首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE pentosidine. To test the hypothesis that this higher AGE accumulation is primarily the result of the slow turnover of cartilage collagen, AGE levels in cartilage and skin collagen were compared with the degree of racemization of aspartic acid (% d-Asp, a measure of the residence time of a protein). AGE (N(epsilon)-(carboxymethyl)lysine, N(epsilon)-(carboxyethyl)lysine, and pentosidine) and % d-Asp concentrations increased linearly with age in both cartilage and skin collagen (p < 0.0001). The rate of increase in AGEs was greater in cartilage collagen than in skin collagen (p < 0.0001). % d-Asp was also higher in cartilage collagen than in skin collagen (p < 0.0001), indicating that cartilage collagen has a longer residence time in the tissue, and thus a slower turnover, than skin collagen. In both types of collagen, AGE concentrations increased linearly with % d-Asp (p < 0.0005). Interestingly, the slopes of the curves of AGEs versus % d-Asp, i.e. the rates of accumulation of AGEs corrected for turnover, were identical for cartilage and skin collagen. The present study thus provides the first experimental evidence that protein turnover is a major determinant in AGE accumulation in different collagen types. From the age-related increases in % d-Asp the half-life of cartilage collagen was calculated to be 117 years and that of skin collagen 15 years, thereby providing the first reasonable estimates of the half-lives of these collagens.  相似文献   

2.
A ferredoxin, which functions as an electron acceptor for the CO dehydrogenase complex from Methanosarcina thermophila, was purified from acetate-grown cells. It was isolated as a trimer having a native molecular weight of approximately 16,400 and monomer molecular weight of 4,888 calculated from the amino acid composition. The ferredoxin contained 2.80 +/- 0.56 Fe atoms and 1.98 +/- 0.12 acid-labile sulfide. UV-visible absorption maxima were 395 and 295 nm with monomeric extinction coefficients of epsilon 395 = 12,800 M-1 cm-1 and epsilon 295 = 14,460 M-1 cm-1. The A395/A295 ratio ranged from 0.80 to 0.88. There were 5 cysteines per monomer but no methionine, histidine, arginine, or aromatic amino acids. The N-terminal amino acid sequence showed a 4-cysteine cluster with potential to coordinate a Fe:S center. The protein was stable for 30 min at 70 degrees C, but denatured during incubation at 85 degrees C.  相似文献   

3.
The intrinsic fluorescence of the exonuclease isolated from Crotalus adamanteus venom, was studied. The position of its maximum at 335 nm and half-width of the emission band 55 nm (lambda exc. 295 nm) suggested the existence of at least two types of tryptophan residues in the enzyme molecule. Differential analysis of the fluorescence spectra obtained by excitation at 280 and 295 nm revealed about 12.5% contribution of the tyrosine fluorescence in the overall emission excited at 280 nm. The environment of the tryptophan residues in the exonuclease was studied by quenching of their fluorescence with various ionic (NO3-, NO2-, I-, Br- and Cs+) and non-ionic agents (acrylamide, chloroform-methanol). On this basis, fractions of inner (non-polar) and surface tryptophan residues located in charged and neutral regions of the enzyme molecule were evaluated. More than half of the residues (60%) was found in the inner part of the exonuclease while most of its surface tryptophans--in a neutral region(s).  相似文献   

4.
Tryptic peptides of bone collagens from 4-week-old normal, osteoblastoma and vitamin D-deficient chicks were studied using gel filtration chromatography. Absorbance at 230 nm and fluorescence (excitation at 330 nm, emission at 390 nm) of eachfraction were measured. The relative quantities of each peak from the absorbance and fluorescence patterns were semiquantified by planimetry. Osteoblastoma bone collagen had a prominent, fluorescent, crosslinked peptide that contained pyridinoline. Fluorescence of this pyridinoline-containing peak in AO collagen was much greater than in the vitamin D-deficient and normal bone collagen counterparts. A comparison of fluorescence patterns clearly showed that the distribution of pyridinoline in collagen from normal and diseased bone was totally dissimilar.The dissimilarities in distribution of pyridinoline in these bone collagens may be attributed to differences in the degree of lysine hydroxylation, to the degree of mineralization, or some other factor.  相似文献   

5.
During aging, non-enzymatic glycation results in the formation and accumulation of the advanced glycation endproduct pentosidine in long-lived proteins, such as articular cartilage collagen. In the present study, we investigated whether pentosidine accumulation also occurs in cartilage aggrecan. Furthermore, pentosidine levels in aggrecan subfractions of different residence time were used to explore pentosidine levels as a quantitative measure of aggrecan turnover. In order to compare protein turnover rates, protein residence time was measured as racemization of aspartic acid. As has previously been shown for collagen, pentosidine levels increase with age in cartilage aggrecan. Consistent with the faster turnover of aggrecan compared to collagen, the rate of pentosidine accumulation was threefold lower in aggrecan than in collagen. In the subfractions of aggrecan, pentosidine levels increased with protein residence time. These pentosidine levels were used to estimate the half-life of the globular hyaluronan-binding domain of aggrecan to be 19.5 years. This value is in good agreement with the half-life of 23.5 years that was estimated based on aspartic acid racemization. In aggrecan from osteoarthritic (OA) cartilage, decreased pentosidine levels were found compared with normal cartilage, which reflects increased aggrecan turnover during the OA disease process. In conclusion, we showed that pentosidine accumulates with age in aggrecan and that pentosidine levels can be used as a measure of turnover of long-lived proteins, both during normal aging and during disease.  相似文献   

6.
During aging and degeneration, many changes occur in the structure and composition of human cartilaginous tissues, which include the accumulation of the AGE (advanced glycation end-product), pentosidine, in long-lived proteins. In the present study, we investigated the accumulation of pentosidine in constituents of the human IVD (intervertebral disc), i.e. collagen, aggrecan-derived PG (proteoglycan) (A1) and its fractions (A1D1-A1D6) in health and pathology. We found that, after maturity, pentosidine accumulates with age. Over the age range studied, a linear 6-fold increase was observed in pentosidine accumulation for A1 and collagen with respective rates of 0.12 and 0.66 nmol x (g of protein)(-1) x year(-1). Using previously reported protein turnover rate constants (k(T)) obtained from measurements of the D-isomer of aspartic residue in collagen and aggrecan of human IVD, we could calculate the pentosidine formation rate constants (k(F)) for these constituents [Sivan, Tsitron, Wachtel, Roughley, Sakkee, van der Ham, DeGroot, Roberts and Maroudas (2006) J. Biol. Chem. 281, 13009-13014; Tsitron (2006) MSc Thesis, Technion-Israel Institute of Technology, Haifa, Israel]. In spite of the comparable formation rate constants obtained for A1D1 and collagen [1.81+/-0.25 compared with 3.71+/-0.26 micromol of pentosidine x (mol of lysine)(-1) x year(-1) respectively], the higher pentosidine accumulation in collagen is consistent with its slower turnover (0.005 year(-1) compared with 0.134 year(-1) for A1D1). Pentosidine accumulation increased with decreasing buoyant density and decreasing turnover of the proteins from the most glycosaminoglycan-rich PG components (A1D1) to the least (A1D6), with respective k(F) values of 1.81+/-0.25 and 3.18+/-0.37 micromol of pentosidine.(mol of lysine)(-1) x year(-1). We concluded that protein turnover is an important determinant of pentosidine accumulation in aggrecan and collagen of human IVD, as was found for articular cartilage. Correlation of pentosidine accumulation with protein half-life in both normal and degenerate discs further supports this finding.  相似文献   

7.
Pentosidine, a cross-link structure between lysine and arginine residues, is one of the major advanced glycation end products (AGE). It is formed by the reaction of ribose with lysine and arginine. The pentosidine concentration produced by in vitro incubation of plasma obtained from uremic patients was reported to be higher than in normal plasma, indicating that uremic plasma contains an enhancer(s) for pentosidine formation [Miyata, T., Ueda, Y., Yamada, Y., Izuhara, Y., Wada, T., Jadoul, M., Saito, A., Kurokawa, K., and Strihou, C.Y. (1998) J. Am. Soc. Nephrol. 9, 2349-2356]. Since our preliminary study using a monoclonal anti-pentosidine antibody identified creatine as the most effective enhancer, the purpose of the present study was to clarify the mechanism by which creatine contributes to pentosidine formation. Lysine was incubated with ribose in the presence of creatine and analyzed by reverse phase high performance liquid chromatography. A novel fluorescent peak (lambda(ex/em) = 335/385 nm) was detected at 8 min, under conditions at which the authentic pentosidine (lysine was incubated with ribose in the presence of arginine under identical conditions) eluted at 12 min. Structural analyses of this compound revealed a pentosidine-like structure in which the arginine residue was replaced by creatine. This novel AGE-structure, named here creatine-derived pentosidine (C-pentosidine), was detected in the plasma of patients on hemodialysis. These results indicate that creatine increases the formation of C-pentosidine but not authentic pentosidine. This study indicates that creatine plays a direct role as a protein modifier in C-pentosidine formation, although the clinical significance of C-pentosidine is still unknown.  相似文献   

8.
Pyridinoline is a crosslink compound isolated from bovine Achilles tendon collagen. It is a 3-hydroxypyridinium derivative with three amino and three carboxyl groups (Fujimoto, D., Akiba, K., & Nakamura, N. (1977) Biochem. Biophys. Res. Commun. 76, 1124-1129). The contents of pyridinoline in collagens from various sources were determined. The pyridinoline content of bovine Achilles tendon was 0.16 residue per 1,000 residues and that of rat Achilles tendon collagen was 0.017 residue per 1,000 residues. Besides Achilles tendon collagens, pyridinoline was found in collagens from costal cartilage, rib and femoral bone of rat. It was not found in collagens from the tail tendon and skin of rat. A crosslinked, triple-chained peptide containing pyridinoline was isolated from bovine Achilles tendon collagen after digestion with pronase. Its amino acid composition suggests that the peptide may be involved in an intermolecular crosslink among a carboxyterminal sequence, a sequence near the aminoterminus and a sequence in the helical region.  相似文献   

9.
Pyridinoline is a fluorescent crosslinking amino acid isolated from collagen. Recently it was claimed that this material is an artefact produced from contaminating proteins during acid hydrolysis. However, in our hands, bovine tendon collagen could not be depleted of pyridinoline by the suggested treatments. A peptide which had the same fluorescence properties as those of pyridinoline could be isolated from enzymic digests of collagen. After acid hydrolysis, presence of pyridinoline in the peptide could be demonstrated on amino acid analysis. The composition of the peptide suggests that it originates from the specific regions of collagen molecule. These results clearly indicate the existence of pyridinoline in collagen invivo.  相似文献   

10.
Spondylosis in the desert sand rat (Psammomys obesus) has been studied as a model for intervertebral disc degeneration. Reducing sugars, which react with protein amino groups to form a diverse group of moieties with fluorescence and cross-linking properties, have been implicated in the structural and functional alterations of proteins that occur during aging and long-term diabetes. This study was undertaken to determine the changes in two matrix cross-links of the intervertebral disc and to study their association with aging. Two types of cross-links were studied: the physiological cross-link, pyridinoline, which is initiated by lysyl oxidase; and the non-enzymatically initiated cross-link, pentosidine. A significant increase in pentosidine, but not pyridinoline, was observed in the intervertebral disc with aging. Radiological, histological and biochemical findings support a hypothesis that subchondral bone responses, marked by increased bone density, contribute to alterations in the intervertebral disc. Cross-link changes in the structural proteins of the disc may contribute to the progressive fibrocartilage degradation typical of intervertebral disc disease as an effect of age.  相似文献   

11.
白茯苓凝集素的荧光光谱研究   总被引:3,自引:0,他引:3  
白茯苓凝集素(SLL)分子中含有4个色氨酸(Trp)残基,NBS修饰测得这4个Trp残基位于分子表面。SLL在天然状态下荧光发射峰位于335nm处,离子强度和温度对其荧光光谱均无明显的影响。NBS修饰后的SLL失去凝血活性,相应荧光光谱的强度减弱,荧光发射峰发生蓝移,提示SLL的构象发生改变。用KI·CsCl和丙烯酰胺淬灭剂研究SLL分子中Trp残基的微环境,发现丙烯酰胺和CsCl能淬灭分子中100%和50%的Trp残基的荧光,而KI完全不能淬灭SLL分子中Trp残基的荧光,因此Trp残基周围存在阴离子区,或者Trp残基处于分子表面的疏水环境中。  相似文献   

12.
The influence of UV irradiation (270–380 nm) on the biochemical, fluorescence and colorimetric properties of collagen was studied. The long-term UV irradiation (120 h) was accompanied by the increase of the structural stability of collagen to specific and nonspecific proteolytic enzymes, by formation of new additional fluorophore containing compounds, by the increased amount of carbonyl groups in the collagen, and by significant changes in the distribution pattern of products of alkaline hydrolysis during gel chromatography. The coordinates of color of the collagen films have been also changed. These changes of collagen suggest that UV irradiation induces photomodification and photooxidation processes in collagen.  相似文献   

13.
In this study we have investigated whether proteoglycans (aggrecan) are modified by nonenzymatic glycation as in collagen. Purified human aggrecan from osteoarthritic and normal human knee articular cartilage was assayed for pentosidine, a cross-link formed by nonenzymatic glycation, using reverse-phase HPLC. In addition, an in vitro study was done by incubation of purified bovine nasal cartilage aggrecan with ribose. Pentosidine was found in all the purified human aggrecan samples. 2-3% of the total articular cartilage pentosidine was found in aggrecan. Purified link protein also contained penosidine. The in vitro study led to pentosidine formation, but did not appear to increase the molecular size of the aggrecan suggesting that pentosidine was creating intramolecular cross-links. Similar amounts of glycation were found in osteoarthritic and normal cartilage. Like collagen, aggrecan and link proteins are crosslinked by nonenzymatic glycation in normal and osteoarthritic cartilage. Crosslinking could be reproduced, in vitro, by incubating aggrecan with ribose. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
We examined intramuscular endomysial collagen, cross-linking, and advanced glycation end products, as well as the general and contractile protein concentration of 20 young (25 +/- 3 yr) and 22 old (78 +/- 6 yr, range: 70-93 yr) sedentary men and women to better understand the underlying basis of changes in skeletal muscle mass and function that occur with aging. The old individuals had an impaired ability (increased time) (P < 0.05) to climb stairs (80%), rise from a chair (56%), and walk (44%), as well as lower (P < 0.05) quadriceps muscle volume (-29%), muscle strength (-35%), muscle power (-48%), and strength (-17%) and power (-33%) normalized to muscle size. Vastus lateralis muscle biopsies revealed that intramuscular endomysial collagen (young: 9.6 +/- 1.1, old: 10.2 +/- 1.2 microg/mg muscle wet wt) and collagen cross-linking (hydroxylysylpyridinoline) (young: 395 +/- 65, old: 351 +/- 45 mmol hydroxylysylpyridinoline/mol collagen) were unchanged (P > 0.05) with aging. The advanced glycation end product, pentosidine, was increased (P < 0.05) by approximately 200% (young: 5.2 +/- 1.3, old: 15.9 +/- 4.5 mmol pentosidine/mol collagen) with aging. While myofibrillar protein concentration was lower (-5%, P < 0.05), the concentration of the main contractile proteins myosin and actin were unchanged (P > 0.05) with aging. These data suggest that the synthesis and degradation of proteins responsible for the generation (myosin and actin) and transfer (collagen and pyridinoline cross-links) of muscle force are tightly regulated in aging muscle. Glycation-related cross-linking of intramuscular connective tissue may contribute to altered muscle force transmission and muscle function with healthy aging.  相似文献   

15.
Effects of dantrolene, a blocker of intracellular Ca2+ release, on the oscillation of the intracellular Ca2+ ([Ca2+]i) induced by caffeine were studied in bullfrog sympathetic ganglion cells, using a Fura-2 fluorescence technique. Dantrolene blocked the Ca2+ oscillation only in the cell illuminated by ultraviolet light (335-385 nm). Likewise, the blocking effects on rhythmic Ca(2+)-dependent hyperpolarizations, representing Ca2+ oscillations via activation of Ca(2+)-dependent K+ channel, occurred only under the illumination with ultraviolet light (335-385 nm), but not with visible light (404-417 nm). This wavelength dependence differs from the absorbance spectrum of dantrolene. On the other hand, dantrolene preirradiated with ultraviolet light under dark condition or ultraviolet light itself did not affect the [Ca2+]i oscillation. The blocking action was not prevented by the pretreatment of the cells with reducing agents. These results indicate that illumination of the Ca2+ release channel or dantrolene itself with ultraviolet light (possibly the former) is necessary for the drug to exert its blocking effect. Furthermore, dantrolene was found to decrease Fura-2 fluorescence and to increase cell autofluorescence, leading sometimes to a false decrease in the basal [Ca2+]i.  相似文献   

16.
A method for the isolation and purification of pyridinoline from bone collagen was developed, with the use of sulphonated polystyrene resins. The analytical techniques were used to quantify pyridinoline, for which hydroxyallysine is a known precursor, in a wide range of tissues. The structure of pyridinoline proposed by Fujimoto, Moriguchi, Ishida & Hayashi [(1978) Biochem. Biophys. Res. Commun. 84, 52-57] was confirmed by 13C-n.m.r. spectroscopy and fast-atom-bombardment mass spectrometry. At concentrations greater than about 0.1 mM, pyridinoline exhibited altered fluorescence properties that were consistent with excimer formation. From alkali hydrolysates of several different tissues, a fluorescent compound was purified by gel filtration and ion-exchange chromatography and was shown to be galactosylpyridinoline. This derivative was very labile to acid treatment compared with the bifunctional cross-link analogues, and was completely converted into free pyridinoline by heating at 108 degrees C for 8 h in 0.1 M-HCl. Galactosylpyridinoline was also partially converted into free pyridinoline by prolonged alkali hydrolysis. This lability, which could also apply to other multifunctional cross-link derivatives, may explain the fact that no disaccharide derivatives of pyridinoline were isolated.  相似文献   

17.
The relative proportions of pyridinoline and deoxypyridinoline in bone showed large species variations, although the total number of pyridinium crosslinks in rat, rabbit and bovine bone collagen was only 25-30% of that found in articular cartilage. Three pyridinium-containing peptides were isolated from cyanogen bromide digests of rat femoral bone and were characterized by their Mr values and amino-acid compositions. The results showed that pyridinoline and its deoxy analogue were equally distributed at two locations stabilizing the 4D stagger through interactions involving both the N- and C-terminal telopeptide regions. Less than stoichiometric amounts of pyridinium crosslinks were present in the peptides, suggesting that the isolated peptides contained additional (unidentified) maturation products of the bifunctional, reducible crosslinks.  相似文献   

18.
A fluorescent material in bovine achilles tendon collagen was isolated and characterized by ultraviolet spectroscopy, fluorescence spectroscopy and nmr spectroscopy. The data suggest that the compound is a 3-hydroxypyridinium derivative with three amino acid side chains. The name “pyridinoline” is proposed. Pyridinoline is a novel type crosslink of collagen.  相似文献   

19.
In 1988, the National Institute on Aging launched a 10-year program aimed at identification of biomarkers of aging. Previous results from our laboratory showed that pentosidine, an advanced glycation product, formed in skin collagen at a rate inversely related to maximum life span across several mammalian species. As part of the Biomarkers Program, we investigated the hypothesis that longitudinal determination of glycation and glycoxidation rates in skin collagen could predict longevities in ad libitum-fed (AL) and caloric restricted (CR) mice. C57BL/6NNia male mice were biopsied at age 20 months and at natural death. Glycation (furosine method) was assessed by gas chromatography/mass spectrometry (GC/MS) and the glycoxidation products carboxymethyllysine (CML) and pentosidine were determined by GC/MS and HPLC, respectively. CR vs. AL significantly (P<0.0001) increased both mean (34 vs. 27 months) and maximum (47 vs. 31 months) life spans. Skin collagen levels of furosine (pmol/micromol lysine) were approximately 2.5-fold greater than CML levels and 100-fold greater than pentosidine. Individual accumulation rates modeled as linear equations were significantly (P<0.001) inhibited by CR vs. AL for all parameters and in all cases varied inversely with longevity (P<0.1 to <0.0001). The incidence of three tissue pathologies (lymphoma, dermatitis, and seminal vesiculitis) was found to be attenuated by CR and the latter pathology correlated significantly with longevities (r=0.54, P=0. 002). The finding that markers of skin collagen glycation and glycoxidation rates can predict early deaths in AL and CR C57BL/6NNia mice strongly suggests that an age-related deterioration in glucose tolerance is a life span-determining process.  相似文献   

20.
Cartilage type IX collagen is cross-linked by hydroxypyridinium residues   总被引:4,自引:0,他引:4  
Type IX collagen, a recently discovered, unusual protein of cartilage, has a segmented triple-helical structure containing interchain disulfides. Its polymeric form and function are unknown. When prepared by pepsin from bovine articular cartilage, type IX collagen was found to contain a high concentration of hydroxypyridinium cross-links, similar to that in type II collagen. Fluorescence spectroscopy located the hydroxylysyl pyridinoline and lysyl pyridinoline cross-linking residues exclusively in the high-molecular-weight collagen fraction, from which they were recovered predominantly in a single CNBr-derived peptide. The results point to a structural role for type IX collagen in cartilage matrix, possibly as an adhesion material to type II collagen fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号