment of the enzymes required. Pyrosequencing of Z. filipendulae larvae de novo synthesizing cyanogenic glucosides served to provide a set of good candidate genes, and demonstrated that the genes encoding the pathway in plants and Z. filipendulae are not closely related phylogenetically. Identification of insect genes involved in the biosynthesis and turn-over of cyanogenic glucosides will provide new insights into biological warfare as a determinant of co-evolution between plants and insects.  相似文献   

2.
Cyanogenic glucosides are phytoanticipins known to be present in more than 2500 plant species. They are considered to have an important role in plant defense against herbivores due to bitter taste and release of toxic hydrogen cyanide upon tissue disruption. Some specialized herbivores, especially insects, preferentially feed on cyanogenic plants. Such herbivores have acquired the ability to metabolize cyanogenic glucosides or to sequester them for use in their predator defense. A few species of Arthropoda (within Diplopoda, Chilopoda, Insecta) are able to de novo synthesize cyanogenic glucosides and, in addition, some of these species are able to sequester cyanogenic glucosides from their host plant (Zygaenidae). Evolutionary aspects of these unique plant-insect interactions with focus on the enzyme systems involved in synthesis and degradation of cyanogenic glucosides are discussed.  相似文献   

3.
Many plants produce cyanogenic glucosides as part of their chemical defense. They are alpha-hydroxynitrile glucosides, which release toxic hydrogen cyanide (HCN) upon cleavage by endogenous plant beta-glucosidases. In addition to cyanogenic glucosides, several plant species produce beta- and gamma-hydroxynitrile glucosides. These do not release HCN upon hydrolysis by beta-glucosidases and little is known about their biosynthesis and biological significance. We have isolated three beta-hydroxynitrile glucosides, namely (2Z)-2-(beta-D-glucopyranosyloxy)but-2-enenitrile and (2R,3R)- and (2R,3S)-2-methyl-3-(beta-D-glucopyranosyloxy)butanenitrile, from leaves of Ribesuva-crispa. These compounds have not been identified previously. We show that in several species of the genera Ribes, Rhodiola and Lotus, these beta-hydroxynitrile glucosides co-occur with the L-isoleucine-derived hydroxynitrile glucosides, lotaustralin (alpha-hydroxynitrile glucoside), rhodiocyanosides A (gamma-hydroxynitrile glucoside) and D (beta-hydroxynitrile glucoside) and in some cases with sarmentosin (a hydroxylated rhodiocyanoside A). Radiolabelling experiments demonstrated that the hydroxynitrile glucosides in R. uva-crispa and Hordeum vulgare are derived from L-isoleucine and L-leucine, respectively. Metabolite profiling of the natural variation in the content of cyanogenic glucosides and beta- and gamma-hydroxynitrile glucosides in wild accessions of Lotus japonicus in combination with genetic crosses and analyses of the metabolite profile of the F2 population provided evidence that a single recessive genetic trait is most likely responsible for the presence or absence of beta- and gamma-hydroxynitrile glucosides in L. japonicus. Our findings strongly support the notion that the beta- and gamma-hydroxynitrile glucosides are produced by diversification of the cyanogenic glucoside biosynthetic pathway at the level of the nitrile intermediate.  相似文献   

4.
Cyanogenic glucosides (CNglcs) are widespread plant defence compounds releasing toxic hydrogen cyanide when hydrolysed by specific β-glucosidases after plant tissue damage. In contrast to specialist herbivores that have mechanisms to avoid toxicity from CNglcs, it is generally assumed that non-adapted herbivores are negatively affected by CNglcs. Recent evidence, however, implies that the defence potential of CNglcs towards herbivores may not be as effective as previously anticipated. Here, performance, metabolism and excretion products of insects not adapted to CNglcs were analysed, including species with different degrees of dietary specialisation (generalists, specialists) and different feeding modes (leaf-snipping lepidopterans, piercing-sucking aphids). Insects were reared either on cyanogenic or acyanogenic plants or on an artificial cyanogenic diet. Lepidopteran generalists (Spodoptera littoralis, Spodoptera exigua, Mamestra brassicae) were compared to lepidopteran glucosinolate-specialists (Pieris rapae, Pieris brassicae, Plutella xylostella), and a generalist aphid (Myzus persicae) was compared to an aphid glucosinolate-specialist (Lipaphis erysimi). All insects were tolerant to cyanogenic plants; in lepidopterans tolerance was mainly due to excretion of intact CNglcs. The two Pieris species furthermore metabolized aromatic CNglcs to amino acid conjugates (Cys, Gly, Ser) and derivatives of these, which is similar to the metabolism of benzylglucosinolates in these species. Aphid species avoided uptake of CNglcs during feeding. Our results imply that non-adapted insects tolerate plant CNglcs either by keeping them intact for excretion, metabolizing them, or avoiding uptake.  相似文献   

5.
The latex of Hevea brasiliensis, expelled upon bark tapping, is the cytoplasm of anastomosed latex cells in the inner bark of the rubber tree. Latex regeneration between two tappings is one of the major limiting factors of rubber yield. Hevea species contain high amounts of cyanogenic glucosides from which cyanide is released when the plant is damaged providing an efficient defense mechanism against herbivores. In H. brasiliensis, the cyanogenic glucosides mainly consist of the monoglucoside linamarin (synthesized in the leaves), and its diglucoside transport-form, linustatin. Variations in leaf cyanide potential (CNp) were studied using various parameters. Results showed that the younger the leaf, the higher the CNp. Leaf CNp greatly decreased when leaves were directly exposed to sunlight. These results allowed us to determine the best leaf sampling conditions for the comparison of leaf CNp. Under these conditions, leaf CNp was found to vary from less than 25 mM to more than 60 mM. The rubber clones containing the highest leaf CNp were those with the highest yield potential. In mature virgin trees, the CNp of the trunk inner bark was shown to be proportional to leaf CNp and to decrease on tapping. However, the latex itself exhibited very low (if any) CNp, while harboring all the enzymes (β-d-diglucosidase, linamarase and β-cyanoalanine synthase) necessary to metabolize cyanogenic glucosides to generate non-cyanogenic compounds, such as asparagine. This suggests that in the rubber tree bark, cyanogenic glucosides may be a source of buffering nitrogen and glucose, thereby contributing to latex regeneration/production.  相似文献   

6.
Zygaena larvae sequester the cyanogenic glucosides linamarin and lotaustralin from their food plants (Fabaceae) as well as carry out de novo biosynthesis of these compounds. In this study, Zygaena filipendulae were reared on wild-type Lotus corniculatus and wild-type and transgenic L. japonicus plants with differing content and ratios of the cyanogenic glucosides linamarin and lotaustralin and of the cyanoalkenyl glucosides rhodiocyanoside A and D. LC-MS analyses, free choice feeding experiments and developmental studies were used to examine the effect of varying content and ratios of these secondary metabolites on the feeding preferences, growth and development of Z. filipendulae. Larvae reared on cyanogenic L. corniculatus developed faster compared to larvae reared on L. japonicus although free choice feeding trials demonstrated that the latter plant source was the preferred food plant. Larvae reared on acyanogenic L. corniculatus showed decelerated development. Analysis of different life stages and tissues demonstrate that Z. filipendulae strive to maintain certain threshold content and ratios of cyanogenic glucosides regardless of the composition of the food plants. Despite this, the ratios of cyanogenic glucosides in Z. filipendulae remain partly affected by the ratio of the food plant due to the high proportion of sequestering that takes place.  相似文献   

7.
Cyanogenesis, the release of toxic cyanide from living cells, plays an important role in the defence system of certain plant (e.g. Fabaceae) and animal (e.g. Zygaenidae) taxa. The larvae of a significant number of Zygaena moth species (Zygaenidae) preferentially feed on cyanogenic Fabaceae and some of them are able to sequester cyanogenic compounds of their host plants. Using secondary structure variation of the small-subunit rRNA, we tested the currently accepted evolutionary hypothesis explaining species diversification in the genus Zygaena . We derived secondary structures considering evidence from covariation patterns and thermodynamic folding and applied structural information in a phylogenetic analysis. Contrary to previous assumptions, our results suggest that the use of cyanogenic larval host plants is an ancient trait and that the ability to feed on cyanogenic plants was probably already present in the most recent common ancestor of Zygaena . The utilization of acyanogenic plants in Zygaena species appears to be the result of a single secondary, reverse, larval host-plant shift. © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 147 , 367–381.  相似文献   

8.
Cyanogenic glucosides are nitrogen‐containing specialized metabolites that provide chemical defense against herbivores and pathogens via the release of toxic hydrogen cyanide. It has been suggested that cyanogenic glucosides are also a store of nitrogen that can be remobilized for general metabolism via a previously unknown pathway. Here we reveal a recycling pathway for the cyanogenic glucoside dhurrin in sorghum (Sorghum bicolor) that avoids hydrogen cyanide formation. As demonstrated in vitro, the pathway proceeds via spontaneous formation of a dhurrin‐derived glutathione conjugate, which undergoes reductive cleavage by glutathione transferases of the plant‐specific lambda class (GSTLs) to produce p‐hydroxyphenyl acetonitrile. This is further metabolized to p‐hydroxyphenylacetic acid and free ammonia by nitrilases, and then glucosylated to form p‐glucosyloxyphenylacetic acid. Two of the four GSTLs in sorghum exhibited high stereospecific catalytic activity towards the glutathione conjugate, and form a subclade in a phylogenetic tree of GSTLs in higher plants. The expression of the corresponding two GSTLs co‐localized with expression of the genes encoding the p‐hydroxyphenyl acetonitrile‐metabolizing nitrilases at the cellular level. The elucidation of this pathway places GSTs as key players in a remarkable scheme for metabolic plasticity allowing plants to reverse the resource flow between general and specialized metabolism in actively growing tissue.  相似文献   

9.
Primary or secondary? Versatile nitrilases in plant metabolism   总被引:1,自引:0,他引:1  
Piotrowski M 《Phytochemistry》2008,69(15):2655-2667
The potential of plant nitrilases to convert indole-3-acetonitrile into the plant growth hormone indole-3-acetic acid has earned them the interim title of "key enzyme in auxin biosynthesis". Although not widely recognized, this view has changed considerably in the last few years. Recent work on plant nitrilases has shown them to be involved in the process of cyanide detoxification, in the catabolism of cyanogenic glycosides and presumably in the catabolism of glucosinolates. All plants possess at least one nitrilase that is homologous to the nitrilase 4 isoform of Arabidopsis thaliana. The general function of these nitrilases lies in the process of cyanide detoxification, in which they convert the intermediate detoxification product beta-cyanoalanine into asparagine, aspartic acid and ammonia. Cyanide is a metabolic by-product in biosynthesis of the plant hormone ethylene, but it may also be released from cyanogenic glycosides, which are present in a large number of plants. In Sorghum bicolor, an additional nitrilase isoform has been identified, which can directly use a catabolic intermediate of the cyanogenic glycoside dhurrin, thus enabling the plant to metabolize its cyanogenic glycoside without releasing cyanide. In the Brassicaceae, a family of nitrilases has evolved, the members of which are able to hydrolyze catabolic products of glucosinolates, the predominant secondary metabolites of these plants. Thus, the general theme of nitrilase function in plants is detoxification and nitrogen recycling, since the valuable nitrogen of the nitrile group is recovered in the useful metabolites asparagine or ammonia. Taken together, a picture emerges in which plant nitrilases have versatile functions in plant metabolism, whereas their importance for auxin biosynthesis seems to be minor.  相似文献   

10.
11.
The cyanogenic glucoside profile of Eucalyptus camphora was investigated in the course of plant ontogeny. In addition to amygdalin, three phenylalanine-derived cyanogenic diglucosides characterized by unique linkage positions between the two glucose moieties were identified in E. camphora tissues. This is the first time that multiple cyanogenic diglucosides have been shown to co-occur in any plant species. Two of these cyanogenic glucosides have not previously been reported and are named eucalyptosin B and eucalyptosin C. Quantitative and qualitative differences in total cyanogenic glucoside content were observed across different stages of whole plant and tissue ontogeny, as well as within different tissue types. Seedlings of E. camphora produce only the cyanogenic monoglucoside prunasin, and genetically based variation was observed in the age at which seedlings initiate prunasin biosynthesis. Once initiated, total cyanogenic glucoside concentration increased throughout plant ontogeny with cyanogenic diglucoside production initiated in saplings and reaching a maximum in flower buds of adult trees. The role of multiple cyanogenic glucosides in E. camphora is unknown, but may include enhanced plant defense and/or a primary role in nitrogen storage and transport.  相似文献   

12.
Zygaena larvae sequester the cyanogenic glucosides (CNglcs) linamarin and lotaustralin from their food plants (Fabaceae) and also de novo biosynthesize these compounds. In Zygaenidae, CNglcs serve as defence compounds during the entire life cycle, and their content and ratio are tightly regulated. We demonstrate that Z. filipendulae males transfer a nuptial gift of CNglcs to females during mating, and that females prefer males with a higher content of CNglcs for mating. Average HCN emission from female imagines is 19 times higher than from males, suggesting that plumes of HCN emitted from the perching female may serve to attract flying males. Analysis of the linamarin and lotaustralin content and ratio within different tissues in Z. filipendulae larvae shows that integument and haemolymph constitute the main sites of CNglc deposition. The data suggest that CNglcs may serve an additional role as storage compounds of reduced nitrogen that is mobilized during the transition of the last instar larva to imago, most likely to provide nitrogen for chitin synthesis. At least one of the enzymes responsible for de novo biosynthesis of CNglcs in Z. filipendulae is located in the integument. In conclusion, CNglcs play many important and different roles during the entire life cycle of Z. filipendulae in addition to defence.  相似文献   

13.
Host plant specialization is a major force driving ecological niche partitioning and diversification in insect herbivores. The cyanogenic defences of Passiflora plants keep most herbivores at bay, but not the larvae of Heliconius butterflies, which can both sequester and biosynthesize cyanogenic compounds. Here, we demonstrate that both Heliconius cydno chioneus and H. melpomene rosina have remarkable plasticity in their chemical defences. When feeding on Passiflora species with cyanogenic compounds that they can readily sequester, both species downregulate the biosynthesis of these compounds. By contrast, when fed on Passiflora plants that do not contain cyanogenic glucosides that can be sequestered, both species increase biosynthesis. This biochemical plasticity comes at a fitness cost for the more specialist H. m. rosina, as adult size and weight for this species negatively correlate with biosynthesis levels, but not for the more generalist H. c. chioneus. By contrast, H. m rosina has increased performance when sequestration is possible on its specialized host plant. In summary, phenotypic plasticity in biochemical responses to different host plants offers these butterflies the ability to widen their range of potential hosts within the Passiflora genus, while maintaining their chemical defences.  相似文献   

14.
beta-Glucosidases as detonators of plant chemical defense   总被引:2,自引:0,他引:2  
Some plant secondary metabolites are classified as phytoanticipins. When plant tissue in which they are present is disrupted, the phytoanticipins are bio-activated by the action of beta-glucosidases. These binary systems--two sets of components that when separated are relatively inert--provide plants with an immediate chemical defense against protruding herbivores and pathogens. This review provides an update on our knowledge of the beta-glucosidases involved in activation of the four major classes of phytoanticipins: cyanogenic glucosides, benzoxazinoid glucosides, avenacosides and glucosinolates. New aspects of the role of specific proteins that either control oligomerization of the beta-glucosidases or modulate their product specificity are discussed in an evolutionary perspective.  相似文献   

15.
Cyanogenesis, the release of hydrogen cyanide from damaged plant tissues, involves the enzymatic degradation of amino acid–derived cyanogenic glucosides (α-hydroxynitrile glucosides) by specific β-glucosidases. Release of cyanide functions as a defense mechanism against generalist herbivores. We developed a high-throughput screening method and used it to identify cyanogenesis deficient (cyd) mutants in the model legume Lotus japonicus. Mutants in both biosynthesis and catabolism of cyanogenic glucosides were isolated and classified following metabolic profiling of cyanogenic glucoside content. L. japonicus produces two cyanogenic glucosides: linamarin (derived from Val) and lotaustralin (derived from Ile). Their biosynthesis may involve the same set of enzymes for both amino acid precursors. However, in one class of mutants, accumulation of lotaustralin and linamarin was uncoupled. Catabolic mutants could be placed in two complementation groups, one of which, cyd2, encoded the β-glucosidase BGD2. Despite the identification of nine independent cyd2 alleles, no mutants involving the gene encoding a closely related β-glucosidase, BGD4, were identified. This indicated that BGD4 plays no role in cyanogenesis in L. japonicus in vivo. Biochemical analysis confirmed that BGD4 cannot hydrolyze linamarin or lotaustralin and in L. japonicus is specific for breakdown of related hydroxynitrile glucosides, such as rhodiocyanoside A. By contrast, BGD2 can hydrolyze both cyanogenic glucosides and rhodiocyanosides. Our genetic analysis demonstrated specificity in the catabolic pathways for hydroxynitrile glucosides and implied specificity in their biosynthetic pathways as well. In addition, it has provided important tools for elucidating and potentially modifying cyanogenesis pathways in plants.  相似文献   

16.
Twelve grapevine (Vitis vinifera L.) cultivars were surveyed for 'cyanide potential' (i.e. the total cyanide measured in beta-glucosidase-treated crude, boiled tissue extract) in mature leaves. Two related cultivars (Carignan and Ruby Cabernet) had mean cyanide potential (equivalent to 110 mgHCNkg-1fr.wt) ca. 25-fold greater than that of the other 10 cultivars, and so the trait is polymorphic in the species. In boiled leaf extracts of Carignan and Ruby Cabernet, free cyanide constituted a negligible fraction of the total cyanide potential because beta-glucosidase treatment was required to liberate the major cyanide fraction - which is therefore bound in glucosylated cyanogenic compound(s) (or cyanogenic glucosides). In addition, cyanide was liberated from ground leaf tissue of Ruby Cabernet but not Sultana (a cultivar with low cyanide potential). Hence, the high cyanide potential in Ruby Cabernet leaves is coupled with endogenous beta-glucosidase(s) activity and this cultivar may be considered 'cyanogenic'. A method was developed to detect and identify cyanogenic glucosides using liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). Two putative cyanogenic glucosides were found in extracts from leaves of Carignan and Ruby Cabernet and were identified as the epimers prunasin and sambunigrin. Cyanide potential measured at three times over the growing season in young and mature leaves, petioles, tendrils, flowers, berries, seeds and roots of Ruby Cabernet was substantially higher in the leaves compared with all other tissues. This characterisation of cyanogenic glucoside accumulation in grapevine provides a basis for gauging the involvement of the trait in interactions of the species with its pests and pathogens.  相似文献   

17.
Recent biochemical and genetic studies on hydrogen cyanide (HCN) metabolism and function in plants were reviewed. The potential sources of endogenous cyanide and the pathways of its detoxification are outlined and the possible signaling routes by which cyanide exerts its physiological effects are discussed. Cyanide is produced in plant tissues as the result of hydrolysis of cyanogenic compounds and is also released as a co-product of ethylene biosynthesis. Most cyanide produced in plants is detoxified primarily by the key enzyme β-cyanoalanine synthase. The remaining HCN at non-toxic concentration may play a role of signaling molecule involved in the control of some metabolic processes in plants. So, HCN may play a dual role in plants, depending on its concentration. It may be used in defense against herbivores at high toxic concentration and may have a regulatory function at lower concentration. Special attention is given to the action of HCN during biotic and abiotic stresses, nitrate assimilation and seed germination. Intracellular signaling responses to HCN involve enhancement of reactive oxygen species (ROS) generation and the expression of cyanide-insensitive alternative oxidase (AOX) and ACC synthase (ACS) genes. The biochemical and cellular mechanisms of these responses are, however, not completely understood.  相似文献   

18.
Plants produce a plethora of secondary metabolites which constitute a wealth of potential pharmaceuticals, pro-vitamins, flavours, fragrances, colorants and toxins as well as a source of natural pesticides. Many of these valuable compounds are only synthesized in exotic plant species or in concentrations too low to facilitate commercialization. In some cases their presence constitutes a health hazard and renders the crops unsuitable for consumption. Metabolic engineering is a powerful tool to alter and ameliorate the secondary metabolite composition of crop plants and gain new desired traits. The interplay of a multitude of biosynthetic pathways and the possibility of metabolic cross-talk combined with an incomplete understanding of the regulation of these pathways, explain why metabolic engineering of plant secondary metabolism is still in its infancy and subject to much trial and error. Cyanogenic glucosides are ancient defense compounds that release toxic HCN upon tissue disruption caused e.g. by chewing insects. The committed steps of the cyanogenic glucoside biosynthetic pathway are encoded by three genes. This unique genetic simplicity and the availability of the corresponding cDNAs have given cyanogenic glucosides pioneering status in metabolic engineering of plant secondary metabolism. In this review, lessons learned from metabolic engineering of cyanogenic glucosides in Arabidopsis thaliana (thale cress), Nicotiana tabacum cv Xanthi (tobacco), Manihot esculenta Crantz (cassava) and Lotus japonicus (bird’s foot trefoil) are presented. The importance of metabolic channelling of toxic intermediates as mediated by metabolon formation in avoiding unintended metabolic cross-talk and unwanted pleiotropic effects is emphasized. Likewise, the potential of metabolic engineering of plant secondary metabolism as a tool to elucidate, for example, the impact of secondary metabolites on plant–insect interactions is demonstrated.  相似文献   

19.
Cyanogenesis-the production of toxic hydrogen cyanide (HCN) by damaged tissue-inTrifolium repens L. (white clover), a type of most important pasture legume, has been studied at different elevations of Darjeeling Himalaya (latitude-27° 2′ 57″ N, longitude-88° 15′ 45″ E). Release of HCN takes place due to reaction between cyanogenic glucosides stored in vacuoles of the leaf cell and the corresponding enzyme β-glucosidase present in another compartment, often cell wall. Cyanogenesis, a defense system in plant, protects the clover from herbivore and inhibits grazing. Biochemical analysis showed the presence and absence of the cyanogenesis trait within the population in different proportions at different elevations. Acyanogenic individuals also showed variations with respect to presence or absence of either cyanogenic glucosides or β-glucosidase enzyme or both. The distribution of cyanogenic and acyanogenic plants was found in all places, but at lower altitudes (2084–2094 m) the dominating plants were cyanogenic whereas in higher altitude (2560 m) the dominating plants were acyanogenic. It was observed that blister beetle (Mylabris pustalata Thunb.) and the mollusc (Macrochlamys tusgurium Benson.) were the most common consumer of leaflets ofT. repens. Six categories of damage on white clover leaf by these animals were recorded. Our results suggest that the two selective factors or forces i.e. very cold temperature (harmful to cyanogenic plants) at higher altitude as well as indiscriminate but preferential predation (harmful to acyanogenic plants) interact to affect the system of cyanogenesis and also to cause the stable and protective polymorphism inT. repens rather than genotypic differences present among the plants.  相似文献   

20.
《Phytochemistry》1986,25(10):2299-2302
Experiments in which unlabelled and [aglycone 14C-labelled cyanogenic glycosides, linamarin and lotaustralin, were fed to larvae of the moth Zygaena trifolii on leaves of an acyanogenic strain of their food plant, Lotus corniculatus, showed that the larvae retained about 20–45% of the glucosides consumed. The larvae in nature usually feed on plants of L. corniculatus which themselves contain linamarin and lotaustralin. Earlier experiments had shown that the larvae of Zygaena spp. are able to synthesize these glucosides from valine and isoleucine and so both sequestration and biosynthesis of the same compounds can occur. This is the only such occurrence yet known in the relationships between plants and insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号