首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hookworm infection is considered one of the most important poverty-promoting neglected tropical diseases, infecting 576 to 740 million people worldwide, especially in the tropics and subtropics. These blood-feeding nematodes have a remarkable ability to downmodulate the host immune response, protecting themselves from elimination and minimizing severe host pathology. While several mechanisms may be involved in the immunomodulation by parasitic infection, experimental evidences have pointed toward the possible involvement of regulatory T cells (Tregs) in downregulating effector T-cell responses upon chronic infection. However, the role of Tregs cells in human hookworm infection is still poorly understood and has not been addressed yet. In the current study we observed an augmentation of circulating CD4(+)CD25(+)FOXP3(+) regulatory T cells in hookworm-infected individuals compared with healthy non-infected donors. We have also demonstrated that infected individuals present higher levels of circulating Treg cells expressing CTLA-4, GITR, IL-10, TGF-β and IL-17. Moreover, we showed that hookworm crude antigen stimulation reduces the number of CD4(+)CD25(+)FOXP3(+) T regulatory cells co-expressing IL-17 in infected individuals. Finally, PBMCs from infected individuals pulsed with excreted/secreted products or hookworm crude antigens presented an impaired cellular proliferation, which was partially augmented by the depletion of Treg cells. Our results suggest that Treg cells may play an important role in hookworm-induced immunosuppression, contributing to the longevity of hookworm survival in infected people.  相似文献   

2.
Coxiella burnetii is an obligate intracellular gram-negative bacterium that causes acute Q fever and chronic infections in humans. A killed, whole cell vaccine is efficacious, but vaccination can result in severe local or systemic adverse reactions. Although T cell responses are considered pivotal for vaccine derived protective immunity, the epitope targets of CD4(+) T cell responses in C. burnetii vaccination have not been elucidated. Since mapping CD4(+) epitopes in a genome with over 2,000 ORFs is resource intensive, we focused on 7 antigens that were known to be targeted by antibody responses. 117 candidate peptides were selected from these antigens based on bioinformatics predictions of binding to the murine MHC class II molecule H-2 IA(b). We screened these peptides for recognition by IFN-γ producing CD4(+) T cell in phase I C. burnetii whole cell vaccine (PI-WCV) vaccinated C57BL/6 mice and identified 8 distinct epitopes from four different proteins. The identified epitope targets account for 8% of the total vaccination induced IFN-γ producing CD4(+) T cells. Given that less than 0.4% of the antigens contained in C. burnetii were screened, this suggests that prioritizing antigens targeted by antibody responses is an efficient strategy to identify at least a subset of CD4(+) targets in large pathogens. Finally, we examined the nature of linkage between CD4(+) T cell and antibody responses in PI-WCV vaccinated mice. We found a surprisingly non-uniform pattern in the help provided by epitope specific CD4(+) T cells for antibody production, which can be specific for the epitope source antigen as well as non-specific. This suggests that a complete map of CD4(+) response targets in PI-WCV vaccinated mice will likely include antigens against which no antibody responses are made.  相似文献   

3.
4.
Acute exacerbations (AEs) of chronic hepatitis B (CH-B) are accompanied by increased T cell responses to hepatitis B core and e antigens (HBcAg/HBeAg). Why patients are immunotolerant (IT) to the virus and why AEs occur spontaneously on the immunoactive phase remain unclear. The role of HBcAg-specific CD4(+)CD25(+) regulatory T (T(reg)) cells in AE and IT phases was investigated in this study. The SYFPEITHI scoring system was employed to predict MHC class II-restricted epitope peptides on HBcAg overlapping with HBeAg that were used for T(reg)-cell cloning and for the construction of MHC class II tetramers to measure T(reg) cell frequencies (T(reg) f). The results showed that HBcAg-specific T(reg) f declined during AE accompanied by increased HBcAg peptide-specific cytotoxic T lymphocyte frequencies. Predominant Foxp3-expressing T(reg) cell clones were generated from patients on the immune tolerance phase, while the majority of Th1 clones were obtained from patients on the immunoactive phase. T(reg) cells from liver and peripheral blood of CH-B patients express CD152 and PD1 antigens that exhibit suppression on PBMCs proliferation to HBcAg. These data suggest that HBcAg peptide-specific T(reg) cells modulate the IT phase, and that their decline may account for the spontaneous AEs on the natural history of chronic hepatitis B virus infection.  相似文献   

5.
Effective control of the intracellular protozoan parasite Toxoplasma gondii depends on the activation of antigen-specific CD8(+) T-cells that manage acute disease and prevent recrudescence during chronic infection. T-cell activation in turn, requires presentation of parasite antigens by MHC-I molecules on the surface of antigen presenting cells. CD8(+) T-cell epitopes have been defined for several T. gondii proteins, but it is unclear how these antigens enter into the presentation pathway. We have exploited the well-characterized model antigen ovalbumin (OVA) to investigate the ability of parasite proteins to enter the MHC-I presentation pathway, by engineering recombinant expression in various organelles. CD8(+) T-cell activation was assayed using 'B3Z' reporter cells in vitro, or adoptively-transferred OVA-specific 'OT-I' CD8(+) T-cells in vivo. As expected, OVA secreted into the parasitophorous vacuole strongly stimulated antigen-presenting cells. Lower levels of activation were observed using glycophosphatidyl inositol (GPI) anchored OVA associated with (or shed from) the parasite surface. Little CD8(+) T-cell activation was detected using parasites expressing intracellular OVA in the cytosol, mitochondrion, or inner membrane complex (IMC). These results indicate that effective presentation of parasite proteins to CD8(+) T-cells is a consequence of active protein secretion by T. gondii and escape from the parasitophorous vacuole, rather than degradation of phagocytosed parasites or parasite products.  相似文献   

6.
Minor histocompatibility (H) antigens are major targets of a graft-versus-leukemia (GVL) effect mediated by donor CD8(+) and CD4(+) T cells following allogeneic hematopoietic cell transplantation (HCT) between human leukocyte antigen identical individuals. In the 15 years since the first molecular characterization of human minor H antigens, significant strides in minor H antigen discovery have been made as a consequence of advances in cellular, genetic and molecular techniques. Much has been learned about the mechanisms of minor H antigen immunogenicity, their expression on normal and malignant cells, and their role in GVL responses. T cells specific for minor H antigens expressed on leukemic cells, including leukemic stem cells, can be isolated and expanded in vitro and infused into allogeneic HCT recipients to augment the GVL effect to prevent and treat relapse. The first report of the adoptive transfer of minor H antigen-specific T-cell clones to patients with leukemic relapse in 2010 illustrates the potential for the manipulation of alloreactivity for therapeutic benefit. This review describes the recent developments in T-cell recognition of human minor H antigens, and efforts to translate these discoveries to reduce leukemia relapse after allogeneic HCT.  相似文献   

7.
Therapeutic use of IL-2 can generate antitumor immunity; however, a variety of different mechanisms have been reported. We injected IL-2 intratumorally (i.t.) at different stages of growth, using our unique murine model of mesothelioma (AE17; and AE17 transfected with secretory OVA (AE17-sOVA)), and systematically analyzed real-time events as they occurred in vivo. The majority of mice with small tumors when treatment commenced displayed complete tumor regression, remained tumor free for >2 mo, and survived rechallenge with AE17 tumor cells. However, mice with large tumors at the start of treatment failed to respond. Timing experiments showed that IL-2-mediated responses were dependent upon tumor size, not on the duration of disease. Although i.t. IL-2 did not alter tumor Ag presentation in draining lymph nodes, it did enhance a previously primed, endogenous, tumor-specific in vivo CTL response that coincided with regressing tumors. Both CD4(+) and CD8(+) cells were required for IL-2-mediated tumor eradication, because IL-2 therapy failed in CD4(+)-depleted, CD8(+)-depleted, and both CD4(+)- and CD8(+)-depleted C57BL/6J animals. Tumor-infiltrating CD8(+) T cells, but not CD4(+) T cells, increased in association with a marked reduction in tumor-associated vascularity. Destruction of blood vessels required CD8(+) T cells, because this did not occur in nude mice or in CD8(+)-depleted C57BL/6J mice. These results show that repeated doses of i.t. (but not systemic) IL-2 mediates tumor regression via an enhanced endogenous tumor-specific CTL response concomitant with reduced vasculature, thereby demonstrating a novel mechanism for IL-2 activity.  相似文献   

8.
We propose a model for the dynamics of the immune system by considering the subpopulations of virgin and memory T lymphocytes on a time scale corresponding to the human life span. In the deterministic balance equation we introduce a fluctuating term in order to take into account the chronic antigenic stress. Starting from the hypothesis that the depletion of virgin cells with cytotoxic properties (CD8+) is a mortality marker, the model provides survival curves quite similar to the demographic curves.  相似文献   

9.
The induction of strong CD8(+) T-cell responses against infectious diseases and cancer has remained a major challenge. Depending on the source of antigen and the infectious agent, priming of CD8(+) T cells requires direct and/or cross-presentation of antigenic peptides on major histocompatibility complex (MHC) class I molecules by professional antigen-presenting cells (APCs). However, both pathways show distinct preferences concerning antigen stability. Whereas direct presentation was shown to efficiently present peptides derived from rapidly degraded proteins, cross-presentation is dependent on long-lived antigen species. In this report, we analyzed the role of antigen stability on DNA vaccination and recombinant vaccinia virus (VV) infection using altered versions of the same antigen. The long-lived nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) can be targeted for degradation by N-terminal fusion to ubiquitin or, as we show here, to the ubiquitin-like modifier FAT10. Direct presentation by cells either transfected with NP-encoding plasmids or infected with recombinant VV in vitro was enhanced in the presence of short-lived antigens. In vivo, however, the highest induction of NP-specific CD8(+) T-cell responses was achieved in the presence of long-lived NP. Our experiments provide evidence that targeting antigens for proteasomal degradation does not improve the immunogenicity of DNA vaccines and recombinant VVs. Rather, it is the long-lived antigen that is superior for the efficient activation of MHC class I-restricted immune responses in vivo. Hence, our results suggest a dominant role for antigen cross-priming in DNA vaccination and recombinant VV infection.  相似文献   

10.
Dendritic cells (DC) are able to elicit anti-tumoral CD8(+) T cell responses by cross-presenting exogenous antigens in association with major histocompatibility complex (MHC) class I molecules. Therefore they are crucial actors in cell-based cancer immunotherapy. Although apoptotic cells are usually considered to be the best source of antigens, live cells are also able to provide antigens for cross-presentation by DC. We have recently shown that prophylactic immunotherapy by DC after capture of antigens from live B16 melanoma cells induced strong CD8(+) T-cell responses and protection against a lethal tumor challenge in vivo in C57Bl/6 mice. Here, we showed that DC cross-presenting antigens from live B16 cells can also inhibit melanoma lung dissemination in a therapeutic protocol in mice. DC were first incubated with live tumor cells for antigen uptake and processing, then purified and irradiated for safety prior to injection. This treatment induced stronger tumor-specific CD8(+) T-cell responses than treatment by DC cross-presenting antigens from apoptotic cells. Apoptotic B16 cells induced more IL-10 secretion by DC than live B16 cells. They underwent strong native antigen degradation and led to the expression of fewer MHC class I/epitope complexes on the surface of DC than live cells. Therefore, the possibility to use live cells as sources of tumor antigens must be taken into account to improve the efficiency of cancer immunotherapy.  相似文献   

11.
Cytotoxic CD8(+) T lymphocytes kill infected cells that display major histocompatibility complex (MHC) class I molecules presenting peptides processed from pathogen proteins. In general, the peptides are proteolytically processed from newly made endogenous antigens in the cytosol and require translocation to the endoplasmic reticulum (ER) for MHC class I loading. This last task is performed by the transporters associated with antigen processing (TAP). Sampling of suspicious pathogen-derived proteins reaches beyond the cytosol, and MHC class I loading can occur in other secretory or endosomal compartments besides the ER. Peptides processed from exogenous antigens can also be presented by MHC class I molecules to CD8(+) T lymphocytes, in this case requiring delivery from the extracellular medium to the processing and MHC class I loading compartments. The endogenous or exogenous antigen can be processed before or after its transport to the site of MHC class I loading. Therefore, mechanisms that allow the full-length protein or processed peptides to cross several subcellular membranes are essential. This review deals with the different intracellular pathways that allow the traffic of antigens to compartments proficient in processing and loading of MHC class I molecules for presentation to CD8(+) T lymphocytes and highlights the need to molecularly identify the transporters involved.  相似文献   

12.
Chronic hepatitis C virus (HCV) infection is associated with impaired proliferative, cytokine, and cytotoxic effector functions of HCV-specific CD8(+) T cells that probably contribute significantly to viral persistence. Here, we investigated the potential role of T cells with a CD4(+)CD25(+) regulatory phenotype in suppressing virus-specific CD8(+) T-cell proliferation during chronic HCV infection. In vitro depletion studies and coculture experiments revealed that peptide specific proliferation as well as gamma interferon production of HCV-specific CD8(+) T cells were inhibited by CD4(+)CD25(+) T cells. This inhibition was dose dependent, required direct cell-cell contact, and was independent of interleukin-10 and transforming growth factor beta. Interestingly, the T-cell-mediated suppression in chronically HCV-infected patients was not restricted to HCV-specific CD8(+) T cells but also to influenza virus-specific CD8(+) T cells. Importantly, CD4(+)CD25(+) T cells from persons recovered from HCV infection and from healthy blood donors exhibited significantly less suppressor activity. Thus, the inhibition of virus-specific CD8(+) T-cell proliferation was enhanced in chronically HCV-infected patients. This was associated with a higher frequency of circulating CD4(+)CD25(+) cells observed in this patient group. Taken together, our results suggest that chronic HCV infection leads to the expansion of CD4(+)CD25(+) T cells that are able to suppress CD8(+) T-cell responses to different viral antigens. Our results further suggest that CD4(+)CD25(+) T cells may contribute to viral persistence in chronically HCV-infected patients and may be a target for immunotherapy of chronic hepatitis C.  相似文献   

13.
The metacestode Echinococcus multilocularis causes a life-threatening disease in humans, named alveolar echinococcosis (AE). A comparative analysis of the early activation marker CD69 on peripheral blood mononuclear cells (PBMC) of patients with AE and healthy controls after in vitro culture with crude E. multilocularis antigen revealed that specific expression of CD69 was induced in CD4(+)T lymphocytes as well as in CD8(+)T lymphocytes. Using a protocol for intracellular staining of cytokines followed by fluorescence activating cell sorting (FACS) analysis, production of interleukin (IL)-2, IL-5 and IL-10 was detected in CD4(+)as well as in CD8(+)lymphocytes. Most notably, there was a definite increase in the expression of IL-10 in CD8(+) lymphocytes from patients with alveolar echinococcosis. The data support an important role of CD8(+) lymphocytes in the long persistence of the metacestode.  相似文献   

14.
Foxp3(+) CD4(+) regulatory T cells (Tregs) represent a highly suppressive T cell subset with well-characterized immunosuppressive effects during immune homeostasis and chronic infections, although the role of these cells in acute viral infections is poorly understood. The present study sought to examine the induction of Foxp3(+) CD4(+) Tregs in a nonlethal murine model of pulmonary viral infection by the use of the prototypical respiratory virus influenza A. We establish that influenza A virus infection results in a robust Foxp3(+) CD4(+) T cell response and that regulatory T cell induction at the site of inflammation precedes the effector T cell response. Induced Foxp3(+) CD4(+) T cells are highly suppressive ex vivo, demonstrating that influenza virus-induced Foxp3(+) CD4(+) T cells are phenotypically regulatory. Influenza A virus-induced regulatory T cells proliferate vigorously in response to influenza virus antigen, are disseminated throughout the site of infection and primary and secondary lymphoid organs, and retain Foxp3 expression in vitro, suggesting that acute viral infection is capable of inducing a foreign-antigen-specific Treg response. The ability of influenza virus-induced regulatory T cells to suppress antigen-specific CD4(+) and CD8(+) T cell proliferation and cytokine production correlates closely to their ability to respond to influenza virus antigens, suggesting that virus-induced Tregs are capable of attenuating effector responses in an antigen-dependent manner. Collectively, these data demonstrate that primary acute viral infection is capable of inducing a robust, antigen-responsive, and suppressive regulatory T cell response.  相似文献   

15.
In contrast to HIV-infected humans, naturally SIV-infected sooty mangabeys (SMs) very rarely progress to AIDS. Although the mechanisms underlying this disease resistance are unknown, a consistent feature of natural SIV infection is the absence of the generalized immune activation associated with HIV infection. To define the correlates of preserved CD4(+) T cell counts in SMs, we conducted a cross-sectional immunological study of 110 naturally SIV-infected SMs. The nonpathogenic nature of the infection was confirmed by an average CD4(+) T cell count of 1,076 +/- 589/mm(3) despite chronic infection with a highly replicating virus. No correlation was found between CD4(+) T cell counts and either age (used as a surrogate marker for length of infection) or viremia. The strongest correlates of preserved CD4(+) T cell counts were a low percentage of circulating effector T cells (CD28(-)CD95(+) and/or IL-7R/CD127(-)) and a high percentage of CD4(+)CD25(+) T cells. These findings support the hypothesis that the level of immune activation is a key determinant of CD4(+) T cell counts in SIV-infected SMs. Interestingly, we identified 14 animals with CD4(+) T cell counts of <500/mm(3), of which two show severe and persistent CD4(+) T cell depletion (<50/mm(3)). Thus, significant CD4(+) T cell depletion does occasionally follow SIV infection of SMs even in the context of generally low levels of immune activation, lending support to the hypothesis of multifactorial control of CD4(+) T cell homeostasis in this model of infection. The absence of AIDS in these "CD4(low)" naturally SIV-infected SMs defines a protective role of the reduced immune activation even in the context of a significant CD4(+) T cell depletion.  相似文献   

16.
Patients infected with hepatitis C virus (HCV) have an impaired response against HCV antigens while keeping immune competence for other antigens. We hypothesized that expression of HCV proteins in infected dendritic cells (DC) might impair their antigen-presenting function, leading to a defective anti-HCV T-cell immunity. To test this hypothesis, DC from normal donors were transduced with an adenovirus coding for HCV core and E1 proteins and these cells (DC-CE1) were used to stimulate T lymphocytes. DC-CE1 were poor stimulators of allogeneic reactions and of autologous primary and secondary proliferative responses. Autologous T cells stimulated with DC-CE1 exhibited a pattern of incomplete activation characterized by enhanced CD25 expression but reduced interleukin 2 production. The same pattern of incomplete lymphocyte activation was observed in CD4(+) T cells responding to HCV core in patients with chronic HCV infection. However, CD4(+) response to HCV core was normal in patients who cleared HCV after alpha interferon therapy. Moreover, a normal CD4(+) response to tetanus toxoid was found in both chronic HCV carriers and patients who had eliminated the infection. Our results suggest that expression of HCV structural antigens in infected DC disturbs their antigen-presenting function, leading to incomplete activation of anti-HCV-specific T cells and chronicity of infection. However, presentation of unrelated antigens by noninfected DC would allow normal T-cell immunity to other pathogens.  相似文献   

17.
Infection with West Nile virus (WNV) causes fatal encephalitis more frequently in immunocompromised humans than in those with a healthy immune system. Although a complete understanding of this increased risk remains unclear, experiments with mice have begun to define how different components of the adaptive and innate immune response function to limit infection. Previously, we demonstrated that components of humoral immunity, particularly immunoglobulin M (IgM) and IgG, have critical roles in preventing dissemination of WNV infection to the central nervous system. In this study, we addressed the function of CD8(+) T cells in controlling WNV infection. Mice that lacked CD8(+) T cells or classical class Ia major histocompatibility complex (MHC) antigens had higher central nervous system viral burdens and increased mortality rates after infection with a low-passage-number WNV isolate. In contrast, an absence of CD8(+) T cells had no effect on the qualitative or quantitative antibody response and did not alter the kinetics or magnitude of viremia. In the subset of CD8(+)-T-cell-deficient mice that survived initial WNV challenge, infectious virus was recovered from central nervous system compartments for several weeks. Primary or memory CD8(+) T cells that were generated in vivo efficiently killed target cells that displayed WNV antigens in a class I MHC-restricted manner. Collectively, our experiments suggest that, while specific antibody is responsible for terminating viremia, CD8(+) T cells have an important function in clearing infection from tissues and preventing viral persistence.  相似文献   

18.
CD8(+) T cells are essential for host defense to intracellular bacterial pathogens such as Mycobacterium tuberculosis (Mtb), Salmonella species, and Listeria monocytogenes, yet the repertoire and dominance pattern of human CD8 antigens for these pathogens remains poorly characterized. Tuberculosis (TB), the disease caused by Mtb infection, remains one of the leading causes of infectious morbidity and mortality worldwide and is the most frequent opportunistic infection in individuals with HIV/AIDS. Therefore, we undertook this study to define immunodominant CD8 Mtb antigens. First, using IFN-gamma ELISPOT and synthetic peptide arrays as a source of antigen, we measured ex vivo frequencies of CD8(+) T cells recognizing known immunodominant CD4(+) T cell antigens in persons with latent tuberculosis infection. In addition, limiting dilution was used to generate panels of Mtb-specific T cell clones. Using the peptide arrays, we identified the antigenic specificity of the majority of T cell clones, defining several new epitopes. In all cases, peptide representing the minimal epitope bound to the major histocompatibility complex (MHC)-restricting allele with high affinity, and in all but one case the restricting allele was an HLA-B allele. Furthermore, individuals from whom the T cell clone was isolated harbored high ex vivo frequency CD8(+) T cell responses specific for the epitope, and in individuals tested, the epitope represented the single immunodominant response within the CD8 antigen. We conclude that Mtb-specific CD8(+) T cells are found in high frequency in infected individuals and are restricted predominantly by HLA-B alleles, and that synthetic peptide arrays can be used to define epitope specificities without prior bias as to MHC binding affinity. These findings provide an improved understanding of immunodominance in humans and may contribute to a development of an effective TB vaccine and improved immunodiagnostics.  相似文献   

19.
Human cytomegalovirus (HCMV) establishes persistent lifelong infections and replicates slowly. To withstand robust immunity, HCMV utilizes numerous immune evasion strategies. The HCMV gene cassette encoding US2 to US11 encodes four homologous glycoproteins, US2, US3, US6, and US11, that inhibit the major histocompatibility complex class I (MHC-I) antigen presentation pathway, probably inhibiting recognition by CD8(+) T lymphocytes. US2 also inhibits the MHC-II antigen presentation pathway, causing degradation of human leukocyte antigen (HLA)-DR-alpha and -DM-alpha and preventing recognition by CD4(+) T cells. We investigated the effects of seven of the US2 to US11 glycoproteins on the MHC-II pathway. Each of the glycoproteins was expressed by using replication-defective adenovirus vectors. In addition to US2, US3 inhibited recognition of antigen by CD4(+) T cells by a novel mechanism. US3 bound to class II alpha/beta complexes in the endoplasmic reticulum (ER), reducing their association with Ii. Class II molecules moved normally from the ER to the Golgi apparatus in US3-expressing cells but were not sorted efficiently to the class II loading compartment. As a consequence, formation of peptide-loaded class II complexes was reduced. We concluded that US3 and US2 can collaborate to inhibit class II-mediated presentation of endogenous HCMV antigens to CD4(+) T cells, allowing virus-infected cells to resist recognition by CD4(+) T cells.  相似文献   

20.
Human CD8(+) regulatory T cells, particularly the CD8(+)CD28(-) T suppressor cells, have emerged as an important modulator of alloimmunity. Understanding the conditions under which these cells are induced and/or expanded would greatly facilitate their application in future clinical trials. In the current study, we develop a novel strategy that combines common gamma chain (γc) cytokines IL-2, IL-7 and IL-15 and donor antigen presenting cells (APCs) to stimulate full HLA-mismatched allogeneic human CD8(+) T cells which results in significant expansions of donor-specific CD8(+)CD28(-) T suppressor cells in vitro. The expanded CD8(+)CD28(-) T cells exhibit increased expressions of CTLA-4, FoxP3, and CD25, while down-regulate expressions of CD56, CD57, CD127, and perforin. Furthermore, these cells suppress proliferation of CD4(+) T cells in a contact-dependent and cytokine-independent manner. Interestingly, the specificity of suppression is restricted by the donor HLA class I antigens but promiscuous to HLA class II antigens, providing a potential mechanism for linked suppression. Taken together, our results demonstrate a novel role for common γc cytokines in combination with donor APCs in the expansion of donor-specific CD8(+)CD28(-) T suppressor cells, and represent a robust strategy for in vitro generation of such cells for adoptive cellular immunotherapy in transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号