共查询到20条相似文献,搜索用时 31 毫秒
1.
Stieglitz B Bee C Schwarz D Yildiz O Moshnikova A Khokhlatchev A Herrmann C 《The EMBO journal》2008,27(14):1995-2005
A class of putative Ras effectors called Ras association domain family (RASSF) represents non-enzymatic adaptors that were shown to be important in tumour suppression. RASSF5, a member of this family, exists in two splice variants known as NORE1A and RAPL. Both of them are involved in distinct cellular pathways triggered by Ras and Rap, respectively. Here we describe the crystal structure of Ras in complex with the Ras binding domain (RBD) of NORE1A/RAPL. All Ras effectors share a common topology in their RBD creating an interface with the switch I region of Ras, whereas NORE1A/RAPL RBD reveals additional structural elements forming a unique Ras switch II binding site. Consequently, the contact area of NORE1A is extended as compared with other Ras effectors. We demonstrate that the enlarged interface provides a rationale for an exceptionally long lifetime of the complex. This is a specific attribute characterizing the effector function of NORE1A/RAPL as adaptors, in contrast to classical enzymatic effectors such as Raf, RalGDS or PI3K, which are known to form highly dynamic short-lived complexes with Ras. 相似文献
2.
Ras proteins control many aspects of eukaryotic cell homeostasis by switching between active (GTP-bound) and inactive (GDP-bound) conformations, a reaction catalyzed by GTPase exchange factors (GEF) and GTPase activating proteins (GAP) regulators, respectively. Here, we show that the complexity, measured as number of genes, of the canonical Ras switch genetic system (including Ras, RasGEF, RasGAP and RapGAP families) from 24 eukaryotic organisms is correlated with their genome size and is inversely correlated to their evolutionary distances from humans. Moreover, different gene subfamilies within the Ras switch have contributed unevenly to the module's expansion and speciation processes during eukaryote evolution. The Ras system remarkably reduced its genetic expansion after the split of the Euteleostomi clade and presently looks practically crystallized in mammals. Supporting evidence points to gene duplication as the predominant mechanism generating functional diversity in the Ras system, stressing the leading role of gene duplication in the Ras family expansion. Domain fusion and alternative splicing are significant sources of functional diversity in the GAP and GEF families but their contribution is limited in the Ras family. An evolutionary model of the Ras system expansion is proposed suggesting an inherent 'decision making' topology with the GEF input signal integrated by a homologous molecular mechanism and bifurcation in GAP signaling propagation. 相似文献
3.
Stumber M Geyer M Graf R Kalbitzer HR Scheffzek K Haeberlen U 《Journal of molecular biology》2002,323(5):899-907
The folding, structure and biological function of many proteins are inherently dynamic properties of the protein molecule. Often, the respective molecular processes are preserved upon protein crystallization, leading, in X-ray diffraction experiments, to a blurring of the electron density map and reducing the resolution of the derived structure. Nuclear magnetic resonance (NMR) is known to be an alternative method to study molecular structure and dynamics. We designed and built a probe for phosphorus solid state NMR that allows for the first time to study static properties as well as dynamic processes in single-crystals of a protein by NMR spectroscopy. The sensitivity achieved is sufficient to detect the NMR signal from individual phosphorus sites in a 0.3mm(3) size single-crystal of GTPase Ras bound to the nucleotide GppNHp, that is, the signal from approximately 10(15) phosphorus nuclei. The NMR spectra obtained are discussed in terms of the conformational variability of the active center of the Ras-nucleotide complex. We conclude that, in the crystal, the protein complex exists in three different conformations. Magic angle spinning (MAS) NMR spectra of a powder sample of Ras-GppNHp show a splitting of one of the phosphate resonances and thus confirm this conclusion. The MAS spectra provide, furthermore, evidence of a slow, temperature-dependent dynamic exchange process in the Ras protein crystal. 相似文献
4.
Matsumoto K Shima F Muraoka S Araki M Hu L Ijiri Y Hirai R Liao J Yoshioka T Kumasaka T Yamamoto M Tamura A Kataoka T 《The Journal of biological chemistry》2011,286(17):15403-15412
GTP-bound forms of Ras family small GTPases exhibit dynamic equilibrium between two interconverting conformations, "inactive" state 1 and "active" state 2. A great variation exists in their state distribution; H-Ras mainly adopts state 2, whereas M-Ras predominantly adopts state 1. Our previous studies based on comparison of crystal structures representing state 1 and state 2 revealed the importance of the hydrogen-bonding interactions of two flexible effector-interacting regions, switch I and switch II, with the γ-phosphate of GTP in establishing state 2 conformation. However, failure to obtain both state structures from a single protein hampered further analysis of state transition mechanisms. Here, we succeed in solving two crystal structures corresponding to state 1 and state 2 from a single Ras polypeptide, M-RasD41E, carrying an H-Ras-type substitution in residue 41, immediately preceding switch I, in complex with guanosine 5'-(β,γ-imido)triphosphate. Comparison among the two structures and other state 1 and state 2 structures of H-Ras/M-Ras reveal two new structural features playing critical roles in state dynamics; interaction of residues 31/41 (H-Ras/M-Ras) with residues 29/39 and 30/40, which induces a conformational change of switch I favoring its interaction with the γ-phosphate, and the hydrogen-bonding interaction of switch II with its neighboring α-helix, α3-helix, which induces a conformational change of switch II favoring its interaction with the γ-phosphate. The importance of the latter interaction is proved by mutational analyses of the residues involved in hydrogen bonding. These results define the two novel functional regions playing critical roles during state transition. 相似文献
5.
Function of Ras as a molecular switch in signal transduction. 总被引:41,自引:0,他引:41
6.
Hall BE Yang SS Boriack-Sjodin PA Kuriyan J Bar-Sagi D 《The Journal of biological chemistry》2001,276(29):27629-27637
Ras GTPases function as binary switches in signaling pathways controlling cell growth and differentiation. The guanine nucleotide exchange factor Sos mediates the activation of Ras in response to extracellular signals. We have previously solved the crystal structure of nucleotide-free Ras in complex with the catalytic domain of Sos (Boriack-Sjodin, P. A., Margarit, S. M., Bar-Sagi, D., and Kuriyan, J. (1998) Nature 394, 337-343). The structure demonstrates that Sos induces conformational changes in two loop regions of Ras known as switch 1 and switch 2. In this study, we have employed site-directed mutagenesis to investigate the functional significance of the conformational changes for the catalytic function of Sos. Switch 2 of Ras is held in a very tight embrace by Sos, with almost every external side chain coordinated by Sos. Mutagenesis of contact residues at the switch 2-Sos interface shows that only a small set of side chains affect binding, with the most important contact being mediated by tyrosine 64, which is buried in a hydrophobic pocket of Sos in the Ras.Sos complex. Substitutions of Ras and Sos side chains that are inserted into the Mg(2+)- and nucleotide phosphate-binding site of switch 2 (Ras Ala(59) and Sos Leu(938) and Glu(942)) have no effect on the catalytic function of Sos. These results indicate that the interaction of Sos with switch 2 is necessary for tight binding, but is not the critical driving force for GDP displacement. The structural distortion of switch 1 induced by Sos is mediated by a small number of specific contacts between highly conserved residues on both Ras and Sos. Mutations of a subset of these residues (Ras Tyr(32) and Tyr(40)) result in an increase in the intrinsic rate of nucleotide dissociation from Ras and impair the binding of Ras to Sos. Based on this analysis, we propose that the interactions of Sos with the switch 1 and switch 2 regions of Ras have distinct functional consequences: the interaction with switch 2 mediates the anchoring of Ras to Sos, whereas the interaction with switch 1 leads to disruption of the nucleotide-binding site and GDP dissociation. 相似文献
7.
We have reviewed the current state of multidisciplinary knowledge of the photoprotective mechanism in the photosystem II antenna underlying non-photochemical chlorophyll fluorescence quenching (NPQ). The physiological need for photoprotection of photosystem II and the concept of feed-back control of excess light energy are described. The outline of the major component of nonphotochemical quenching, qE, is suggested to comprise four key elements: trigger (ΔpH), site (antenna), mechanics (antenna dynamics) and quencher(s). The current understanding of the identity and role of these qE components is presented. Existing opinions on the involvement of protons, different LHCII antenna complexes, the PsbS protein and different xanthophylls are reviewed. The evidence for LHCII aggregation and macrostructural reorganization of photosystem II and their role in qE are also discussed. The models describing the qE locus in LHCII complexes, the pigments involved and the evidence for structural dynamics within single monomeric antenna complexes are reviewed. We suggest how PsbS and xanthophylls may exert control over qE by controlling the affinity of LHCII complexes for protons with reference to the concepts of hydrophobicity, allostery and hysteresis. Finally, the physics of the proposed chlorophyll-chlorophyll and chlorophyll-xanthophyll mechanisms of energy quenching is explained and discussed. This article is part of a Special Issue entitled: Photosystem II. 相似文献
8.
Anthony Cruz Alberto Santana Gabriel Barletta Gustavo E. López 《Molecular simulation》2013,39(3):205-212
Using molecular dynamics simulations, we have obtained an important insight into the structural and dynamical changes exerted by a nonaqueous solvent on the serine protease subtilisin Carlsberg. Our findings show that the structural properties of the subtilisin–acetonitrile (MeCN) system were sensitive to the amount of water present at the protein surface. A decrease or lack of water promoted the enzyme–MeCN interaction, which increased structural changes of the enzyme primarily at the surface loops. This effect caused variations on the secondary and tertiary structure of the protein and induced the opening of a pathway for the solvent to the protein core. Also, disturbance of the oxyanion hole was observed due to changes in the orientation in the Asn-155 side chain. The disruption of the oxyanion hole and the changes of the tertiary structure should affect the optimal activity of the enzyme. 相似文献
9.
In their classical work (Proc. Natl. Acad. Sci. USA, 1981, 78:6840-6844), Goldbeter and Koshland mathematically analyzed a reversible covalent modification system which is highly sensitive to the concentration of effectors. Its signal-response curve appears sigmoidal, constituting a biochemical switch. However, the switch behavior only emerges in the 'zero-order region', i.e. when the signal molecule concentration is much lower than that of the substrate it modifies. In this work we showed that the switching behavior can also occur under comparable concentrations of signals and substrates, provided that the signal molecules catalyze the modification reaction in cooperation. We also studied the effect of dynamic disorders on the proposed biochemical switch, in which the enzymatic reaction rates, instead of constant, appear as stochastic functions of time. We showed that the system is robust to dynamic disorder at bulk concentration. But if the dynamic disorder is quasi-static, large fluctuations of the switch response behavior may be observed at low concentrations. Such fluctuation is relevant to many biological functions. It can be reduced by either increasing the conformation interconversion rate of the protein, or correlating the enzymatic reaction rates in the network. 相似文献
10.
11.
12.
Blebbistatin stabilizes the helical order of myosin filaments by promoting the switch 2 closed state
Blebbistatin is a small-molecule, high-affinity, noncompetitive inhibitor of myosin II. We have used negative staining electron microscopy to study the effects of blebbistatin on the organization of the myosin heads on muscle thick filaments. Loss of ADP and Pi from the heads causes thick filaments to lose their helical ordering. In the presence of 100 μM blebbistatin, disordering was at least 10 times slower. In the M·ADP state, myosin heads are also disordered. When blebbistatin was added to M·ADP thick filaments, helical ordering was restored. However, blebbistatin did not improve the order of thick filaments lacking bound nucleotide. Addition of calcium to relaxed muscle homogenates induced thick-thin filament interaction and filament sliding. In the presence of blebbistatin, filament interaction was inhibited. These structural observations support the conclusion, based on biochemical studies, that blebbistatin inhibits myosin ATPase and actin interaction by stabilizing the closed switch 2 structure of the myosin head. These properties make blebbistatin a useful tool in structural and functional studies of cell motility and muscle contraction. 相似文献
13.
14.
Troponin is a pivotal regulatory protein that binds Ca(2+) reversibly to act as the muscle contraction on-off switch. To understand troponin function, the dynamic behavior of the Ca(2+)-saturated cardiac troponin core domain was mapped in detail at 10 °C, using H/D exchange-mass spectrometry. The low temperature conditions of the present study greatly enhanced the dynamic map compared with previous work. Approximately 70% of assessable peptide bond hydrogens were protected from exchange sufficiently for dynamic measurement. This allowed the first characterization by this method of many regions of regulatory importance. Most of the TnI COOH terminus was protected from H/D exchange, implying an intrinsically folded structure. This region is critical to the troponin inhibitory function and has been implicated in thin filament activation. Other new findings include unprotected behavior, suggesting high mobility, for the residues linking the two domains of TnC, as well as for the inhibitory peptide residues preceding the TnI switch helix. These data indicate that, in solution, the regulatory subdomain of cardiac troponin is mobile relative to the remainder of troponin. Relatively dynamic properties were observed for the interacting TnI switch helix and TnC NH(2)-domain, contrasting with stable, highly protected properties for the interacting TnI helix 1 and TnC COOH-domain. Overall, exchange protection via protein folding was relatively weak or for a majority of peptide bond hydrogens. Several regions of TnT and TnI were unfolded even at low temperature, suggesting intrinsic disorder. Finally, change in temperature prominently altered local folding stability, suggesting that troponin is an unusually mobile protein under physiological conditions. 相似文献
15.
Kortum RL Sommers CL Pinski JM Alexander CP Merrill RK Li W Love PE Samelson LE 《Molecular and cellular biology》2012,32(14):2748-2759
Thymocytes must transit at least two distinct developmental checkpoints, governed by signals that emanate from either the pre-T cell receptor (pre-TCR) or the TCR to the small G protein Ras before emerging as functional T lymphocytes. Recent studies have shown a role for the Ras guanine exchange factor (RasGEF) Sos1 at the pre-TCR checkpoint. At the second checkpoint, the quality of signaling through the TCR is interrogated to ensure the production of an appropriate T cell repertoire. Although RasGRP1 is the only confirmed RasGEF required at the TCR checkpoint, current models suggest that the intensity and character of Ras activation, facilitated by both Sos and RasGRP1, will govern the boundary between survival (positive selection) and death (negative selection) at this stage. Using mouse models, we have assessed the independent and combined roles for the RasGEFs Sos1, Sos2, and RasGRP1 during thymocyte development. Although Sos1 was the dominant RasGEF at the pre-TCR checkpoint, combined Sos1/RasGRP1 deletion was required to effectively block development at this stage. Conversely, while RasGRP1 deletion efficiently blocked positive selection, combined RasGRP1/Sos1 deletion was required to block negative selection. This functional redundancy in RasGEFs during negative selection may act as a failsafe mechanism ensuring appropriate central tolerance. 相似文献
16.
The Ca2+-sensitive regulatory switch of cardiac muscle is a paradigmatic example of protein assemblies that communicate ligand binding through allosteric change. The switch is a dimeric complex of troponin C (TnC), an allosteric sensor for Ca2+, and troponin I (TnI), an allosteric reporter. Time-resolved equilibrium Förster resonance energy transfer (FRET) measurements suggest that the switch activates in two steps: a TnI-independent Ca2+-priming step followed by TnI-dependent opening. To resolve the mechanistic role of TnI in activation we performed stopped-flow FRET measurements of activation after rapid addition of a lacking component (Ca2+ or TnI) and deactivation after rapid chelation of Ca2+. Time-resolved measurements, stopped-flow measurements, and Ca2+-titration measurements were globally analyzed in terms of a new quantitative dynamic model of TnC-TnI allostery. The analysis provided a mesoscopic parameterization of distance changes, free energy changes, and transition rates among the accessible coarse-grained states of the system. The results reveal that 1), the Ca2+-induced priming step, which precedes opening, is the rate-limiting step in activation; 2), closing is the rate-limiting step in de-activation; 3), TnI induces opening; 4), there is an incompletely deactivated population when regulatory Ca2+ is not bound, which generates an accessory pathway of activation; and 5), there is incomplete activation by Ca2+—when regulatory Ca2+ is bound, a 3:2 mixture of dynamically interconverting open (active) and primed-closed (partially active) conformers is observed (15°C). Temperature-dependent stopped-flow FRET experiments provide a near complete thermokinetic parameterization of opening: the enthalpy change (ΔH = −33.4 kJ/mol), entropy change (ΔS = −0.110 kJ/mol/K), heat capacity change (ΔCp = −7.6 kJ/mol/K), the enthalpy of activation (δ‡ = 10.6 kJ/mol) and the effective barrier crossing attempt frequency (νadj = 1.8 × 104 s−1). 相似文献
17.
Adachi T Pimentel DR Heibeck T Hou X Lee YJ Jiang B Ido Y Cohen RA 《The Journal of biological chemistry》2004,279(28):29857-29862
Angiotensin II (AII) increases production of reactive oxygen species from NAD(P)H oxidase, a response that contributes to vascular hypertrophy. Here we show in cultured vascular smooth muscle cells that S-glutathiolation of the redox-sensitive Cys(118) on the small GTPase, Ras, plays a critical role in AII-induced hypertrophic signaling. AII simultaneously increased the Ras activity and the S-glutathiolation of Ras (GSS-Ras) detected by biotin-labeled GSH or mass spectrometry. Both the increase in activity and GSS-Ras was labile under reducing conditions, suggesting the essential nature of this thiol modification to Ras activation. Overexpression of catalase, a dominant-negative p47(phox), or glutaredoxin-1 decreased GSS-Ras, Ras activation, p38, and Akt phosphorylation and the induction of protein synthesis by AII. Furthermore, expression of a Cys(118) mutant Ras decreased AII-mediated p38 and Akt phosphorylation as well as protein synthesis. These results show that H(2)O(2) from NAD(P)H oxidase forms GSS-Ras on Cys(118) and increases its activity leading to p38 and Akt phosphorylation, which contributes to the induction of protein synthesis. This study suggests that GSS-Ras is a redox-sensitive signaling switch that participates in the cellular response to AII. 相似文献
18.
Ptushenko Vasily V. Solovchenko Alexei E. Bychkov Andrew Y. Chivkunova Olga B. Golovin Andrey V. Gorelova Olga A. Ismagulova Tatiana T. Kulik Leonid V. Lobakova Elena S. Lukyanov Alexandr A. Samoilova Rima I. Scherbakov Pavel N. Selyakh Irina O. Semenova Larisa R. Vasilieva Svetlana G. Baulina Olga I. Skulachev Maxim V. Kirpichnikov Mikhail P. 《Photosynthesis research》2019,141(2):229-243
Photosynthesis Research - Photosystem I (PSI) generates the most negative redox potential found in nature, and the performance of solar energy conversion into alternative energy sources in... 相似文献
19.
Zinc(II)cyclen-peptide hybrid compounds and bis-zinc(II)cyclen complexes are prepared as potential binders of the guanine nucleotide binding protein Ras, an important molecular switch in cellular signal transduction. The design of the compounds is based on the previous observation that zinc(II)cyclen complexes could serve as lead compounds for inhibitors of Ras-effector interaction and thus be able to interrupt Ras induced signal transduction. Zinc(II)cyclen selectively stabilizes conformational state 1 of active Ras, a conformational state with drastically decreased affinity to effector proteins like Raf-kinase. To achieve higher binding affinities of such Ras-Raf interaction inhibitors, zinc(II)cyclen conjugates with short peptides, derived from the sequence of the Ras-activator SOS, were prepared by solid phase synthesis protocols. Dinuclear bis-zinc(II)cyclen complexes were obtained from alkyne-azide cycloaddition reactions. NMR investigations of the prepared compounds revealed that the peptide conjugates do not lead to an increase in Ras binding affinity of the metal complex-peptide conjugates. The dinuclear zinc complexes lead to an immediate precipitation of the protein prohibiting spectroscopic investigations of their binding. 相似文献
20.
Ren Y Cheng L Rong Z Li Z Li Y Li H Wang Z Chang Z 《Biochemical and biophysical research communications》2006,347(4):988-993
To study the mechanism of the inhibitory effects of Sef (similar expression to fgf genes) on Ras/mitogen-activated protein kinase (MAPK) signaling pathway, we observed cellular localization of this protein. Immunofluorescent staining results show that Sef locates in the vesicles of the cytoplasm without bFGF treatment but co-localizes with Ras on the plasma membrane (PM) in response to bFGF stimulation. The coimmunoprecipitation assay demonstrates that Sef interacts with Ras or RasG12V, respectively. We observed that Sef inhibited FGF induced, but not RasG12V mediated, signal transduction. We propose that Sef interacted with Ras in the inhibition of Ras/MAPK signaling pathway. 相似文献