首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The sustainable development of miscanthus as a bioenergy feedstock requires optimizing its fertilizer inputs and, therefore, determining its nitrogen (N) requirements. The ‘critical nitrogen dilution curve’ is a powerful tool to characterize such N requirements; it relates the N concentration ([N]) in aboveground organs to their biomass, defining two domains depending on whether the N factor limits biomass growth or not. We aimed to develop such a tool in miscanthus. Using a rhizome N depletion strategy with green cutting pre-treatment over several years before the start of the experiment, we grew, in 2014, two cultivated species, Miscanthus × giganteus (M×g) and Miscanthus sinensis (Msin), at four fertilizer levels (0, 80, 160 and 240 kg N ha?1). We found a strong nitrogen fertilization effect. The shoot [N] decreased as the aboveground biomass increased in both species and in all of the treatments. [N] was strongly correlated with leaf/stem biomass ratio. The N treatments enabled the identification of the observed critical points, i.e. points with the maximum biomass (W) and the lowest [N], on each measurement date. These points could be fitted to the following critical dilution curve that was common between M×g and Msin: N concentration (Nc) (critical [N], g N kg?1) = 27.0 W ?0.48 when W > 1 t ha?1 and Nc = 27.0 when W ≤ 1. This curve was validated by literature data, separated into N-limited or not-limited conditions. The similarity of the curves between the two species was due to compensation between leaf/stem biomass ratio and [N] in the stems. This curve is helpful to diagnose the crop N status and define the optimal fertilizer requirements of miscanthus crops.  相似文献   

2.
Molecular cloning of the DIP1 gene located in the 20A4-5 region has been performed from the following strains with the flamenco phenotype: flam SS (SS) and flam MS (MS) characterized by a high transposition rate of retrotransposon gypsy (mdg4), flam py + (P) carrying the insertion of a construction based on the P element into the region of the flamenco gene, and flamenco +. The results of restriction analysis and sequencing cloned DNA fragments has shown that strains flam SS , flam MS considerably differ from flam py + (P), and flamenco + in the structure of DIP1. Strains flam SS and flam MS have no DraI restriction site at position 1765 in the coding region of the gene, specifically, in the domain determining the signal of the nuclear localization of the DIP1 protein. This mutation has been found to consist in a nucleotide substitution in the recognition site of DraI restriction endonuclease, which is transformed from TTTAAA into TTTAAG and, hence, is not recognized by the enzyme. This substitution changes codon AAA into AAG and is translationally insignificant, because both triplets encode the same amino acid, lysine. The DIP1 gene of strains flam SS and flam MS has been found to contain a 182-bp insertion denoted IdSS (insertion in DIP1 strain SS); it is located in the second intron of the gene. The IdSS sequence is part of the open reading frame encoding the putative transposase of the mobile genetic element HB1 belonging to the Tc1/mariner family. This insertion is presumed to disturb the conformations of DNA and the chromosome, in particular, by forming loops, which alters the expression of DIP1 and, probably, neighboring genes. In strains flamenco + and flam py + (P), the IdSS insertion within the HB1 sequence is deleted. The deletion encompasses five C-terminal amino acid residues of the conserved domain and the entire C-terminal region of the putative HB1 transposase. The obtained data suggest that DIP1 is involved in the control of gypsy transpositions either directly or through interaction with other elements of the genome.  相似文献   

3.
Dynamics of enterobacteria of normal intestinal microflora was studied in Apis mellifera mellifera L. bees hibernating under snow in the Western Urals. The cell numbers (N) of the predominant species Klebsiella oxytoca increased from 10-106 CFU/bee in November 2004 to 104-107 CFU/bee in March 2005; its frequency of occurrence (P) increased from 92 to 100%. Increase of Providencia rettgeri (11.2004: N up to 106, P 25%; 03.2005: N 102-106, P 80%) was accompanied by the substitution of Morganella morganii (11.2004: N up to 106, P 25%) with Proteus vulgaris (03.2005: N up to 105, P 8%). By spring, Hafnia alvei and Citrobacter sp., which are pathogenic to bees, disappeared (11.2004: N up to 105, P 13 and 10%, respectively). Endophytic species Pantoea agglomerans, Leclecria sp., and other representatives of the “Enterobacter agglomerans” group were present in November and after the first emergence in spring (N up to 105; November: P 15%; April: P 23%). In April, the number of enterobacteria decreased to 105, and P. rettgeri became the predominant species (P 54%) instead of K. oxytoca (P 43%).  相似文献   

4.
Changes in the main parameters of α-and β-adrenergic responses, sensitivity to agonists (EC 50) and maximum response (P m) of hindlimb and small intestinal blood pressure in situ and systemic blood pressure were studied in rabbits adapted to cold for 1–30 days (daily exposures to ?10°C for 6 h). The responses to phenylephrine, noradrenaline, adrenaline, clonidine (α-agonists), and isopropylnoradrenaline (β-agonist) corresponded to the equation p = (P m A n )/(EC 50 n + A n ) (1) with n = 1 and n = 2, respectively. Cold adaptation induced reciprocal changes in the response of both EC 50 and P m to α-agonists and in the response of P m alone to isopropylnoradrenaline. The significant differences of the parameters from control observed during the first 5 days of adaptation gradually decreased by day 30. After 10 days of adaptation, the efficiency (E = P m/2EC 50) of response to α-and β-agonists of adrenoceptors significantly increased.  相似文献   

5.
Lima bean (Phaseolus lunatus L.) is an important legume species that establishes symbiosis with rhizobia, mainly of the Bradyrhizobium genus. The aim of this study was to evaluate the efficiency of rhizobia of the genus Bradyrhizobium in symbiosis with lima bean, in both Leonard jars and in pots with a Latossolo Amarelo distrófico (Oxisol). In the experiment in Leonard jars, 17 strains isolated from nodules of the three legume subfamilies, Papilionoideae (Vigna unguiculata, Pterocarpus sp., Macroptilium atropurpureum, Swartzia sp., and Glycine max), Mimosoideae (Inga sp.), and Caesalpinioideae (Campsiandra surinamensis) and two uninoculated controls, one with a low concentration (5.25 mg L?1) and another with a high concentration (52.5 mg L?1) of mineral nitrogen (N) were evaluated. The six strains that exhibited the highest efficiency in Leonard jars, isolated from nodules of Vigna unguiculata (UFLA 03–144, UFLA 03–84, and UFLA 03–150), Campsiandra surinamensis (INPA 104A), Inga sp. (INPA 54B), and Swartzia sp. (INPA 86A), were compared to two uninoculated controls, one without and another with 300 mg N dm?3 (NH4NO3) applied to pots with samples of an Oxisol in the presence and absence of liming. In this experiment, liming did not affect nodulation and plant growth; the INPA 54B and INPA 86A strains stood out in terms of shoot dry matter production and provided increases of approximately 48% in shoot N accumulation compared to the native rhizobia populations. Our study is the first to indicate Bradyrhizobium strains isolated from the three legume subfamilies are able to promote lima bean growth via biological nitrogen fixation in soil conditions.  相似文献   

6.
Rapid economic development in China’s Lake Taihu basin during the past four decades has accelerated nitrogen (N) and phosphorus (P) loadings to the lake. This has caused a shift from mesotrophic to hypertrophic conditions, symptomized by harmful cyanobacterial blooms (CyanoHABs). The relationships between phytoplankton biomass as chlorophyll a (Chla) and nutrients as total nitrogen (TN) and total phosphorus (TP) were analyzed using historical data from 1992 to 2012 to link the response of CyanoHAB potential to long-term nutrient changes. Over the twenty year study period, annual mean Chla showed significantly positive correlations with both annual mean TN and TP (P < 0.001), reflecting a strong phytoplankton biomass response to changes in nutrient inputs to the lake. However, phytoplankton biomass responded slowly to annual changes in TN after 2002. There was not a well-defined or significant relationship between spring TN and summertime Chla. The loss of a significant fraction of spring N loading due to denitrification likely weakened this relationship. Bioavailability of both N and P during the summer plays a key role in sustaining cyanobacterial blooms. The frequency of occurrence of bloom level Chla (>20 μg L?1) was compared to TN and TP to determine nutrient-bloom thresholds. A decline in bloom risk is expected if TN remains below 1.0 mg L?1 and TP below 0.08 mg L?1.  相似文献   

7.
Atherosclerosis represents an inflammatory response to the disturbance of the endothelial layer in the arterial bloodstream. In the present study, an analysis of associations of polymorphic markers for the genes controlling synthesis of proteins involved in atherosclerosis pathogenesis in coronary atherosclerosis (CA) patients (217 subjects) and in a control group (250 subjects) was conducted. The following genes were examined: rs991804 (CCL2 gene), rs1126579 (CXCR2 gene), rs4074 (CXCL1 gene), rs4073 (CXCL8 gene), rs333 (CCR5 gene), rs2471859 (CXCR4 gene), rs1801157 (CXCL12 gene), and rs2569190 (CD14 gene). Using the Monte Carlo and Markov chain (APSampler) method, allele/genotype combinations associated with both low and high CA risk were revealed. The most important findings included the following: CXCR4*T/T + CCL2*C + CCR5*I/I (Pperm = 1 × 10–6, OR = 0.44, 95% CI 0.3–0.63), CXCR2*C + CD14*C + CXCL12*G + CCL2*C + CCR5*D (Pperm = 4 × 10–6, OR = 5.78, 95% CI 2.34–14.28), CD14*C + CCL2*C/C + CCR5*D (Pperm = 6.3 × 10–6, OR = 5.81, 95% CI 2.17–15.56), CXCL8*A + CXCR2*C + CD14*T + CXCR4*C (Pperm = 0.01, OR = 3.21, 95% CI 1.63–6.31).  相似文献   

8.
Water stress and nitrogen (N) availability are the two main factors limiting plant growth, and the two constrains can interact in intricate ways. Moreover, atmospheric N depositions are altering the availability of these limiting factors in many terrestrial ecosystems. Here, we studied the combined effects of different soil water availability and N supply on photosynthesis and water-use efficiency (WUE) in Picea asperata seedlings cultured in pots, using gas exchange, and stable carbon and nitrogen isotope composition (δ 13C and δ 15N). Photosynthesis under light saturation (A sat) and stomatal conductance (g s) of P. asperata decreased as the soil moisture gradually diminished. Under severe water-stress condition, N addition decreased the A sat and g s, whereas the positive effects were observed in moderate water-stress and well-watered conditions. The effect of N addition on the intrinsic WUE (WUEi) deduced from gas exchange was associated with soil water availability, whereas long-term WUE evaluated by leaf δ 13C only affected by soil water availability, and it would be elevated with soil moisture gradually diminished. Water deficit would restrict the uptake and further transport of N to the aboveground parts of P. asperata, and then increasing δ 15N. Therefore, δ 15N in plant tissues may reflect changes in N allocation within plants. These results indicate that the effect of N enrichment on photosynthesis in P. asperata is largely, if not entirely, dependent on the severity of water stress, and P. asperata would be more sensitive to increasing N enrichment under low soil water availability than under high soil moisture.  相似文献   

9.
We present a theoretical study on the detailed mechanism and kinetics of the H+HCN →H+HNC process. The potential energy surface was calculated at the complete basis set quantum chemical method, CBS-QB3. The vibrational frequencies and geometries for four isomers (H2CN, cis-HCNH, trans-HCNH, CNH2), and seven saddle points (TSn where n = 1 ? 7) are very important and must be considered during the process of formation of the HNC in the reaction were calculated at the B3LYP/6-311G(2d,d,p) level, within CBS-QB3 method. Three different pathways (PW1, PW2, and PW3) were analyzed and the results from the potential energy surface calculations were used to solve the master equation. The results were employed to calculate the thermal rate constant and pathways branching ratio of the title reaction over the temperature range of 300 up to 3000 K. The rate constants for reaction H + HCN → H + HNC were fitted by the modified Arrhenius expressions. Our calculations indicate that the formation of the HNC preferentially occurs via formation of cis–HCNH, the fitted expression is k P W2(T) = 9.98 × 10?22 T 2.41 exp(?7.62 kcal.mol?1/R T) while the predicted overall rate constant k O v e r a l l (T) = 9.45 × 10?21 T 2.15 exp(?8.56 kcal.mol?1/R T) in cm 3 molecule ?1 s ?1.
Graphical Abstract (a) Potential energy surface, (b) thermal rate constants as a function of temperature and (c) the branching ratios (%) of PW1, PW2, PW3 pathways involved in rm H + HCN → H + HNC process.
  相似文献   

10.

Background and aims

There is ample experimental evidence for shifts in plant community composition under climate warming. To date, however, the underlying mechanisms driving these compositional shifts remain poorly understood.

Methods

The amount and form of nitrogen (N) available to plants are among the primary factors limiting productivity and plant coexistence in terrestrial ecosystems. We conducted a short-term 15N tracer experiment in a ten-year warming and grazing experiment in an alpine grassland to investigate the effects of warming and grazing on plant uptake of NO3?-N, NH4+-N, and glycine-N. Four dominant plant species (Kobresia humilis, Potentilla anseria, Elymus nutans, Poa annua) were selected. Results We found that 10-years of warming decreased plant uptake of inorganic N by up to 80% in all species. In contrast, warming increased the uptake of organic N in K. humilis, P. anseria, and E. nutans but not in P. annua. Results showed that plant relative biomass increased hyperbolically with the ratio of the plant species total uptake of available N and plant community uptake of available N. And a significant positive correlation between plant species uptake of soil glycine-N and the uptake of total available N.

Conclusions

The stable relative biomass of plant species is largely dependent on organic N uptake by plants. We conclude that plant organic N uptake maintains species dominance under long-term warming.
  相似文献   

11.
The aims of the present study were to develop a parameterization of a one-year-long observed PAR time-series, apply the PAR parameterization in a primary production relation, and compare calculated and observed time-series of primary production. The PAR parameterization was applied in the generally used relation for the primary production (P d): P d = a(BI 0 Z 0) + b with observed photic depth (Z 0) and Chl-a concentrations (B). It was tested whether the PAR parameterization in combination with this simple relation for primary production was able to describe the actual measured primary production. The study is based on a one year long time-series of PAR, CTD-casts (n = 45), and primary production measurements (n = 24) from Århus Bay (56°09′ N; 10°20′ E), south west Kattegat. Results showed a high and positive correlation between observed and calculated primary production in the bay, as based on the present PAR parameterization combined with the simple primary production relation. The developed PAR parameterization, which calculates total daily surface irradiance per day (M photons m?2 d?1), can be applied in any ecological application taking into account that it was developed for the latitude of 56° N.  相似文献   

12.
This paper reports for the first time about the detection and identification of ginsenoside malonyl-Rg1 (the rare 20(S)-protopanaxatriol-type ginsenoside) in the biomass of plant cell suspension culture of Japanese ginseng (Panax japonicus C.A. Mey. var. repens). Ginsenosides were analyzed by means of high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) in positive-ion mode. Malonyl-Rg1 was identified as a result of interpretation of MS spectra obtained upon fragmentation of protonated molecular ion ([M + H]+) of this compound in an ionization source. Chromatographic analysis and MS spectra showed that the cells of P. japonicus var. repens cultivated in vitro contain several isomers of malonyl-Rg1. Thus, we ascertained for the first time that, in addition to malonyl ginsenosides of 20(S)-protopanaxadiol group, the plant cell culture of ginseng P. japonicus var. repens can accumulate glycosides of 20(S)-protopanaxatriol group acylated with a malonic acid residue. The obtained results showed that, in the cells of ginseng cultivated in vitro for a long time (for 10 years and more), the assortment of secondary metabolites (ginsenosides) may be as wide as in intact plants.  相似文献   

13.
The aim of present study was to elucidate the association of CTLA4 +49 A/G and HLA-DRB1*/DQB1* gene polymorphism in south Indian T1DM patients. The patients and controls (n?=?196 each) were enrolled for CTLA4 and HLA-DRB1*/DQB1* genotyping by RFLP/PCR-SSP methods. The increased frequencies of CTLA4 ‘AG’ (OR?=?1.99; p?=?0.001), ‘GG’ (OR?=?3.94; p?=?0.001) genotypes, and ‘G’ allele (OR?=?2.42; p?=?9.26?×?10?8) were observed in patients. Reduced frequencies of ‘AA’ (OR?=?0.35; p?=?7.19?×?10?7) and ‘A’ (OR?=?0.41; p?=?9.26?×?10?8) in patients revealed protective association. Among HLA-DRB1*/DQB1* alleles, DRB1*04 (OR?=?3.29; p?=?1.0?×?10?5), DRB1*03 (OR?=?2.81; p?=?1.9?×?10?6), DQB1*02:01 (OR?=?2.93; p?=?1.65?×?10?5), DQB1*02:02 (OR?=?3.38; p?=?0.0003), and DQB1*03:02 (OR?=?7.72; p?=?0.0003) were in susceptible association. Decreased frequencies of alleles, DRB1*15 (OR?=?0.32; p?=?2.55?×?10?7), DRB1*10 (OR?=?0.45; p?=?0.002), DQB1*06:01 (OR?=?0.43; p?=?0.0001), and DQB1*05:02 (OR?=?0.28; p?=?2.1?×?10?4) in patients were suggested protective association. The combination of DRB1*03+AG (OR?=?5.21; p?=?1.4?×?10?6), DRB1*04+AG (OR?=?2.14; p?=?0.053), DRB1*04+GG (OR?=?5.21; p?=?0.036), DQB1*02:01+AG (OR?=?4.44; p?=?3.6?×?10?5), DQB1*02:02+AG (OR?=?20.9; p?=?9.5?×?10?4), and DQB1*02:02+GG (OR?=?4.06; p?=?0.036) revealed susceptible association. However, the combination of DRB1*10+AA (OR?=?0.35; p?=?0.003), DRB1*15+AA (OR?=?0.22; p?=?5.3?×?10?7), DQB1*05:01+AA (OR?=?0.45; p?=?0.007), DQB1*05:02+AA (OR?=?0.17; p?=?1.7?×?10?4), DQB1*06:01+AA (OR?=?0.40; p?=?0.002), and DQB1*06:02+AG (OR?=?0.34; p?=?0.001) showed decreased frequency in patients, suggesting protective association. In conclusion, CTLA4/HLA-DR/DQ genotypic combinations revealed strong susceptible/protective association toward T1DM in south India. A female preponderance in disease associations was also documented.  相似文献   

14.
It has been well documented that nitrogen (N) additions significantly affect soil respiration (R s) and its components [that is, autotrophic (R a) and heterotrophic respiration (R h)] in terrestrial ecosystems. These N-induced effects largely result from changes in plant growth, soil properties (for example, pH), and/ or microbial community. However, how R s and its components respond to N addition gradients from low to high fertilizer application rates and what the differences are in diverse land-use types remain unclear. In our study, a field experiment was conducted to examine response patterns of R s to a N addition gradient at four levels (0, 15, 30, and 45 g N m?2 y?1) in four types of land-use (paddy rice–wheat and maize–wheat croplands, an abandoned field grassland, and a Metasequoia plantation) from December 2012 to September 2014 in eastern China. Our results showed that N addition significantly stimulated R s in all four land-use types and R h in croplands (paddy rice–wheat and maize–wheat). R s increased linearly with N addition rates in croplands and the plantation, whereas in grassland, it exhibited a parabolic response to N addition rates with the highest values at the moderate N level in spite of the homogeneous matrix for all four land-use types. This suggested higher response thresholds of R s to the N addition gradient in croplands and the plantation. During the wheat-growing season in the two croplands, R h also displayed linear increases with rising N addition rates. Interestingly, N addition significantly decreased the apparent temperature sensitivity of R s and increased basal R s. The different response patterns of R s to the N addition gradient in diverse land-use types with a similar soil matrix indicate that vegetation type is very important in regulating terrestrial C cycle feedback to climate change under N deposition.  相似文献   

15.
The dependence of the heterotrophic activity of bacterioplankton (V, μg C L–1 h–1) on the concentration of chlorophyll a (Chl, μg L–1) and the water temperature (T) was examined for lakes (37°29′–80°36′ N) and marine polar waters (69°16′–80°36′ N). It was shown that ~76% of the V variations was related to changes in Chl and T.  相似文献   

16.
Our experimental study was designed to assess the effects of temperature on nitrogen isotope turnover and to measure the effects of temperature and food quality on the stable carbon and nitrogen isotope discrimination factors (Δ13C and Δ15N) in a cladoceran. For the first part of our study, Daphnia were fed with non-enriched or 15N-enriched Scenedesmus obliquus at 12, 15, 20, and 25 °C. For the second part, Daphnia were reared at 15, 20, and 25 °C on Scenedesmus or Cryptomonas sp. There were no clear effects of temperature on turnover rates of the nitrogen isotope of cladocerans. However, a general increase in Δ13C with increasing temperature was measured, regardless of the food source. Δ15N was also affected by temperature, but contrasting results were measured depending on the food source used. There were significant effects of food quality on Δ13C and Δ15N in Daphnia, as values obtained for Daphnia fed Scenedesmus were always higher than those obtained for Daphnia fed Cryptomonas. Our experiments produced discrimination factors that were very different from those usually considered in isotope studies and showed that the values used for isotope model implementation to analyze field data need to be adapted to environmental conditions.  相似文献   

17.
Shallow ponds with rapidly photosynthesising cyanobacteria or eukaryotic algae are used for growing biotechnology feedstock and have been proposed for biofuel production but a credible model to predict the productivity of a column of phytoplankton in such ponds is lacking. Oxygen electrodes and Pulse Amplitude Modulation (PAM) fluorometer technology were used to measure gross photosynthesis (P G) vs. irradiance (E) curves (P G vs. E curves) in Chlorella (chlorophyta), Dunaliella salina (chlorophyta) and Phaeodactylum (bacillariophyta). P G vs. E curves were fitted to the waiting-in-line function [P G = (P Gmax × E/Eopt) × exp(1 — E/Eopt)]. Attenuation of incident light with depth could then be used to model P G vs. E curves to describe P G vs. depth in pond cultures of uniformly distributed planktonic algae. Respiratory data (by O2-electrode) allowed net photosynthesis (P N) of algal ponds to be modelled with depth. Photoinhibition of photosynthesis at the pond surface reduced P N of the water column. Calculated optimum depths for the algal ponds were: Phaeodactylum, 63 mm; Dunaliella, 71 mm and Chlorella, 87 mm. Irradiance at this depth is ≈ 5 to 10 μmol m?2 s?1 photosynthetic photon flux density (PPFD). This knowledge can then be used to optimise the pond depth. The total net P N [μmol(O2) m?2 s?1] were: Chlorella, ≈ 12.6 ± 0.76; Dunaliella, ≈ 6.5 ± 0.41; Phaeodactylum ≈ 6.1 ± 0.35. Snell’s and Fresnel’s laws were used to correct irradiance for reflection and refraction and thus estimate the time course of P N over the course of a day taking into account respiration during the day and at night. The optimum P N of a pond adjusted to be of optimal depth (0.1–0.5 m) should be approximately constant because increasing the cell density will proportionally reduce the optimum depth of the pond and vice versa. Net photosynthesis for an optimised pond located at the tropic of Cancer would be [in t(C) ha?1 y?1]: Chlorella, ≈ 14.1 ± 0.66; Dunaliella, ≈ 5.48 ± 0.39; Phaeodactylum, ≈ 6.58 ± 0.42 but such calculations do not take weather, such as cloud cover, and temperature, into account.  相似文献   

18.
Carbon and nitrogen stable isotope ratios (δ13C and δ15N) have been widely employed in food web analysis. In lotic environments, periphyton is a major primary producer that makes a large contribution to food web production as well as carbon and nitrogen cycling. While the δ13C and δ15N values have many advantages as a natural tracer, the controls over their high spatial and temporal variability in stream periphyton are not well known. Here, we present the global dataset of δ13C and δ15N values of lotic periphyton from 54 published and two unpublished sources, including 978 observations from 148 streams/rivers in 38 regions around the world, from arctic to tropical sites. The 54 published sources were articles recorded during the period of 1994–2016 in 25 academic journals. The two unpublished sources were from the authors’ own data. The dataset showed that δ13C and δ15N values of periphyton ranged from ?47.3 to ?9.3‰ and from ?5.6 to + 22.6‰, respectively. The dataset also includes physicochemical factors (altitude, coordinates, catchment area, width, depth, geology, vegetation, canopy coverage, biome, season, presence of anadromous salmon, temperature, pH, current velocity, and discharge), nutrient data (nitrate and ammonium concentrations), and algal attributes (chlorophyll a concentration, algal species compositions, and carbonates removal) in streams/rivers studied, all of which may help interpret the δ13C and δ15N values of periphyton. The metadata file outlines structure of all the data and with references for data sources, providing a resource for future food web studies in stream and river ecosystems.  相似文献   

19.
20.
Net photosynthetic rate (PN), transpiration rate (E), water use efficiency (WUE), stomatal conductance (gs), and stomatal limitation (Ls) were investigated in two Syringa species. The saturation irradiance (SI) was 400 µmol m-2s-1 for S. pinnatifolia and 1 700 µmol m-2s-1 for S. oblata. Compared with S. oblata, S. pinnatifolia had extremely low g s . Unlike S. oblata, the maximal photosynthetic rate (Pmax) in S. pinnatifoliaoccurred around 08:00 and then fell down, indicating this species was sensitive to higher temperature and high photosynthetic photon flux density. However, such phenomenon was interrupted by the leaf development rhythms before summer. A relatively lower PN together with a lower leaf area and shoot growth showed the capacity for carbon assimilation was poorer in S. pinnatifolia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号