首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Heterodimers of retinoid X receptor (RXR) and retinoic acid receptor (RAR) bind preferentially to directly repeated elements with spacing of two (DR2) or five (DR5) base pairs, due to the specific heterocooperative interaction of their DNA binding domains (DBDs) on these elements. We have demonstrated in the accompanying paper that the heterodimeric DBD interface that is responsible for the cooperative binding to DR5 elements, specifically involves the D-box of the RXR CII finger and the tip of the RAR CI finger. We show here that a second type of dimerization interface, which specifically implicates the RAR T-box and the RXR CII finger to the exclusion of the D-box, determines the selective binding to DR2 elements. Interestingly, the same type of dimerization interface (RXR T-box and CII finger) is responsible for the cooperative binding of homodimers of the RXR DBD to DR1 elements. Based on the three-dimensional structure of the glucocorticoid receptor DBD, modeling of RXR/RAR, RXR/TR and RXR/RXR DBD cooperative interactions predicts that in all cases the DBD contributing the CII finger, i.e. that of RXR, has to be positioned 5' to its cooperatively bound partner. This binding polarity of the DBDs is conferred upon the full-length receptors, since crosslinking experiments indicate that RXR is always 5' to RAR in complexes between either DR5 or DR2 and RXR/RAR heterodimers. The possible significance of these observations for transactivation by retinoic acid receptors is discussed.  相似文献   

4.
5.
6.
We have previously reported that the binding site repertoires of heterodimers formed between retinoid X receptor (RXR) and either retinoic acid receptor (RAR) or thyroid hormone receptor (TR) bound to response elements consisting of directly repeated PuG(G/T)TCA motifs spaced by 1-5 bp [direct repeat (DR) elements 1-5] are highly similar to those of their corresponding DNA binding domains (DBDs). We have now mapped the dimerization surfaces located in the DBDs of RXR, RAR and TR, which are responsible for cooperative interaction on DR4 (RXR and TR) and DR5 (RXR and RAR). The D-box of the C-terminal CII finger of RXR provides one of the surfaces which is specifically required for the formation of the heterodimerization interfaces on both DR4 and DR5. Heterodimerization with the RXR DBD on DR5 specifically requires the tip of the RAR CI finger as the complementary surface, while a 7 amino acid sequence encompassing the 'prefinger region', but not the TR CI finger, is specifically required for efficient dimerization of TR and RXR DBDs on DR4. Importantly, DBD swapping experiments demonstrate not only that the binding site repertoires of the full-length receptors are dictated by those of their DBDs, but also that the formation of distinct dimerization interfaces between the DBDs are the critical determinants for cooperative DNA binding of these receptors to specific DRs.  相似文献   

7.
8.
The thyroid hormone receptor (TR) D-domain links the ligand-binding domain (LBD, EF-domain) to the DNA-binding domain (DBD, C-domain), but its structure, and even its existence as a functional unit, are controversial. The D domain is poorly conserved throughout the nuclear receptor family and was originally proposed to comprise an unfolded hinge that facilitates rotation between the LBD and the DBD. Previous TR LBD structures, however, have indicated that the true unstructured region is three to six amino acid residues long and that the D-domain N terminus folds into a short amphipathic alpha-helix (H0) contiguous with the DBD and that the C terminus of the D-domain comprises H1 and H2 of the LBD. Here, we solve structures of TR-LBDs in different crystal forms and show that the N terminus of the TRalpha D-domain can adopt two structures; it can either fold into an amphipathic helix that resembles TRbeta H0 or form an unstructured loop. H0 formation requires contacts with the AF-2 coactivator-binding groove of the neighboring TR LBD, which binds H0 sequences that resemble coactivator LXXLL motifs. Structural analysis of a liganded TR LBD with small angle X-ray scattering (SAXS) suggests that AF-2/H0 interactions mediate dimerization of this protein in solution. We propose that the TR D-domain has the potential to form functionally important extensions of the DBD and LBD or unfold to permit TRs to adapt to different DNA response elements. We also show that mutations of the D domain LXXLL-like motif indeed selectively inhibit TR interactions with an inverted palindromic response element (F2) in vitro and TR activity at this response element in cell-based transfection experiments.  相似文献   

9.
10.
The effects of thyroid hormone agonists on thyroid hormone receptor (TR)/DNA complex formation was investigated to elucidate the mechanism by which TRs transactivate genes in response to ligand. The data, obtained from gel shift experiments, indicate that thyroid hormones alter the conformation of TRs bound to DNA, irrespective of if the element is occupied by monomeric TR, homodimeric TR/TR, or heterodimeric complexes with the retinoid receptors RAR or RXR. Furthermore, triiodo-thyronine (T3) prevents 2 TR molecules from binding to oligonucleotides containing direct repeats or inverted palindromes of the consensus AGGTCA motif, an effect that was not detected with palindromic elements. Heterodimers bound to direct repeats were less affected: RXR/TR were fully and RAR/TR complexes partially resistant to thyroid hormone. The data suggest that a ligand-induced conformational change in TR prevents double TR occupancy of a response element containing 2 direct repeats of the consensus binding motif, possibly by steric hindrance, whereas such an event does not prevent TR/RXR heterodimers from binding to DNA. Finally, our data show that a monomeric, liganded TR bound preferentially to the second half site in a AGGTCActcaAGGTCA element, and therefore indicate that nucleotides adjacent to the consensus half site contribute to binding specificity.  相似文献   

11.
12.
13.
The receptors for retinoic acid (RA) and for 1α,25-dihydroxyvitamin D3 (VD), RAR, RXR, and VDR are ligand-inducible members of the nuclear receptor superfamily. These receptors mediate their regulatory effects by binding as dimeric complexes to response elements located in regulatory regions of hormone target genes. Sequence scanning of the tumor necrosis factor-α type I receptor (TNFαRI) gene identified a 3′ enhancer region composed of two directly repeated hexameric core motifs spaced by 2 nucleotides (DR2). On this novel DR2-type sequence, but not on a DR5-type RA response element, VD was shown to act through its receptor, the vitamin D receptor (VDR), as a repressor of retinoid signalling. The repression appears to be mediated by competitive protein–protein interactions between VDR, RAR, RXR, and possibly their cofactors. This VDR-mediated transrepression of retinoid signaling suggests a novel mechanism for the complex regulatory interaction between retinoids and VD. J. Cell. Biochem. 67:287–296, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号