首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybridization in annual plants is rare, but their short life cycle provides an excellent opportunity to study the dynamics of hybridization. Hybridization occurs between the annual hemiparasites Rhinanthus minor and Rhinanthus angustifolius (Orobanchaceae). Using flower morphology, Kwak (1980) found a prevalence of hybrids close to R. angustifolius in a single population. We aim to find whether this pattern is also found using genetic markers, whether it is generally occurring in mixed populations, and whether these populations are stable over time. We used species-specific genetic markers to determine the number of individuals in a range of hybrid classes in three mixed populations of different ages during four consecutive years. In the young population, F1 hybrids were found in the first year and mostly hybrids between R. minor and these F1s in the second year, but in the years after that, hybrids close to R. angustifolius became more abundant. We also found this in the two older populations, where hybrids close to R. angustifolius always occurred in higher frequencies than hybrids close to R. minor. Over time, R. angustifolius strongly increased in frequency in two populations. Patterns of marker presence and absence suggested that advanced-generation hybrids are mainly formed by backcrossing with one of the parents, predominantly R. angustifolius whenever its frequency in the population is higher than 15%. The dynamics of mixed populations depend on the ecological conditions that regulate the presence of the two parental species, and introgression into R. angustifolius seems prevalent.  相似文献   

2.
In response to the first Dutch elm disease (DED) pandemic, Siberian elm, Ulmus pumila, was planted to replace the native elm, U. minor, in Italy. The potential for hybridization between these two species is high and repeated hybridization could result in the genetic swamping of the native species and facilitate the evolution of invasiveness in the introduced species. We used genetic markers to examine the extent of hybridization between these two species and to determine the pattern of introgression. We quantified and compared the level of genetic diversity between the hybrids and the two parental species. Hybrids between U. pumila and U. minor were common. The pattern of introgression was not as strongly biased towards U. pumila as was previously observed for hybrids between U. rubra and U. pumila in the United States. The levels of heterozygosity were similar between U. minor and the hybrids and both groups had higher levels of heterozygosity relative to U. pumila. The programs Structure and NewHybrids indicated the presence of first- (F1) and second- generation (F2) hybrids and of backcrosses in the hybrid population. The presence of healthy DED resistant U. minor individuals combined with the self-compatibility of U. minor could help explain the presence of F2 individuals in Italy. The presence of F2 individuals, where most of the variability present in the hybrids will be released, could facilitate rapid evolution and the potential evolution of invasiveness of U. pumila in Italy.  相似文献   

3.
The performance of first‐generation hybrids determines to a large extent the long‐term outcome of hybridization in natural populations. F1 hybrids can facilitate further gene flow between the two parental species, especially in animal‐pollinated flowering plants. We studied the performance of reciprocal F1 hybrids between Rhinanthus minor and R. major, two hemiparasitic, annual, self‐compatible plant species, from seed germination to seed production under controlled conditions and in the field. We sowed seeds with known ancestry outdoors before winter and followed the complete life cycle until plant death in July the following season. Germination under laboratory conditions was much lower for the F1 hybrid formed on R. major compared with the reciprocal hybrid formed on R. minor, and this confirmed previous results from similar experiments. However, this difference was not found under field conditions, which seems to indicate that the experimental conditions used for germination in the laboratory are not representative for the germination behaviour of the hybrids under more natural conditions. The earlier interpretation that F1 hybrid seeds formed on R. major face intrinsic genetic incompatibilities therefore appears to be incorrect. Both F1 hybrids performed at least as well as and sometimes better than R. minor, which had a higher fitness than R. major in one of the two years in the greenhouse and in the field transplant experiment. The high fitness of the F1 hybrids confirms findings from naturally mixed populations, where F1 hybrids appear in the first year after the two species meet, which leads to extensive advanced‐hybrid formation and introgression in subsequent generations.  相似文献   

4.
The congeners Rhinanthus angustifolius and Rhinanthus minor, two annual hemiparasites pollinated by bumblebees, are known to hybridise in the wild. Both species are self‐compatible, but the capacity for autonomous selfing is higher in R. minor. This suggests a difference in realized outcrossing rates, which have not been determined before in these species. Using microsatellites, both species turned out to have mixed mating systems, but with a much lower multilocus outcrossing rate (0.13) for R. minor compared to R. angustifolius (0.76). We hypothesised that a higher outcrossing rate should lead to a higher chance of heterospecific pollination, and we therefore determined the rate of hybrid formation on each species in an artificial mixed population. Hybrid seeds were produced at low frequency (4.5%), and no significant difference was found between the species. It is therefore likely that post‐pollination processes influence hybrid seed formation to counteract the expected difference in heterospecific pollen deposition. We checked fruit set, seed set and the rate of autonomous selfing in controlled crosses in the greenhouse in 2 years, and found that fruit set (2003) or seed set (2010) were lower in R. angustifolius × R. minor crosses relative to the reciprocal cross. Hybrid seeds produced on R. angustifolius also had a much lower germination rate, so most of the established F1 hybrid plants have the R. minor cytoplasm. The formation of advanced hybrids depends on pollinator preference, which is biased towards R. angustifolius if present in sufficient numbers, because it offers more rewards.  相似文献   

5.
In the last few decades unimproved semi-natural grasslands have been affected by intensification of land use and habitat fragmentation. Because of their biodiversity these species-rich grasslands are of high conservation importance and efforts are under way to restore such habitats. Detailed knowledge of within species diversity will aid deciding on the optimal seed source for such restoration projects, e.g. local genotypes or ecotypes. Rhinanthus minor is a species that is typically found in semi-natural grasslands and is commonly used in grassland restoration projects. This is because R. minor is a hemiparasitic plant that takes minerals and nutrients from its host, which in turn decreases the host's biomass and leads to opportunities for less competitive species in the vegetation. Here, we investigate genetic diversity within and between R. minor populations. This allowed us to test whether the six different subspecies of R. minor that have been described in the UK, based on their morphology, flowering time, and habitat, can be differentiated using molecular markers. We identified moderate levels of genetic differentiation between R. minor populations within the UK. In addition, R. minor individuals from the UK appear to be distinct from R. minor and Rhinanthus angustifolius individuals from other European countries based on microsatellite genotyping and DNA sequencing of cpDNA and rDNA ITS. The molecular markers used in the current study did not separate populations of R. minor based on either their subspecies or habitat. The implication for the use of R. minor in grassland restoration projects seems to be that it is not necessary to use local seeds or seeds from the same subspecies.  相似文献   

6.
7.
Hybridization between Rhododendron ferrugineum L. and R. hirsutum L. in south-eastern Alps was examined in order to (i) evaluate the breeding direction and the extent of backcrossing between hybrids and the parental species, (ii) define which processes facilitate speciation and maintain species identities and (iii) clarify the role of rock geochemistry in hybridization events. Individuals of three hybrid populations were analysed by morphological and molecular markers. The internal transcribed spacer and trnH–psbA distinguished the parental species and F1 hybrids while only the simple sequence repeat markers recognized genotype classes: F, H, F1, F2, BxF (backcross to R. ferrugineum) and BxH (backcross to R. hirsutum). Combining morphological and molecular data, we found that the tested populations had complex genetic structure: the F1 individuals produce F2 hybrids and backcross to parental species. Due to R. hirsutum phenology, most backcrossing events were with this parental species (asymmetric hybridization). Geochemical analyses indicate that alkaline soil conditions linked to calcareous dolomitic rocks promoted the genetic assimilation of R. hirsutum. In addition, R. x intermedium shows a higher edaphic adaptation than R. hirsutum as it can be found on a wide range of calcareous-dolomitic rocks as well as on weakly acidic soils of natural or anthropogenic origin.  相似文献   

8.
In order to estimate the potential of gene flow between wheat (Triticum æstivum L.) and jointed goatgrass (Aegilops cylindrica Host.), we carried out mixed pollinations in experimental and natural conditions. A set of species-specific RAPD (random amplified polymorphic DNA) and microsatellite markers were used to detect the presence of parental markers in the progeny of the plants used in these experiments. No hybrids were found within the offsprings of the plants used for the greenhouse experiments, while 85 Ae. cylindrica×T. æstivum hybrids were found within 2400 analyzed F1 plants resulting from the field pollinations. The hybridization rates for individuals of different populations of the wild species differed considerably: 1% for two populations known for more than 90 years versus 7% for a newly discovered population. Most of the hybrids were completely sterile, but five of them produced 13 seeds (BC1) by backcross with Ae. cylindrica. Twelve seeds germinated and generated viable and partly fertile plants. About 25% of the wheat specific RAPD markers were found in the BC1 plants, indicating that introgression of wheat DNA into Ae. cylindrica is possible. In addition, one microsatellite marker, known to be situated on the D genome (a genome shared by both species), was also found in the BC1 plants.  相似文献   

9.
In order to understand the ongoing evolutionary relationships between species, it is important to elucidate patterns of natural hybridization. In the zone where two species are sympatrically distributed, we examined 274 individuals of Magnolia stellata, Magnolia salicifolia, and their putative hybrids by means of 16 nuclear and three chloroplast microsatellite markers. Hybrid classes of individuals were estimated by admixture analyses. Morphological traits were also investigated for 64 of the 274 individuals. Admixture analyses revealed that 66 of the 274 individuals were classified as hybrids, comprising 17 F1 and 19 F2 individuals, 27 backcrosses to M. salicifolia, and 3 individuals of unknown origin. Morphological data from the 64 individuals agreed well with their genetic admixture rates. Spatial locations of F1 and F2 hybrids at the study site were intermediate between the two purebred species, indicating that the site preferences of hybrids are intermediate. The occurrences of F2 and backcross hybrids indicate that F1 hybrids are fertile. The chloroplast DNA haplotypes of all F1 hybrids corresponded to those detected in M. salicifolia, so that maternal parents of the F1 hybrids were all M. salicifolia. Furthermore, no hybrid individuals derived from a backcross to M. stellata were detected. These results suggest that the direction of hybridization and the subsequent introgression have been quite asymmetric and that the introgression occurred from M. stellata into M. salicifolia.  相似文献   

10.
Hybrid zones have long intrigued evolutionary biologists and provide a natural laboratory to explore the evolution of reproductive isolation (speciation). Molecular characterization of hybrid zone dynamics can provide insight into the strength of reproductive isolation as well as the underlying evolutionary processes shaping gene flow. Approximately one-third of darter species naturally hybridize making this species-rich North American freshwater teleost fish clade an ideal system to investigate the extent and direction of hybridization. The objective of this study was to use diagnostic microsatellite markers to calculate genetic hybrid index scores of two syntopic, but distantly related darter species, Etheostoma bison and Etheostoma caeruleum. A combination of hybrid index scores, assignment tests, and mitochondrial haplotype profiles uncovered mixed ancestry in approximately 6 % of sampled adult individuals, supporting contemporaneous hybridization that was previously undocumented in E. bison. Moreover, hybrids were not limited to the F1 generation, but encompassed the entire suite of hybrid categories (F1, F2 and backcross hybrids). The low number of hybrids assigned to each hybrid category represents a bimodal hybrid zone, suggesting reproductive isolation is strong (but incomplete) and also advocates for the ability of hybrids to produce second-generation hybrids and backcross into both parental species, mediating introgression across species boundaries. To this end, cytonuclear profiles of the sampled parental species and hybrids were consistent with bidirectional gene flow, although there was an overall trend of asymmetric hybridization between E. caeruleum females and E. bison males. The spatiotemporal variation in hybridization rates and resulting cytonuclear patterns expanded on in this study provide a comparative genetic framework on which future studies can begin to elucidate the underlying processes that not only generate a mosaic hybrid zone, but maintain the distinctness of species in the face of gene flow.  相似文献   

11.
Natural hybridization frequently promotes gene introgression among closely related species in sympatric populations, producing complex patterns of morphological variation. Therefore, a detailed understanding of the dynamics of interspecific gene flow and its morphological patterns is of widespread interest. We tested if introgressive hybridization promotes an increase in transgressive characters in comparison with the parental species. A sunflower species complex occurring in Mexico formed by two native invasive species, Tithonia tubaeformis and Tithonia rotundifolia, was analyzed using 46 morphological characters (leaf, flower and fruit) in five hybrid zones (N = 150 individuals) and two pure sites for each parental species (N = 80 individuals). In general, T. tubaeformis differed significantly from T. rotundifolia in all the examined characters, except six foliar and one inflorescence character. Morphological characters support the hypothesis of hybridization in this complex, even though both species remain morphological distinct in mixed stands. Individual hybrids appear to be a mosaic of parent-like (24.8 % of traits), intermediate (26.1 %) and transgressive (37.8 %) phenotypes (the remaining 11.3 % of the traits did not differ significantly from both parental species). Our results suggest that individuals from the same parental species were more similar among themselves than to putative hybrids, indicating occasional hybridization with segregation in hybrid types or backcrossing to parents. Evidence indicates a unidirectional pattern of gene flow toward T. rotundifolia.  相似文献   

12.
Gene flow between hybridizing plant species depends strongly on pollinator behaviour, which affects pollen transfer among floral types and reproductive isolation. We examined bumblebee behaviour and pollen transfer between two hybridizing Rhinanthus species that are very similar in ecology and floral traits. The two species, Rhinanthus minor and R. angustifolius, shared similar pollinator guilds and assemblages, but pollinator recruitment and flower visitation rates were higher in R. angustifolius sites, probably because of its higher reward levels and better visibility. When presented with Rhinanthus flowers, bumblebees that previously foraged on R. angustifolius were less prone to visit R. minor inflorescences, while R. minor foragers accepted both species in similar proportions. Although Rhinanthus has been cited as a case of mechanical isolation resulting from interactions between bee behaviour and differences in stigma and anther placement, we found no support for efficient mechanical reproductive isolation. Bumblebees that foraged on R. minor flowers carried more pollen, but pollen placement on their bodies was similar to that of bees that visited R. angustifolius, and cross-specific stigmatic pollen deposition was similar in both directions. However, the asymmetry in pollinator handling time between the two species, due to dissimilar pollen rewards, may have lowered relative heterospecific pollen receipt on R. angustifolius, suggesting that net gene flow resulting from pollen transfer dynamics is more likely towards R. minor, although this effect remains weak and will be most likely counterbalanced by context-based labile pollinator preference.  相似文献   

13.
The predominantly allopatric species of the genusPicradeniopsis, P. oppositifolia andP. woodhousei, are distinct in morphological, in phenolic and terpeniod chemical, and in cytological aspects (n = 24 andn = 12, respectively). In an area of sympatry in northeastern New Mexico, interbreeding occurs frequently with the production of morphologically intermediate hybrids. Morphological and phenolic chemical data from 191 plants in 40 isolated parental populations and from 91 plants in four hybrid populations are of limited value in determining the nature of this hybridization, but meiotic configurations of 12II and 12I and low pollen viabilities of 1–11% in the hybrids indicate that they are all of the F1 generation (with one possible backcross). The absence of observed introgression, and therefore the absence of gene flow between the two taxa, strengthens the case for taxonomic recognition of two species in the genus. Comparisons of the morphology, phenolic and terpenoid chemistry, and cytology of parents and F1 hybrids suggest that the tetraploid,P. oppositifolia, has arisen by allopolyploidy from a cross betweenP. woodhousei and an unknown diploid species. An extrapolated morphological and chemical reconstruction of this putative diploid parent is advanced.  相似文献   

14.
Habitat alteration has been implicated in driving hybridization between the sympatric migratory shads Alosa alosa and Alosa fallax. Morphological and molecular evidence is consistent with hybridization across the overlapping range of these species, but the temporal extent of hybrid occurrence and genetic consequences for populations have not been explored. Using eight nuclear microsatellite loci and samples collected between 1989 and 2008 in the Solway Firth (UK), we genetically identified hybrids, studied temporal changes in their frequency, and explored changes in allele frequencies of parental populations. These molecular data confirmed the hybrid status of individuals identified using morphology (number of rakers on the outer gill arch), and enabled separation of hybrids from purebred individuals. Mitochondrial cytochrome-b sequencing revealed the presence of two haplogroups, each predominantly occurring in one species. Heterospecific haplotypes were found in 22.3 and 12.8% of A. alosa and A. fallax individuals, respectively, consistent with backcrossing and suggesting that hybrids are fertile. On average, microsatellite-identified hybrids comprised 12.7% of all samples, but when individuals with cytonuclear discordance were also considered introgressed on average 25.4% of individuals were of hybrid ancestry. Overall, allelic richness remained largely unchanged within species, but there were declines in the inbreeding coefficient (F IS) of both species and episodes of significant temporal allelic frequency change. Hybrids sampled between 2004 and 2008 showed no evidence of lower fecundity relative to purebred individuals. Together, results suggest that hybridization between shad species in northern Europe is prevalent, and has been ongoing over at least two decades. The challenge is now to understand the extent to which observed patterns are linked to immigration from other populations, and the mechanisms that have prevented species collapse despite apparent hybrid fertility and longstanding introgression of neutral markers.  相似文献   

15.
16.

Background and Aims

When species cohesion is maintained despite ongoing natural hybridization, many questions are raised about the evolutionary processes operating in the species complex. This study examined the extensive natural hybridization between the Australian native shrubs Lomatia myricoides and L. silaifolia (Proteaceae). These species exhibit striking differences in morphology and ecological preferences, exceeding those found in most studies of hybridization to date.

Methods

Nuclear microsatellite markers (nSSRs), genotyping methods and morphometric analyses were used to uncover patterns of hybridization and the role of gene flow in morphological differentiation between sympatric species.

Key Results

The complexity of hybridization patterns differed markedly between sites, however, signals of introgression were present at all sites. One site provided evidence of a large hybrid swarm and the likely presence of multiple hybrid generations and backcrosses, another site a handful of early generational hybrids and a third site only traces of admixture from a past hybridization event. The presence of cryptic hybrids and a pattern of morphological bimodality amongst hybrids often disguised the extent of underlying genetic admixture.

Conclusions

Distinct parental habitats and phenotypes are expected to form barriers that contribute to the rapid reversion of hybrid populations to their parental character state, due to limited opportunities for hybrid/intermediate advantage. Furthermore, strong genomic filters may facilitate continued gene flow between species without the danger of assimilation. Stochastic fire events facilitate temporal phenological isolation between species and may partly explain the bi-directional and site-specific patterns of hybridization observed. Furthermore, the findings suggest that F1 hybrids are rare, and backcrosses may occur rapidly following these initial hybridization events.  相似文献   

17.
Seeds of English and Austrian populations of bearded wheatgrass (Elymus caninus L.) and sea barley (Hordeum marinum Huds.) growing in the vicinity of wheat (Triticum aestivum L.) fields were collected in order to search for evidence of the introgression of wheat traits into these wild relatives. Seeds were sown and plants grown for subsequent analyses using morphological and genetic (isozymes, RAPD and wheat microsatellites) markers. No F1 hybrids were found within the individuals of the two species grown, neither with morphological nor with genetic markers. Also, no evidence of introgression of wheat traits into E. caninus was observed. However, in one individual of H. marinum which had the typical morphology of this species, numerous species-specific DNA markers of wheat were amplified, thereby demonstrating previous hybridization. Consequently, the hybridization between wheat and H. marinum under natural conditions and the introgression of wheat traits into this wild relative seems to be possible. Our results contribute to the risk assessment of transgenic wheat cultivation. Received: 20 September 2000 / Accepted: 17 December 2000  相似文献   

18.
Determining the long‐term consequences of hybridization remains a central quest for evolutionary biologists. A particular challenge is to establish whether and to what extent widespread hybridization results in gene flow (introgression) between parental taxa. In this issue of Molecular Ecology, Jordan et al. ( 2018 ) search for evidence of gene flow between two closely related species of Geum (Rosaceae), which hybridize readily in contemporary populations and where hybrid swarms have been recorded for at least 200 years (Ruhsam, Hollingsworth, & Ennos, 2013 ). The authors find mixed evidence of ancient introgression when analysing allopatric populations. Intriguingly, when analysing populations of a region where the two species occur either mixed in the same population or in close proximity, and where hybrids are presently common, Jordan and colleagues find that the majority of randomly sampled individuals analysed (92/96) show no evidence of introgression (defined as individuals with admixture coefficients of <1%). The few individuals identified as hybrids are shown to likely be F1 or early‐generation backcrosses, indicating that even in sympatric regions, hybridization does not penetrate beyond a few generations. Based on their findings, Geum seems to be an example of little to no introgression despite contemporary hybridization.  相似文献   

19.
A predominantly autogamous breeding system is described forP. occidentale Scribn.,P. pacificum Hitchc. & Chase, andP. thermale Boland. Five synthetic hybrids and three generations of progeny are also described for crosses among these three species. All parents haven = 9 chromosomes and normal meiosis. Hybrids exhibit various irregularities during meiosis, but nine bivalents are usually formed. One population ofP. occidentale and one ofP. thermale were found to have chromosomes with interchanges larger than those of other populations. The F2 and F3 generations had markedly increased fertility, as determined by pollen stainability. It is proposed that autogamy and hybridization are a common means of maintaining and stabilizing genetic variability in these grasses and that these means account for much of the taxonomic difficulty posed by the subgenus. The possibility of a low rate of introgression between populations is also proposed.  相似文献   

20.
Rhinanthus osiliensis is a narrow endemic growing in calcareous spring fens on the island Saaremaa, Estonia. Plants very similar to R. osiliensis have been found in Sweden on the island of Gotland. Fifteen microsatellite markers were used to characterize genetic variation within R. osiliensis and the unknown taxon from Gotland. Results were compared with common Rhinanthus minor and Rhinanthus angstifolius. Our results showed that genetic diversity was remarkably lower in the Rhinanthus sp. from Gotland compared to Estonian endemic R. osiliensis. The microsatellite loci we used distinguished four studied species. In total, 46 species-specific alleles were found. The Neighbor-Joining dendrogram based on Nei's genetic distances, the Bayesian clustering analysis and the principle coordinate analysis showed that R. osiliensis and Rhinanthus sp. from Gotland are genetically differentiated and could not be the same species. In addition, endemic R. osiliensis was closer to widespread R. angustifolius. Further genetic comparison between unknown Rhinanthus sp. and local R. angustifolius and R. minor from Gotland is necessary for determine the species status and checking the possible alternative hypothesis about the origin of the unclear taxon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号