首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
During early vertebrate embryogenesis, bone morphogenetic proteins (BMPs) belonging to the transforming growth factor‐β (TGF‐β) family of growth factors play a central role in dorsal–ventral (DV) patterning of embryos, while other growth factors such as Wnt and fibroblast growth factor (FGF) family members regulate formation of the anterior–posterior (AP) axis. Although the establishment of body plan is thought to require coordinated formation of the DV and AP axes, the mechanistic details underlying this coordination are not well understood. Here, we show that a Xenopus homologue of zbtb14 plays an essential role in the regulation of both DV and AP patterning during early Xenopus development. We show that overexpression of Zbtb14 promotes neural induction and inhibits epidermal differentiation, thereby regulating DV patterning. In addition, Zbtb14 promotes the formation of posterior neural tissue and suppresses anterior neural development. Consistent with this, knock‐down experiments show that Zbtb14 is required for neural development, especially for the formation of posterior neural tissues. Mechanistically, Zbtb14 reduces the levels of phosphorylated Smad1/5/8 to suppress BMP signaling and induces an accumulation of β‐Catenin to promote Wnt signaling. Collectively, these results suggest that Zbtb14 plays a crucial role in the formation of DV and AP axes by regulating both the BMP and Wnt signaling pathways during early Xenopus embryogenesis.  相似文献   

3.
Short germ embryos elongate their primary body axis by consecutively adding segments from a posteriorly located growth zone. Wnt signalling is required for axis elongation in short germ arthropods, including Tribolium castaneum, but the precise functions of the different Wnt receptors involved in this process are unclear. We analysed the individual and combinatorial functions of the three Wnt receptors, Frizzled-1 (Tc-Fz1), Frizzled-2 (Tc-Fz2) and Frizzled-4 (Tc-Fz4), and their co-receptor Arrow (Tc-Arr) in the beetle Tribolium. Knockdown of gene function and expression analyses revealed that Frizzled-dependent Wnt signalling occurs anteriorly in the growth zone in the presegmental region (PSR). We show that simultaneous functional knockdown of the Wnt receptors Tc-fz1 and Tc-fz2 via RNAi resulted in collapse of the growth zone and impairment of embryonic axis elongation. Although posterior cells of the growth zone were not completely abolished, Wnt signalling within the PSR controls axial elongation at the level of pair-rule patterning, Wnt5 signalling and FGF signalling. These results identify the PSR in Tribolium as an integral tissue required for the axial elongation process, reminiscent of the presomitic mesoderm in vertebrates. Knockdown of Tc-fz1 alone interfered with the formation of the proximo-distal and the dorso-ventral axes during leg development, whereas no effect was observed with single Tc-fz2 or Tc-fz4 RNAi knockdowns. We identify Tc-Arr as an obligatory Wnt co-receptor for axis elongation, leg distalisation and segmentation. We discuss how Wnt signalling is regulated at the receptor and co-receptor levels in a dose-dependent fashion.  相似文献   

4.
A gradient of Wnt/beta-catenin signalling formed by posteriorising Wnts and anteriorising Wnt antagonists regulates anteroposterior (AP) patterning of the central nervous system (CNS) during Xenopus gastrulation. In this process, the secreted Wnt antagonist Dkk1 functions in the Spemann organiser and its anterior derivatives by blocking Wnt receptors of the lipoprotein receptor-related protein (LRP) 5 and 6 class. In addition to LRP6, Dkk1 interacts with another recently identified receptor class, the transmembrane proteins Kremen1 (Krm1) and Kremen2 (Krm2) to synergistically inhibit LRP6. We have investigated the role of Krm1 and Krm2 during early Xenopus embryogenesis. Consistent with a role in zygotic Wnt inhibition, overexpressed Krm anteriorises embryos and rescues embryos posteriorised by Wnt8. Antisense morpholino oligonucleotide (Mo) knockdown of Krm1 and Krm2 leads to deficiency of anterior neural development. In this process, Krm proteins functionally interact with Dkk1: (1) in axis duplication assays krm2 synergises with dkk1 in inhibiting Wnt/LRP6 signalling; (2) krm2 rescues microcephalic embryos induced by injection of inhibitory anti-Dkk1 antibodies; and (3) injection of krm1/2 antisense Mo enhances microcephaly induced by inhibitory anti-Dkk1 antibodies. The results indicate that Krm proteins function in a Wnt inhibition pathway regulating early AP patterning of the CNS.  相似文献   

5.
Wnts have been shown to provide a posteriorizing signal that has to be repressed in the anterior neuroectoderm for normal anteroposterior (AP) patterning. We have previously identified a zebrafish frizzled8a (fz8a) gene expressed in the presumptive anterior neuroectoderm as well as prechordal plate at the late gastrula stage. We have investigated the role of Fz8a-mediated Wnt8b signalling in anterior brain patterning in zebrafish. We show that in zebrafish embryos: (1) Wnt signalling has at least two different stage-specific posteriorizing activities in the anterior neuroectoderm, one before mid-gastrulation and the other at late gastrulation; (2) Fz8a plays an important role in mediating anterior brain patterning; (3) Wnt8b and Fz8a can functionally interact to transmit posteriorizing signals that determine the fate of the posterior diencephalon and midbrain in late gastrula embryos; and (4) Wnt8b can suppress fz8a expression in the anterior neuroectoderm and potentially affect the level and/or range of Wnt signalling. In conclusion, we suggest that a gradient of Fz8a-mediated Wnt8b signalling may play crucial role in patterning the posterior diencephalon and midbrain regions in the late gastrula.  相似文献   

6.
Differentiation onset in the vertebrate body axis is controlled by a conserved switch from fibroblast growth factor (FGF) to retinoid signalling, which is also apparent in the extending limb and aberrant in many cancer cell lines. FGF protects tail-end stem zone cells from precocious differentiation by inhibiting retinoid synthesis, whereas later-produced retinoic acid (RA) attenuates FGF signalling and drives differentiation. The timing of RA production is therefore crucial for the preservation of stem zone cells and the continued extension of the body axis. Here we show that canonical Wnt signalling mediates the transition from FGF to retinoid signalling in the newly generated chick body axis. FGF promotes Wnt8c expression, which persists in the neuroepithelium as FGF signalling declines. Wnt signals then act here to repress neuronal differentiation. Furthermore, although FGF inhibition of neuronal differentiation involves repression of the RA-responsive gene, retinoic acid receptor beta (RARbeta), Wnt signals are weaker repressors of neuron production and do not interfere with RA signal transduction. Strikingly, as FGF signals decline in the extending axis, Wnt signals now elicit RA synthesis in neighbouring presomitic mesoderm. This study identifies a directional signalling relay that leads from FGF to retinoid signalling and demonstrates that Wnt signals serve, as cells leave the stem zone, to permit and promote RA activity, providing a mechanism to control the timing of the FGF-RA differentiation switch.  相似文献   

7.
Anteroposterior (AP) patterning of the vertebrate neural plate is initiated during gastrulation and is regulated by Spemann's organizer and its derivatives. The prevailing model for AP patterning predicts a caudally increasing gradient of a 'transformer' which posteriorizes anteriorly specified neural cells. However, the molecular identity of the transforming gradient has remained elusive. We show that in Xenopus embryos (1) dose-dependent Wnt signalling is both necessary and sufficient for AP patterning of the neuraxis, (2) Wnt/beta-catenin signalling occurs in a direct and long-range fashion within the ectoderm, and (3) that there is an endogenous AP gradient of Wnt/beta-catenin signalling in the presumptive neural plate of the Xenopus gastrula. Our results indicate that an activity gradient of Wnt/beta-catenin signalling acts as transforming morphogen to pattern the Xenopus central nervous system.  相似文献   

8.
Vertebrate embryos exploit the mutual inhibition between the RA and FGF signalling pathways to coordinate the proliferative elongation of the main body axis with the progressive patterning and differentiation of its neuroectodermal and paraxial mesodermal structures. The evolutionary history of this patterning system is still poorly understood. Here, we investigate the role played by the RA and FGF/MAPK signals during the development of the tail structures in the tunicate Ciona intestinalis, an invertebrate chordate belonging to the sister clade of vertebrates, in which the prototypical chordate body plan is established through very derived morphogenetic processes. Ciona embryos are constituted of few cells and develop according to a fixed lineage; elongation of the tail occurs largely by rearrangement of postmitotic cells; mesoderm segmentation and somitogenesis are absent. We show that in the Ciona embryo, the antagonism of the RA and FGF/MAPK signals is required to control the anteroposterior patterning of the tail epidermis. We also demonstrate that the RA, FGF/MAPK and canonical Wnt pathways control the anteroposterior patterning of the tail peripheral nervous system, and reveal the existence of distinct subpopulations of caudal epidermal neurons with different responsiveness to the RA, FGF/MAPK and canonical Wnt signals. Our data provide the first demonstration that the use of the antagonism between the RA and FGF signals to pattern the main body axis predates the emergence of vertebrates and highlight the evolutionary plasticity of this patterning strategy, showing that in different chordates it can be used to pattern different tissues within the same homologous body region.  相似文献   

9.
10.
11.
The use of a novel inducible FGF signalling system in the frog Xenopus laevis is reported. We show that the lipophilic, synthetic, dimerizing agent AP20187 is able to rapidly activate signalling through an ectopically expressed mutant form of FGFR1 (iFGFR1) in Xenopus embryos. iFGFR1 lacks an extracellular ligand binding domain and contains an AP20187 binding domain fused to the intracellular domain of mouse FGFR1. Induction of signalling by AP20187 is possible until at least early neurula stages, and we demonstrate that ectopically expressed iFGFR1 protein persists until late neurula stages. We show that activation of signalling through iFGFR1 can mimic a number of previously reported FGF activities, including mesoderm induction, repression of anterior development, and neural posteriorization. We show that competence to morphological posteriorization of the anteroposterior axis by FGF signalling only extends until about stage 10.5. We demonstrate that the competence of neural tissue to express the posterior markers Hoxa7 and Xcad3, in response to FGF signalling, is lost by the end of gastrula stages. We also show that activation of FGF signalling stimulates morphogenetic movements in neural tissue until at least the end of the gastrula stage.  相似文献   

12.
Migrating neuronal cells are directed to their final positions by an array of guidance cues. It has been shown that guidance molecules such as UNC-6/Netrin and SLT-1/Slit play a major role in controlling cell and axon migrations along the dorsal-ventral body axis. Much less is known, however, about the mechanisms that mediate migration along the anterior-posterior (AP) body axis. Recent research in Caenorhabditis elegans has uncovered an important role of the Wnt family of signalling molecules in controlling AP-directed neuronal cell migration and polarity. A common theme that emerges from these studies is that multiple Wnt proteins function in parallel as instructive cues or permissive signals to control neuronal patterning along this major body axis.  相似文献   

13.
14.
Previous analyses of labelled clones of cells within the developing nervous system of the mouse have indicated that descendants are initially dispersed rostrocaudally followed by more local proliferation, which is consistent with the progressing node's contributing descendants from a resident population of progenitor cells as it advances caudally. Here we electroporated an expression vector encoding green fluorescent protein into the chicken embryo near Hensen's node to test and confirm the pattern inferred in the mouse. This provides a model in which a proliferative stem zone is maintained in the node by a localized signal; those cells that are displaced out of the stem zone go on to contribute to the growing axis. To test whether fibroblast growth factor (FGF) signalling could be involved in the maintenance of the stem zone, we co-electroporated a dominant-negative FGF receptor with a lineage marker, and found that it markedly alters the elongation of the spinal cord primordium. The results indicate that FGF receptor signalling promotes the continuous development of the posterior nervous system by maintaining presumptive neural progenitors in the region near Hensen's node. This offers a potential explanation for the mixed findings on FGF in the growth and patterning of the embryonic axis.  相似文献   

15.
16.
In vertebrates, the dorso-ventral (DV) axis is defined by the combinatorial action of localised Wnt, FGF and Nodal signalling along with the antagonizing activities of Chordin and BMP pathways. Our knowledge of the factors that may act in concert with these core pathways to regulate early embryonic patterning is far from complete. Furthermore, while all three germ layers respond to these patterning cues, it is not clear whether in zebrafish the outermost protective epithelium, the enveloping layer (EVL), is also patterned along the DV axis. Here, we have identified a transgenic line driving GFP under a crestin promoter, which specifically labels the dorsal domain of the EVL suggesting heterogeneity in the EVL across the DV axis. Our attempts to understand how the expression from this promoter fragment is regulated specifically in the dorsal domain, have unravelled potential novel players involved in early EVL and embryonic patterning. We show that along with Nodal signalling components, four proteins Sox11b, Sox19b, Snail1a and Max are involved in regulating the size of this EVL domain. However, Chordin-BMP signalling might be dispensable for the dorso-ventral patterning of the EVL. For the first time, this transgenic line unravels the heterogeneity in the EVL and will serve as an important tool in understanding the molecular basis of the DV patterning of the EVL.  相似文献   

17.
Several studies have successfully produced a variety of neural cell types from human embryonic stem cells (hESCs), but there has been limited systematic analysis of how different regional identities are established using well-defined differentiation conditions. We have used adherent, chemically defined cultures to analyse the roles of Activin/Nodal, bone morphogenetic protein (BMP), fibroblast growth factor (FGF) and Wnt/β-catenin signalling in neural induction, anteroposterior patterning and eye field specification in hESCs. We show that either BMP inhibition or activation of FGF signalling is required for effective neural induction, but these two pathways have distinct outcomes on rostrocaudal patterning. While BMP inhibition leads to specification of forebrain/midbrain positional identities, FGF-dependent neural induction is associated with strong posteriorization towards hindbrain/spinal cord fates. We also demonstrate that Wnt/β-catenin signalling is activated during neural induction and promotes acquisition of neural fates posterior to forebrain. Therefore, inhibition of this pathway is needed for efficient forebrain specification. Finally, we provide evidence that the levels of Activin/Nodal and BMP signalling have a marked influence on further forebrain patterning and that constitutive inhibition of these pathways represses expression of eye field genes. These results show that the key mechanisms controlling neural patterning in model vertebrate species are preserved in adherent, chemically defined hESC cultures and reveal new insights into the signals regulating eye field specification.  相似文献   

18.
The epidermis of an ascidian larva derived from animal-hemisphere cells is regionalized along the anterior-posterior (AP) axis through inductive signals emanating from vegetal-hemisphere cells in early stages of the development. Previously, we showed by blastomere isolation and ablation experiments that the contact between the animal and vegetal hemispheres until the 32-cell stage is necessary for the proper AP patterning of the epidermis in the tailbud-stage embryo. We here addressed the patterning mechanism of the posteriormost epidermis using a tail-tip epidermis marker, HrTT-1. Employing blastomere isolation and ablation experiments along with knockdown of a master regulator gene for posterior mesoderm, we have demonstrated that presence of the posterior vegetal cells after the 32-cell stage is necessary for the expression of HrTT-1. To explore the timing and nature of the influence of the posterior vegetal cells, we treated the embryos with FGF signaling inhibitors at various developmental stages and found that HrTT-1 expression was lost from embryos treated with the inhibitors from stages earlier than the late neurula stage, just prior to the onset of HrTT-1 expression but not after the initial tailbud stage, at which the expression of HrTT-1 had started. In embryos lacking HrTT-1 expression, the expression domain of Hrcad, which would otherwise be localized anterior to that of HrTT-1, expanded to the tail-tip. These results suggest that FGF signaling from the neurula to initial tailbud stages is necessary for the initiation but not maintenance of HrTT-1 expression in the tail-tip epidermis. The contact with posterior vegetal cells until and after the 32-cell stage may be required for FGF signaling to occur in the posterior tail, which in turn regionalizes the tail-tip epidermal territory.  相似文献   

19.
Signalling by fibroblast growth factors (FGFs) at the mid-hindbrain boundary (MHB) is of central importance for anteroposterior neural patterning from the isthmic organiser. Graded suppression of FGF signalling by increasing amounts of a dominant negative FGF receptor provides evidence that in addition to anteroposterior patterning, FGF signalling is also involved in patterning along the dorsoventral axis at the MHB. FGF signalling at the MHB is required for the activation of the HH target gene spalt at the MHB. Our results indicate that FGF signalling mediates the competence of the MHB to activate spalt in response to SHH. This interdependence of the two signalling pathways is also found in the outbudding optic vesicle where HH requires functional FGF signalling to activate spalt in the proximal eye region.  相似文献   

20.
The dorsal ectoderm of the vertebrate gastrula was proposed by Nieuwkoop to be specified towards an anterior neural fate by an activation signal, with its subsequent regionalization along the anteroposterior (AP) axis regulated by a graded transforming activity, leading to a properly patterned forebrain, midbrain, hindbrain and spinal cord. The activation phase involves inhibition of BMP signals by dorsal antagonists, but the later caudalization process is much more poorly characterized. Explant and overexpression studies in chick, Xenopus, mouse and zebrafish implicate lateral/paraxial mesoderm in supplying the transforming influence, which is largely speculated to be a Wnt family member. We have analyzed the requirement for the specific ventrolaterally expressed Wnt8 ligand in the posteriorization of neural tissue in zebrafish wild-type and Nodal-deficient embryos (Antivin overexpressing or cyclops;squint double mutants), which show extensive AP brain patterning in the absence of dorsal mesoderm. In different genetic situations that vary the extent of mesodermal precursor formation, the presence of lateral wnt8-expressing cells correlates with the establishment of AP brain pattern. Cell tracing experiments show that the neuroectoderm of Nodal-deficient embryos undergoes a rapid anterior-to-posterior transformation in vivo during a short period at the end of the gastrula stage. Moreover, in both wild-type and Nodal-deficient embryos, inactivation of Wnt8 function by morpholino (MO(wnt8)) translational interference dose-dependently abrogates formation of spinal cord and posterior brain fates, without blocking ventrolateral mesoderm formation. MO(wnt8) also suppresses the forebrain deficiency in bozozok mutants, in which inactivation of a homeobox gene causes ectopic wnt8 expression. In addition, the bozozok forebrain reduction is suppressed in bozozok;squint;cyclops triple mutants, and is associated with reduced wnt8 expression, as seen in cyclops;squint mutants. Hence, whereas boz and Nodal signaling largely cooperate in gastrula organizer formation, they have opposing roles in regulating wnt8 expression and forebrain specification. Our findings provide strong support for a model of neural transformation in which a planar gastrula-stage Wnt8 signal, promoted by Nodal signaling and dorsally limited by Bozozok, acts on anterior neuroectoderm from the lateral mesoderm to produce the AP regional patterning of the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号