首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GPX is a mammalian antioxidant selenoenzyme which protects biomembranes and other cellular components from oxidative damage by catalyzing the reduction of a variety of hydroperoxides (ROOH), using Glutathione (GSH) as the reducing substrate. The single-chain Fv fragment of the monoclonal antibody 2F3 (scFv2F3) can be converted into the selenium-containing Se-scFv2F3 by chemical modification of the serine. The new selenium-containing catalytic antibody Se-scFv2F3 acts as a glutathione peroxidase (GPX) mimic with high catalytic efficiency.In order to investigate which residue of scFv2F3 is converted into selenocysteine and to describe the proper reaction site of GSH to Se-scFv2F3, a three-dimensional structure of scFv2F3 is built by means of homology modeling. The 3D model is assessed by molecular dynamics (MD) simulation to determine its stability and by comparison with those of known protein structures. After the serine in the scFv2F3 is modified to selenocysteine, a catalytic antibody (abzyme) is obtained. From geometrical considerations, the solvent-accessible surface of the protein is examined. The computer-aided docking and energy minimization (EM) calculations of the abzyme–GSH complex are then carried out to explore the possible active site of the glutathione peroxidase mimic Se-scFv2F3. The structural information from the theoretically modeled complex can help us to further understand the catalytic mechanism of GPX.  相似文献   

2.
Glutathione peroxidase (GPX) is one of the important members of the antioxidant enzyme family. It can catalyze the reduction of hydroperoxides with glutathione to protect cells against oxidative damage. In previous studies, we have prepared the human catalytic antibody Se‐scFv‐B3 (selenium‐containing single‐chain Fv fragment of clone B3) with GPX activity by incorporating a catalytic group Sec (selenocysteine) into the binding site using chemical mutation; however, its activity was not very satisfying. In order to try to improve its GPX activity, structural analysis of the scFv‐B3 was carried out. A three‐dimensional (3D) structure of scFv‐B3 was constructed by means of homology modeling and binding site analysis was carried out. Computer‐aided docking and energy minimization (EM) calculations of the antibody‐GSH (glutathione) complex were also performed. From these simulations, Ala44 and Ala180 in the candidate binding sites were chosen to be mutated to serines respectively, which can be subsequently converted into the catalytic Sec group. The two mutated protein and wild type of the scFv were all expressed in soluble form in Escherichia coli Rosetta and purified by Ni2+‐immobilized metal affinity chromatography (IMAC), then transformed to selenium‐containing catalytic antibody with GPX activity by chemical modification of the reactive serine residues. The GPX activity of the mutated catalytic antibody Se‐scFv‐B3‐A180S was significantly increased compared to the original Se‐scFv‐B3. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Glutathione peroxidase (GPX) is a well‐known antioxidant selenoenzyme, which can catalyze the reduction of a variety of hydroperoxides and consequently protect cells and other biological tissues against oxidative damage. Many attempts have been made to mimic its function, and a human catalytic antibody Se‐scFv‐B3 with GPX activity has been prepared in our previous study. This time, a new clone 2D8 that bound specifically to the glutathione analog GSH‐S‐DNPBu was selected again by using the technology of phage display antibody library, and then scFv‐2D8 was successfully expressed in soluble form and purified using Ni2+‐immobilized metal affinity chromatography. After being converted into selenium‐containing scFv by chemically modification, it showed higher GPX activity than previous abzyme Se‐scFv‐B3. The heavy chain variable fragment of scFv‐2D8 was also prepared and converted into selenium‐containing protein using the same method. This selenium‐containing single‐domain antibody showed some GPX activity and, to the best of our knowledge, is the first human single‐domain abzyme with GPX activity, which lays a foundation for preparing GPX abzyme with human origin, lower molecular weight and higher activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Accumulating evidence shows that glutathione peroxidase (GPX, EC.1.11.1.9), one of the most important antioxidant selenoenzymes, plays an essential role in protecting cells and tissues against oxidative damage by catalyzing the reduction of hydrogen peroxide by glutathione. Unfortunately, because of the limited availability and poor stability of GPX, it has not been used clinically to protect against oxidative stress. To overcome these problems, it is necessary to generate mimics of GPX. In this study, we have used directed mutagenesis and the inclusion of a selenocysteine (Sec) insertion sequence to engineer the expression in eukaryotic cells of human glutathione transferase zeta1–1 (hGSTZ1–1) with Sec in the active site (seleno‐hGSTZ1–1). This modification converted hGSTZ1–1 into an active GPX and is the first time this has been achieved in eukaryotic cells. The GPX activity of seleno‐hGSTZ1–1 is higher than that of GPX from bovine liver, indicating Sec at the active site plays an important role in the determination of catalytic specificity and performance. Kinetic studies revealed that the ping–pong catalytic mechanism of Se‐hGSTZ1–1 is similar to that of the natural GPX. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Ultraviolet B (UVB medium wave, 280–315 nm) induces cellular oxidative damage and apoptosis by producing reactive oxygen species (ROS). Glutathione peroxidase functions as an antioxidant by catalyzing the reduction of hydrogen peroxide, the more important member of reactive oxygen species. A human selenium-containing single-chain variable fragment (se-scFv-B3) with glutathione peroxidase activity of 1288 U/μmol was generated and investigated for its antioxidant effects in UVB-induced oxidative damage model. In particular, cell viability, lipid peroxidation extent, cell apoptosis, the change of mitochondrial membrane potential, caspase-3 activity and the levels of intracellular reactive oxygen species were assayed. Human se-scFv-B3 protects NIH3T3 cells against ultraviolet B-induced oxidative damage and subsequent apoptosis by prevention of lipid peroxidation, inhibition of the collapse of mitochondrial membrane potential as well as the suppression of the caspase-3 activity and the level of intracellular ROS. It seems that antioxidant effects of human se-scFv-B3 are mainly associated with its capability to scavenge reactive oxygen species, which is similar to that of the natural glutathione peroxidase.  相似文献   

6.
The purpose of this study was to investigate the protective effect of black tea (BT) extract against induced oxidative damage in Jurkat T-cell line. Cells supplemented with 10 or 25 mg/L BT were subjected to oxidation with ferrous ions. Malondialdehyde (MDA) production as marker of lipid peroxidation, DNA single strand breaks as marker of DNA damage, and modification of the antioxidant enzyme activity, glutathione peroxidase (GPX) were measured. Results show the efficacy of BT polyphenols to decrease DNA oxidative damage and to affect GPX activity (P<0.05), while no effect was shown on MDA production. The succeeding investigation of the activity of caffeine and epigallocatechin gallate demonstrated their antioxidant potential with respect to the cellular markers evaluated. In conclusion, this study supports the protective effect of BT against ferrous ions induced oxidative damage to DNA and the ability of BT to affect the enzyme antioxidant system of Jurkat cells.  相似文献   

7.
We investigated whether reactive oxygen species (ROS) are involved in heart adaptive responses administering a vitamin E-enriched diet to trained rats. Using the homogenates and/or mitochondria from rat hearts we determined the aerobic capacity, tissue level of mitochondrial proteins, and expression of cytochrome c and factors (PGC-1, NRF-1, and NRF-2) involved in mitochondrial biogenesis. We also determined the oxidative damage, glutathione peroxidase (GPX) and reductase activities, glutathione content, mitochondrial ROS release rate, and susceptibility to in vitro oxidative challenge. Glutathione (GSH) content was not affected by both training and antioxidant supplementation. Conversely, antioxidant supplementation prevented metabolic adaptations to training, such as the increases in oxidative capacity, tissue content of mitochondrial proteins, and cytochrome c expression, attenuated some protective adaptations, such as the increase in antioxidant enzyme activities, and did not modify the decrease in ROS release by succinate supplemented mitochondria. Moreover, vitamin E prevented the training-linked increase in tissue capacity to oppose an oxidative attach. The antioxidant effects were associated with decreased levels of PGC-1, NRF-1, and NRF-2 expression. Our results support the idea that some heart adaptive responses to training depend on ROS produced during the exercise sessions and are mediated by the increase in PGC-1 expression which is involved in both the regulation of respiratory capacity and antioxidant protection. However, vitamin inability to prevent some adaptations suggests that other signaling pathways impinging on PGC-1 can modify the response to the antioxidant integration.  相似文献   

8.
This study investigated the direct roles of hydrogen peroxide (H2O2) in kidney aging using transgenic mice overexpressing glutathione peroxidase‐1 (GPX1 TG). We demonstrated that kidneys in old mice recapitulated kidneys in elderly humans and were characterized by glomerulosclerosis, tubular atrophy, interstitial fibrosis, and loss of cortical mass. Scavenging H2O2 by GPX1 TG significantly reduced mitochondrial and total cellular reactive oxygen species (ROS) and mitigated oxidative damage, thus improving these pathologies. The potential mechanisms by which ROS are increased in the aged kidney include a decreased abundance of an anti‐aging hormone, Klotho, in kidney tissue, and decreased expression of nuclear respiratory factor 2 (Nrf2), a master regulator of the stress response. Decreased Klotho or Nrf2 was not improved in the kidneys of old GPX1 TG mice, even though mitochondrial morphology was better preserved. Using laser capture microdissection followed by label‐free shotgun proteomics analysis, we show that the glomerular proteome in old mice was characterized by decreased abundance of cytoskeletal proteins (critical for maintaining normal glomerular function) and heat shock proteins, leading to increased accumulation of apolipoprotein E and inflammatory molecules. Targeted proteomic analysis of kidney tubules from old mice showed decreased abundance of fatty acid oxidation enzymes and antioxidant proteins, as well as increased abundance of glycolytic enzymes and molecular chaperones. GPX1 TG partially attenuated the remodeling of glomerular and tubule proteomes in aged kidneys. In summary, mitochondria from GPX1 TG mice are protected and kidney aging is ameliorated via its antioxidant activities, independent and downstream of Nrf2 or Klotho signaling.  相似文献   

9.
The antioxidant effect of selenium-containing single-chain Fv catalytic antibody (Se-scFv2F3), a new mimic of glutathione peroxidase, was confirmed using a model system in which cultured rat skin epidermal cells were injured by ultraviolet B (UVB). The cell damage was characterized in terms of lipid peroxidation of the cells, cell viability, and cell membrane integrity. The injury effects of UVB and protection effects of Se-scFv2F3 on the cells were studied using the model system. UVB can damage the cells severely. Upon precultivation of the cells with 0.4U/ml Se-scFv2F3, however, the damage was significantly reduced as shown by the increase in cell viability, the decrease in the malondialdehyde and hydrogen peroxide levels, and the normalization of lactate dehydrogenase activity. In addition, a novel finding that Se-scFv2F3 can stimulate cultured epidermal cells to proliferate under certain conditions was observed.  相似文献   

10.
When life first evolved on Earth, there was little oxygen in the atmosphere. Evolution of antioxidant defences must have been closely associated with the evolution of photosynthesis and of O2-dependent electron transport mechanisms. Studies with mice lacking antioxidant defences confirm the important roles of MnSOD and transferrin in maintaining health, but show that glutathione peroxidase (GPX) and CuZnSOD are not essential for everyday life (at least in mice). Superoxide can be cytotoxic by several mechanisms: one is the formation of hydroxyl radicals. There is good evidence that OH· formation occurs in vivo. Other important antioxidants may include thioredoxin, and selenoproteins other than GPX. Nitric oxide may be an important antioxidant in the vascular system. Diet-derived antioxidants are important in maintaining human health, but recent studies employing “biomarkers” of oxidative DNA damage are questioning the “antioxidant” roles of β-carotene and ascorbate. An important area of future research will be elucidation of the reasons why levels of steady-state oxidative damage to DNA and lipids vary so much between individuals, and their predictive value for the later development of human disease.  相似文献   

11.
This investigation was carried out to study the effect of soybean lecithin 1.5% (wt/vol) (0, 2.5, 5 and 7.5 mg l−1 pomegranate extract (PE)) or PE-loaded lecithin nanoliposome (0, 2.5, 5 and 7.5 mg l−1) to Tris-based extender. Sperm motility (CASA), viability, membrane integrity (HOS test), abnormalities, mitochondrial activity, apoptosis status, lipid peroxidation, total antioxidant capacity (TAC)) and antioxidant activities (GPX, SOD) were investigated following freeze-thawing. No significant differences were detected in motility parameters, viability, membrane integrity, and mitochondria activity after thawing sperm between soybean lecithin and lecithin nanoliposomes. It was shown that PE5 significantly improved sperm total and progressive motility, membrane integrity, viability, mitochondria activity, TAC and reduced lipid peroxidation (malondialdehyde concentration). Moreover, the percentage of apoptotic sperm in PE5 extenders was significantly the lowest among other treatments. Sperm abnormalities, SOD and GPX were not affected by the antioxidant supplements. For apoptotic status, no differences were observed between soybean lecithin and lecithin nanoliposome. We showed that lecithin nanoliposome extender can be a beneficial alternative extender to protect ram sperm during cryopreservation without any adverse effects. It was also observed that regarding pomegranate concentration, PE5 can improve the quality of ram semen after thawing.  相似文献   

12.
Huo R  Wei J  Xu J  Lv S  Zheng Q  Yan F  Su J  Fan J  Li J  Duan Y  Yu Y  Jin F  Sun W  Shi Y  Cong D  Li W  Yan G  Luo G 《Journal of molecular recognition : JMR》2008,21(5):324-329
In order to generate catalytic antibodies with glutathione peroxidase (GPX) activity, we prepared GSH-S-2,4-dinitrophenyl t-butyl ester (GSH-S-DNPBu) as target antigen. Three clones (A11, B3, and D5) that bound specifically to the antigen were selected from the phage display antibody library (human synthetic VH + VL single-chain Fv fragment (scFv) library). Analysis of PCR products using gel electrophoresis and sequencing showed that only clone B3 beared intact scFv-encoding gene, which was cloned into the expression vector pPELB and expressed as soluble form (scFv-B3) in Escherichia coli Rosetta. The scFv-B3 was purified by Ni(2+)-immobilized metal affinity chromatography (IMAC). The yield of purified proteins was about 2.0-3.0 mg of proteins from 1 L culture. After the active site serines of scFv-B3 were converted into selenocysteines (Secs) with the chemical modification method, we obtained the human catalytic antibody (Se-scFv-B3) with GPX activity of 1288 U/micromol. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Membrane lipid peroxidation processes yield products that may react with proteins to cause oxidative modification. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and oxidative damage is one of the primary functions of NADP+-dependent isocitrate dehydrogenase (ICDH) through to supply NADPH for antioxidant systems. When exposed to lipid peroxidation products, such as malondialdehyde (MDA), 4-hydroxynonenal (HNE) and lipid hydroperoxide, ICDH was susceptible to oxidative damage, which was indicated by the loss of activity and the formation of carbonyl groups. The structural alterations of modified enzymes were indicated by the change in thermal stability, intrinsic tryptophan fluorescence and binding of the hydrophobic probe 8-anilino 1-napthalene sulfonic acid. Upon exposure to 2,2′-azobis(2-amidinopropane) hydrochloride (AAPH), which induces lipid peroxidation in membrane, a significant decrease in both cytosolic and mitochondrial ICDH activities were observed in U937 cells. Using immunoprecipitation and immunoblotting, we were able to isolate and positively identify HNE adduct in mitochondrial ICDH from AAPH-treated U937 cells. The lipid peroxidation-mediated damage to ICDH may result in the perturbation of the cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.  相似文献   

14.
Previous studies have shown that exhaustive exercise may increase reactive oxygen species (ROS) generation in oxidative muscles that may in turn impair mitochondrial respiration. Locomotor muscles have been extensively examined, but there is few report about diaphragm or lung. The later is a privileged site for oxygen transit. To compare the antioxidant defense system and mitochondrial function in lung, diaphragm and locomotor muscles after exercise, 24 young adult male rats were randomly assigned to a control (C) or exercise (E) group. E group rats performed an exhaustive running test on a motorized treadmill at 80-85% VO2max Mean exercise duration was 66+/-2.7 min. Lung, costal diaphragm, mixed gastrocnemius, and oxidative muscles (red gastrocnemius and soleus: RG/SOL homogenate) were sampled. Mitochondrial respiration was assessed in tissue homogenates by respiratory control index (RCI: rate of uncoupled respiration/rate of basal respiration) measurement. Lipid peroxidation was evaluated by malondialdehyde concentration (MDA) and we determined the activity of two antioxidant enzymes: superoxide dismutase (SOD) and glutathione peroxidase (GPX). We found elevated basal (C group data) SOD and GPX activities in both lung and diaphragm compared to locomotor muscles (p<.001). Exercise led to a rise in GPX activity in red locomotor muscles homogenate (GR/SOL; C = 10.3+/-0.29 and E = 14.4+/-1.51 micromol x min(-1) x gww(-1); p<.05), whereas there was no significant change in lung and diaphragm. MDA concentration and mitochondrial RCI values were not significantly changed after exercise. We conclude that lung and diaphragm had higher antioxidant protection than locomotor muscles. The exercise test did not lead to significant oxidative stress or alteration in mitochondrial respiration, suggesting that antioxidant function was adequate in both lung and diaphragm in the experimental condition.  相似文献   

15.
Oxidative stress has been known to be involved in pathogenesis of dry eye disease. However, few studies have comprehensively investigated the relationship between hyperosmolarity and oxidative damage in human ocular surface. This study was to explore whether and how hyperosmolarity induces oxidative stress markers in primary human corneal epithelial cells (HCECs). Primary HCECs were established from donor limbal explants. The hyperosmolarity model was made in HCECs cultured in isosmolar (312 mOsM) or hyperosmotic (350, 400, 450 mOsM) media. Production of reactive oxygen species (ROS), oxidative damage markers, oxygenases and anti-oxidative enzymes were analyzed by DCFDA kit, RT-qPCR, immunofluorescent and immunohistochemical staining and Western blotting. Compared to isosmolar medium, ROS production significantly increased at time- and osmolarity-dependent manner in HCECs exposed to media with increasing osmolarities (350–450 mOsM). Hyperosmolarity significantly induced oxidative damage markers in cell membrane with increased toxic products of lipid peroxidation, 4–hydroxynonenal (4-HNE) and malondialdehyde (MDA), and in nuclear and mitochondria DNA with increased aconitase-2 and 8-OHdG. Hyperosmotic stress also increased the mRNA expression and protein production of heme oxygenase-1 (HMOX1) and cyclooxygenase-2 (COX2), but reduced the levels of antioxidant enzymes, superoxide dismutase-1 (SOD1), and glutathione peroxidase-1 (GPX1). In conclusion, our comprehensive findings demonstrate that hyperosmolarity induces oxidative stress in HCECs by stimulating ROS production and disrupting the balance of oxygenases and antioxidant enzymes, which in turn cause cell damage with increased oxidative markers in membrane lipid peroxidation and mitochondrial DNA damage.  相似文献   

16.
Tendinitis and tendon rupture during treatment with fluoroquinolone antibiotics is thought to be mediated via oxidative stress. This study investigated whether ciprofloxacin and moxifloxacin cause oxidative stress and mitochondrial damage in cultured normal human Achilles’ tendon cells and whether an antioxidant targeted to mitochondria (MitoQ) would protect against such damage better than a non-mitochondria targeted antioxidant. Human tendon cells from normal Achilles’ tendons were exposed to 0–0.3 mm antibiotic for 24 h and 7 days in the presence of 1 µm MitoQ or an untargeted form, idebenone. Both moxifloxacin and ciprofloxacin resulted in up to a 3-fold increase in the rate of oxidation of dichlorodihydrofluorescein, a marker of general oxidative stress in tenocytes (p<0.0001) and loss of mitochondrial membrane permeability (p<0.001). In cells treated with MitoQ the oxidative stress was less and mitochondrial membrane potential was maintained. Mitochondrial damage to tenocytes during fluoroquinolone treatment may be involved in tendinitis and tendon rupture.  相似文献   

17.
The process of regenerating liver is the result of a balance between stimulating factors and inhibitors of hepatocyte proliferation. Melatonin and its metabolites have been found to protect tissues against oxidative damage generated by a variety of toxic agents and metabolic processes. Furthermore, studies in liver of rats showed a decrease in the liver mitochondrial hydroxylation of drugs returning to the normal state after the administration of antioxidants. This study was designed to determine, in experimental animals, whether the administration of an antioxidant agent such as melatonin could prevent cells events leading to tissue injury and hepatic dysfunction after partial hepatectomy (PH). Biliary flow (BF), oxidative stress in hepatic tissue and Na+/K+ATPase activities in whole plasma membrane were determined. PH decreased the Na+/K+ATPase activity. PH significantly reduced the BF (36%) and promoted oxidative stress with an increase of lipoperoxidation and decrease of glutathione peroxidase and catalase activities. Treatment with melatonin prevented the decrease of BF in rats with hepatectomy and normalized the Na+/K+ATPase activity. Moreover, melatonin markedly attenuated oxidative stress produced by PH. This may be the results of the higher efficacy of melatonin in scavenging various free radicals and also because of its ability in stimulating the antioxidant enzymes. We suggest that oxidative stress before and during liver regeneration has a crucial role in cholestasis, apoptotic/necrotic hepatocellular damage and the impairment in liver transport function induced by PH and that melatonin could modulate the degree of oxidative stress and through it prevent the alterations in liver function carrier. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Maillard reaction contributes to the chemical modification and cross-linking of proteins. This process plays a significant role in the aging process and determination of animal longevity. Oxidative conditions promote the Maillard reaction. Mitochondria are the primary site of oxidants due to the reactive molecular species production. Mitochondrial proteome cysteine residues are targets of oxidative attack due to their specific chemistry and localization. Their chemical, non-enzymatic modification leads to dysfunctional proteins, which entail cellular senescence and organismal aging. Previous studies have consistently shown that caloric and methionine restrictions, nutritional interventions that increase longevity, decrease the rate of mitochondrial oxidant production and the physiological steady-state levels of markers of oxidative damage to macromolecules. In this scenario, we have detected S-(carboxymethyl)-cysteine (CMC) as a new irreversible chemical modification in mitochondrial proteins. CMC content in mitochondrial proteins significantly correlated with that of the lysine-derived analog N ε-(carboxymethyl)-lysine. The concentration of CMC is, however, one order of magnitude lower compared with CML likely due in part to the lower content of cysteine with respect to lysine of the mitochondrial proteome. CMC concentrations decreases in liver mitochondrial proteins of rats subjected to 8.5 and 25 % caloric restriction, as well as in 40 and 80 % methionine restriction. This is associated with a concomitant and significant increase in the protein content of sulfhydryl groups. Data presented here evidence that CMC, a marker of Cys-AGE formation, could be candidate as a biomarker of mitochondrial damage during aging.  相似文献   

19.
《Free radical research》2013,47(9):1054-1063
Abstract

The antioxidant properties of the phenothiazine nucleus (PHT) associated with mitochondrial membranes and liposomes were investigated. PHT exhibited hydrophobic interaction with lipid bilayers, as shown by the quenching of excited states of 1-palmitoyl-2[10-pyran-1-yl)]-decanoyl-sn-glycero-3-phophocholine (PPDPC) incorporated in phosphatidylcholine/phosphatidylethanolamine/cardiolipin liposomes, observed even in high ionic strength; and by the spectral changes of PHT following the addition of mitochondrial membranes. Inserted into bilayers, 5 μM PHT was able to protect lipids and cytochrome c against pro-oxidant agents and exhibited spectral changes suggestive of oxidative modifications promoted by the trapping of the reactive species. In this regard, PHT exhibited the ability to scavenge DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical. PHT was also able to protect rat liver mitochondria against peroxide- and iron-induced oxidative damage and consequent swelling. At the concentration range in which the antioxidant properties were observed, PHT did not cause alterations in the membrane structure and function. This study contributes to the comprehension of the correlation structure and function of phenothiazines and antioxidant properties.  相似文献   

20.
Sun Y  Mu Y  Ma S  Gong P  Yan G  Liu J  Shen J  Luo G 《Biochimica et biophysica acta》2005,1743(3):199-204
Ultraviolet B (UVB) induces apoptosis and lipid peroxidation of NIH3T3 cells by producing reactive oxygen species (ROS). Glutathione peroxidase (GPX) is one of the most important antioxidant enzymes in organism and it can scavenge ROS. 2-selenium-bridged beta-cyclodextrin (2-SeCD) is a GPX mimic generated in our lab. Its GPX activity is 7.4 U/mumol, which is 7.5 times as much as that of ebselen. In this paper, we have established a cell damage system using UVB radiation. Using this system, we have determined antioxidant effect of 2-SeCD by comparison of malondialdehyde (MDA) and H(2)O(2) contents in NIH3T3 cells before and after UVB radiation. Experimental results indicate that 2-SeCD can inhibit lipid peroxidation and protect the cells from the damage generated by UVB radiation. To evaluate the molecular mechanism of this protection, we determined the effect of 2-SeCD on the expression of p53 and Bcl-2 in NIH3T3 cells. The results showed that 2-SeCD inhibits the increase of p53 expression level and the decrease of expression of Bcl-2 induced by UVB radiation. Thus, we have concluded that protection of NIH3T3 cells against oxidative stress by 2-SeCD was carried out by regulation of the expression of Bcl-2 and p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号