首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proteoglycans were extracted from normal human articular cartilage of various ages with 4M-guanidinium chloride and were purified and characterized by using preformed linear CsCl density gradients. With advancing age, there was a decrease in high-density proteoglycans of low protein/uronic acid weight ratio and an increase in the proportion of lower-density proteoglycans, richer in keratan sulphate and protein. Proteoglycans of each age were also shown to disaggregate in 4M-guanidinium chloride and at low pH and to reaggregate in the presence of hyaluronic acid and/or low-density fractions. Osteoarthrotic-cartilage extracts had an increased content of higher-density proteoglycans compared with normal cartilage of the same age, and results also suggested that these were not mechanical or enzymic degradation products, but were possibly proteoglycans of an immature nature.  相似文献   

2.
Indentation tests of human articular cartilage.   总被引:3,自引:0,他引:3  
  相似文献   

3.
Tensile fatigue of human articular cartilage.   总被引:6,自引:0,他引:6  
  相似文献   

4.
5.
We report an optimized method for RNA extraction from human articular cartilage that does not require the use of specialized equipment or column purification. To maximize RNA yield while minimizing degradation and contamination, chondrocytes are isolated from the extracellular matrix and the traditional TRIzol protocol is modified to include two RNA-DNA-protein phase separations. We compared RNA extracted using this modified method with the traditional TRIzol method by spectrophotometry, Bioanalyzer, and real-time polymerase chain reaction (PCR). With the modified method, RNA recovery is increased by nearly 1μg per 100mg of cartilage, and RNA integrity number (RIN) is improved from 2.0 to 7.5.  相似文献   

6.
Viscoelastic properties of human articular cartilage   总被引:6,自引:0,他引:6  
  相似文献   

7.
Four bovine articular cartilages have been compared with regard to the chemical composition of the whole cartilages, the amount of proteoglycan selectively extracted with 3 M MGCl2 or with 3 M guanidine-HCl, and the compositions and physical properties of the isolated proteoglycans. The whole cartilages differ but slightly in composition. Occipital condylar cartilage, a thin cartilage from the smallest joint, contains 4% more collagen and proportionately less proteoglycan than proximal humeral, the thickest cartilage from the largest joint. Each cartilage contains a pool of proteoglycan that resists extraction with 3 M MgCl2 but is extracted with 3 M guanidine-HCl. The proteoglycan extracted from each cartilage with 3 M guanidine-HCl contains a high molecular weight proteoglycan-collagen complex demonstrated by analytical ultracentrifugation and by the turbidity of its visible and ultra-violet spectra. The four cartilages appear to differ most remarkably in the fraction of total proteoglycan extracted from each as proteoglycan-collagen complex.  相似文献   

8.
Full-depth plugs of adult human articular cartilage were cut into serial slices from the articular surface and analysed for their glycosaminoglycan content. The amount of chondroitin sulphate was highest in the mid-zone, whereas keratan sulphate increased progressively through the depth. Proteoglycans were isolated from each layer by extraction with 4M-guanidinium chloride followed by centrifugation in 0.4M-guanidinium chloride/CsCl at a starting density of 1.5 g/ml. The efficiency with which proteoglycans were extracted depended on slice thickness, and extraction was complete only when cartilage from each zone was sectioned at 20 microns or less. When thick sections (250 microns) were extracted, hyaluronic acid was retained in the tissue. Most of the proteoglycans, extracted from each layer under optimum conditions, could interact with hyaluronic acid to form aggregates, although the extent of aggregation was less in the deeper layers. Two pools of proteoglycan were identified in all layers by gel chromatography (Kav. 0.33 and 0.58). The smaller of these was rich in keratan sulphate and protein, and gradually increased in proportion through the cartilage depth. Chondroitin sulphate chain size was constant in all regions. The changes in composition and structure observed were consistent with the current model for hyaline-cartilage proteoglycans and were similar to those observed with increasing age in human articular cartilage.  相似文献   

9.
Assays of several proteases, incorporating guanidinium chloride extracts of human femoral head cartilage and intervertebral disc, demonstrated that both tissues contain inhibitors of certain serine proteases. Trypsin, chymotrypsin and a granule extract of human polymorphonuclear leukocytes containing elastase and cathepsin G activities, were inhibited by low molecular weight fractions prepared by Sephadex G-75 chromatography. Using a radioassay, it was further shown that these fractions inhibit proteolysis of cartilage proteoglycan. The inhibitor in intervertebral disc is concentrated in the nucleus pulposus, with a decreasing gradient to the periphery of the annulus fibrosus. It is proposed that these inhibitors confer at least partial protection against pathological proteolysis of the proteoglycans in human articular cartilage and nucleus pulposus.  相似文献   

10.
Scanning and transmission microscopy of the articular cartilage was performed in femoral condyles of persons at the age of 30-50 years. It was demonstrated that hyaline cartilage is covered with a protective fibrillar layer consisting of tightly pressed collagenous fibrillae with an underlying layer of fibroblastic cells. In the intracellular substance of the hyaline cartilage fibrillar structures form a complex reticular web with vertical arrangement of the main collagenous fasiculi. In the superficial layer of the hyaline cartilage the collagenous fibrillae and their fasciculi form arcade-like structures. Lacunar chondrocytes have a rough villose surface, cellular secrete is discharged as round granules through cytoplasmic membrane. Ultrastructural changes in chondrocytes are observed simultaneously with their degenerative-dystrophic changes.  相似文献   

11.
A metalloprotease that digests cartilage proteoglycan optimally at pH 5.3 has been purified (4400-fold) to homogeneity from 20-g samples of human articular cartilage containing about 100 micrograms of enzyme. This enzyme was cleanly separated from a related neutral metalloprotease with an optimum pH of 7.2. The acid metalloprotease displays 40% of its maximum activity at pH 7.2 and so has significant activity at physiological pH. The protease is calcium-dependent and indirect evidence suggests that it may contain zinc at its active center. It occurs largely in a latent form that can be activated by aminophenylmercuric acetate. The apparent Mr of the latent form is 55,000 and of the active form, 35,000. The isoelectric point is at pH 4.9. The protease activity is inhibited by chelators, Z-phenylalanine, ovostatin, and tissue inhibitor of metalloproteinase from human articular cartilage. It differs from metalloproteinases such as enkephalinase and kidney brush-border protease in its failure to be strongly inhibited by phosphoramidon and Zincov. It cleaves the proteoglycan monomer of bovine nasal cartilage to fragments of approximately 140,000 Da. It cleaves the B chain of insulin at Ala14-Leu15 and Tyr16-Leu17. A survey of 26 cartilage extracts indicates this enzyme is elevated to about 3 times the normal level in human osteoarthritic cartilage and that the tissue inhibitor of metalloproteinase is only slightly diminished. Preliminary evidence points to the presence of a similar acid metalloprotease activity in human polymorphonuclear leukocytes.  相似文献   

12.

Introduction

The molecular mechanisms underlying cartilage destruction in osteoarthritis are poorly understood. Proteolysis is a key feature in the turnover and degradation of cartilage extracellular matrix where the focus of research has been on the metzincin family of metalloproteinases. However, there is strong evidence to indicate important roles for other catalytic classes of proteases, with both extracellular and intracellular activities. The aim of this study was to profile the expression of the majority of protease genes in all catalytic classes in normal human cartilage and that from patients with osteoarthritis (OA) using a quantitative method.

Methods

Human cartilage was obtained from femoral heads at joint replacement for either osteoarthritis or following fracture to the neck of femur (NOF). Total RNA was purified, and expression of genes assayed using Taqman® low-density array quantitative RT-PCR.

Results

A total of 538 protease genes were profiled, of which 431 were expressed in cartilage. A total of 179 genes were differentially expressed in OA versus NOF cartilage: eight aspartic proteases, 44 cysteine proteases, 76 metalloproteases, 46 serine proteases and five threonine proteases. Wilcoxon ranking as well as the LogitBoost-NR machine learning approach were used to assign significance to each gene, with the most highly ranked genes broadly similar using each method.

Conclusions

This study is the most complete quantitative analysis of protease gene expression in cartilage to date. The data help give direction to future research on the specific function(s) of individual proteases or protease families in cartilage and may help to refine anti-proteolytic strategies in OA.  相似文献   

13.
Six glycosyltransferases (mannosyl-, glucosyl-, N-acetyl-glucosaminyl-, galactosyl-, sialyl- and fucosyltransferases) are studied and characterized for their optimal conditions and their relations with interfering reactions (glycosyl-nucleotide pyrophosphatases, glycosidases and proteinases) in chondrocytes from osteoarthritic and normal human articular cartilage. Osteoarthritis induces increased activities for five glycosyl-transferases. The observed modifications are not explained by alterations in physico-chemical parameters of the enzymes or by intervention of glycosyl-nucleotide pyrophosphatases, glycosidases or proteolytic enzymes.  相似文献   

14.
The isolation of large quantities of good-quality RNA from human articular cartilage has been a long-standing problem for researchers working with human articular cartilage. In this paper we report a protocol which we have developed based on the Qiagen RNeasy procedure to produce high yields of purified, DNA-free RNA from normal and osteosteoarthritic human articular cartilage. The average yield of RNA was 8.39 microg/g (n = 59) for normal and 6.69 microg/g (n = 58) for osteoarthritic cartilage (average ratio OD 260/280 = 1.8-1.9). Quantitative PCR, cDNA array technology, and Northern blot analysis were used to verify the quality of the RNA.  相似文献   

15.
Recent works have shown that mechanical loading can alter the metabolic activity of chondrocytes cultured in 3D scaffolds. In this study we determined whether the stage of development of engineered cartilaginous constructs (expanded adult human articular chondrocytes/Polyactive foams) regulates the effect of dynamic compression on glycosaminoglycan (GAG) metabolism. Construct maturation depended on the culture time (3-14 days) and the donor (4 individuals). When dynamic compression was subsequently applied for 3 days, changes in GAG synthesized, accumulated, and released were significantly positively correlated to the GAG content of the constructs prior to loading, and resulted in stimulation of GAG formation only in the most developed tissues. Conversely, none of these changes were correlated with the expression of collagen type II mRNA, indicating that the response of chondrocytes to dynamic compression does not depend directly upon the stage of cell differentiation, but rather on the extracellular matrix surrounding the cells.  相似文献   

16.
Collagen extraction from bovine articular cartilage   总被引:1,自引:0,他引:1  
D Herbage  C Buffevant 《Biochimie》1974,56(5):775-777
  相似文献   

17.
We have previously described several receptors on the chondrocyte membrane. In an attempt to further characterize the coupling mechanisms of serotoninergic receptors, here we examined the involvement of serotonin in the phospholipase A2 activity. Serotonin dose-dependently stimulated phospholipase A2. This activation enhanced collagenase type II activity and had no effect on proteoglycanase activity.  相似文献   

18.
The use of high-field two-dimensional 1H-correlation data is described for the detailed comparison of intact keratan sulfate polymer chains derived from human articular cartilage sources as a function of age. For fetal material the nonreducing chain termini are shown to be sparsely capped by sialyl groups which, if present, are exclusively (alpha2-3)-linked to an unsulfated galactose residue. The asialo capping segment has the structure: Gal-GlcNAc6S-Gal-GlcNAc6S-. Examination of keratan sulfate from 10-year-old cartilage shows that capping by sialyl groups is complete, with (alpha2-3)-linkages predominant; for both this and the 38-year-old cartilage the three capping structures: NeuAc(alpha2-3)-Gal-GlcNAc6S-Gal-GlcNAc6S-, NeuAc(alpha2-3)-Gal-GlcNAc6S-Gal6S-GlcNAc6S-, and NeuAc(alpha2-3)-Gal6S-GlcNAc6S-Gal6S-GlcNAc6S- are clearly recognizable. The level of (alpha2-6)-linked chain capping sialyl groups is significant for 38-year-old cartilage keratan sulfate. Structural information concerning the linkage region to protein and the distribution of galactose environments is readily obtained from the spectra. Signal complexities severely limit the usefulness of two-dimensional correlation spectroscopy at 600 MHz for the examination of N-acetylglucosamine residues within the poly(N-acetyllactosamine) repeat sequence and signals representing fucose placements remain undifferentiated. This nondestructive approach complements current degradative methods for the structural examination of keratan sulfates.  相似文献   

19.
Pieces of adult human articular cartilage and chondrosarcoma were incubated in the presence of [35S]sulphate. After continuous or pulse-change incorporation of radioactivity, proteoglycans were extracted with 4.0 M-guanidinium chloride, purified by equilibrium density-gradient centrifugation and fractionated by gel chromatography. A comparison of the results suggests that the formation of stable aggregates occurs at a lower rate in articular cartilage than in chondrosarcoma.  相似文献   

20.
Assays of several proteases, incorporating guanidinium chloride extracts of human femoral head cartilage and intervertebral disc, demonstrated that both tissues contain inhibitors of certain serine proteases. Trypsin, chymotrypsin and a granule extract of human polymorphonuclear leukocyte containing elastase and cathepsin G activities, were inhibited by low molecular weight fractions prepared by Sephadex G-75 chromatography. Using a radioassay, it was further shown that these fractions inhibit proteolysis of cartilage proteoglycan. The inhibitor in intervertebral disc is concentrated in the nucleus pulposus, with a decreasing gradient to the periphery of the annulus fibrosus.It is proposed that these inhibitors confer at least partial protection against pathological proteolysis of the proteoglycans in human articular cartilage and nucleus pulposus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号