首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a process of removing a half volume of culture broth and replacing it with an equal volume of substituted solution was developed to enhance the production of heteropolysaccharide-7 (PS-7) by Beijerinckia indica HS-2001. The optimal substitution time and volume of the substituted solution were found to be 48 h after cultivation and 50% of the initial volume of the culture broth. The optimal composition of the substituted solution was determined to be 20.0 g/L glucose, 10.0 g/L soybean pomace, 0.1 g/L MgSO4·7H2O, 0.9 g/L NH4NO3, and 5.0 g/L potassium phosphate, which was the same composition as the medium developed in a previous study for the production of PS-7 by B. indica HS-2001. The total amount and productivity of PS-7 by B. indica HS-2001 with a substitution under optimized conditions in a 7 L bioreactor for 96 h were 49.28 g and 0.51 g/h, respectively, which were 1.76 and 1.31-foldgreater values than those without a substitution for 72 h.  相似文献   

2.
The optimal conditions for the production of carboxymethylcellulase (CMCase) by Bacillus velezensis A-68 at a flask scale have been previously reported. In this study, the parameters involved in dissolved oxygen in 7 and 100 L bioreactors were optimized for the pilot-scale production of CMCase. The optimal agitation speed and aeration rate for cell growth of B. velezensis A-68 were 323 rpm and 1.46 vvm in a 7 L bioreactor, whereas those for the production of CMCase were 380 rpm and 0.54 vvm, respectively. The analysis of variance (ANOVA) implied that the highly significant factor for cell growth was the aeration rate, whereas that for the production of CMCase was the agitation speed. The optimal inner pressures for cell growth and the production of CMCase by B. velezensis A-68 in a 100 L bioreactor were 0.00 and 0.04 MPa, respectively. The maximal production of CMCase in a 100 L bioreactor under optimized conditions using rice hulls was 108.1 U/ml, which was 1.8 times higher than that at a flask scale under previously optimized conditions.  相似文献   

3.
The optimal conditions for mass production of carboxymethylcellulase (CMCase) by E. coli JM109/A-68 were investigated and compared with other E. coli JM109 recombinants producing CMCase. The optimal agitation speed and aeration rate for cell growth of E. coli JM109/A- 68 were 500 rpm and 0.50 vvm in a 7 L bioreactor, whereas those for production of CMCase were 416 rpm and 0.95 vvm. The optimal vessel pressures for cell growth as well as production of CMCase in a 100 L bioreactor were 0.04 MPa. The maximal production of CMCase by E. coli JM109/A-68 under the optimized conditions in a 100 L bioreactor was 11.0 times higher than its wild type, B. velezensis A-68. Optimal conditions for mass production of CMCase by recombinants were different from those for wild strains. The higher production of CMCase by E. coli JM109/A-68 and other recombinant of E. coli seemed to result from its higher cell growth under the optimal conditions for dissolved oxygen and its mixed-growth associated production pattern compared to the growthassociated production of B. velezensis A-68.  相似文献   

4.
Optimal conditions for pilot-scale production of the carboxymethylcellulase (CMCase) by Bacillus amyloliquefaciens DL-3 were investigated. The best carbon and nitrogen sources for the production of CMCase by B. amyloliquefaciens DL-3 were found to be rice hull and peptone and their optimal concentrations were 5.0 and 0.20% (w/v), respectively. Optimal temperature and initial pH for the production of CMCase were 37°C and 6.8. Optimal agitation speed and aeration rate for the production of CMCase were 300 rpm and 1.0 vvm in a 7 L bioreactor, which were different from those for the cell growth of B. amyloliquefaciens DL-3. The highest productions of CMCase by B. amyloliquefaciens DL-3 from 5.0% (w/v) rice hull as a carbon source under optimal conditions in a 7 or 100 L bioreactor were 220 and 367 U/mL, respectively.  相似文献   

5.
A gene encoding the carboxymethylcellulase (CMCase) of a marine bacterium, Bacillus subtilis subsp. subtilis A-53, was cloned in Escherichia coli JMB109 and the recombinant strain was named as E. coli JMB109/A-53. The optimal conditions of rice bran, ammonium chloride, and initial pH of the medium for cell growth, extracted by Design Expert Software based on response surface methodology, were 100.0 g/l, 7.5 g/l, and 7.0, respectively, whereas those for production of CMCase were 100.0 g/l, 7.5 g/l, and 8.0. The optimal temperatures for cell growth and the production of CMCase by E. coli JM109/A-53 were found to be and 40 and 35 °C, respectively. The optimal agitation speed and aeration rate of a 7 l bioreactor for cell growth were 400 rpm and 1.5 vvm, whereas those for production of CMCase were 400 rpm and 0.5 vvm. The optimal inner pressure for cell growth was 0.06 MPa, which was the same as that for production of CMCase. The production of CMCase by E. coli JM109/A-53 under optimized conditions was 880.2 U/ml, which was 2.9 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen source for production of CMCase by a recombinant E. coli JM109/A-53 and the productivity of E. coli JM109/A-53 was 5.9 times higher than that of B. subtilis subp. subtilis A-53.  相似文献   

6.
The optimal conditions for production of carboxymethylcellulase (CMCase) of Bacillus amyloliquefaciens DL-3 by a recombinant Escherichia coli JM109/DL-3 were established at a flask scale using the response surface method (RSM). The optimal conditions of rice bran, tryptone, and initial pH of the medium for cell growth extracted by Design Expert Software were 66.1 g/L, 6.2 g/L, and 7.2, respectively, whereas those for production of CMCase were 58.0 g/L, 5.0 g/L, and 7.1. The analysis of variance (ANOVA) of results from central composite design (CCD) indicated that significant factor (“probe > F” less than 0.0500) for cell growth was rice bran, whereas those for production of CMCase were rice bran and initial pH of the medium. The optimal temperatures for cell growth and the production of CMCase by E. coli JM109/DL-3 were found to be 37°C. The optimal agitation speed and aeration rate of 7 L bioreactors for cell growth were 498 rpm and 1.4 vvm, whereas those for production of CMCase were 395 rpm and 1.1 vvm. The ANOVA of results indicated that the aeration rate was more significant factor (“probe > F” less than 0.0001) than the agitation speed for cell growth and production of CMCase. The optimal inner pressure for cell growth was 0.08 MPa, whereas that for the production of CMCase was 0.06 MPa. The maximal production of CMCase by E. coli JM109/DL-3 under optimized conditions was 871.0 U/mL, which was 3.0 times higher than the initial production of CMCase before optimization.  相似文献   

7.
The optimal conditions for the production of cellulases by a marine bacterium, Psychrobacter aquimaris LBH-10, were established and their effects were compared using orthogonal array experiments based on the Taguchi method. The optimal conditions of rice bran, peptone and initial pH for the production of avicelase and CMCase by P. aquimaris LBH-10 were 50.0, 3.0, and 8.0 g/L, respectively, whereas those for filter paperase (FPase) were 100.0, 3.0, and 8.0 g/L, respectively. Rice bran was found to be the most important factor for the production of cellulases based on the calculated percentage of participation P (%) from an analysis of the variance (ANOVA). The optimal temperature for the cell growth of P. aquimaris LBH-10 was 25°C, whereas that for the production of avicelase, CMCase and FPase was 30°C. The optimal agitation speed and aeration rate for cell growth was 400 rpm and 1.5 vvm, respectively, whereas those for the production of CMCase were 300 rpm and 1.0 vvm, respectively. Aeration was found to be more important for cell growth and CMCase production than agitation. The maximum production of avicelase, CMCase and FPase in a 100 L bioreactor for 72 h under optimized conditions was 83.2, 388.7, and 75.4 U/mL, respectively.  相似文献   

8.
Rice bran and yeast extract were found to be the best combination of carbon and nitrogen sources for the production of carboxymethycellulase (CMCase) by Bacillus subtilis subsp. subtlis A-53. Optimal concentrations of rice bran and yeast extract for the production of CMCase were 5.0% (w/v) and 0.10% (w/v), respectively. Optimal temperature and initial pH of medium for cell growth of B. subtilus subsp. subtilis A-53 were 35 °C and 7.3, whereas those for the production of CMCase by B. subtilus subsp. subtilis A-53 were 30 °C and 6.8. Optimal agitation speed and aeration rate in a 7 L bioreactor were 300 rpm and 1.0 vvm, respectively. The optimal agitation speed and aeration rate for the production of CMCase by B. subtilus subsp. subtilis A-53 were lower than those for cell growth. The highest productions of CMCase by B. subtilus subsp. subtilis A-53 in 7 and 100 L bioreactors were 150.3 and 196.8 U mL−1, respectively.  相似文献   

9.
Rotating simplex method of optimization has been successfully used to determine the optimal conditions for extracellular pectinase production by Aspergillus niger in batch bioreactor. Maximum production of 1.132 U of polymethylgalacturonase, 1.313 U of polygalacturonase and 0.0091 U of pectinlyase was obtained at pH (controlled). 3.38; agitation rate, 483 rpm and aeration rate, 2.12 vvm. These conditions were found to be more suitable for pectinase production.  相似文献   

10.
A new strain of the yeast Metschnikowia koreensis was grown in shake flasks and a stirred bioreactor for the production of carbonyl reductase. The optimal conditions in the bioreactor for maximizing the biomass specific activity of the enzyme were found to be: a medium composed of glucose (20 g/L), peptone (5 g/L), yeast extract (5 g/L) and zinc sulfate (0.3g/L); the pH controlled at 7; the temperature controlled at 25 °C; an agitation speed of 500 rpm; and an aeration rate of 0.25 vvm. In the bioreactor, a biomass specific enzyme activity of 115.6 U/gDCW was obtained and the maximum biomass concentration was 15.3 gDCW/L. The biomass specific enzyme activity obtained in the optimized bioreactor culture was 11-fold higher than the best result achieved in shake flasks. The bioreactor culture afforded a 2.7-fold higher biomass concentration than could be attained in shake flasks.  相似文献   

11.
Terrein is a fungal metabolite with application values in the fields of medicine, cosmetology, and agriculture. However, mass production of single configuration terrein is still a big challenge. In this study, operating factors such as inoculation, agitation speed, aeration rate, pH control, and nutrient feeding were preliminarily optimized to improve the (+)-terrein production in the 5-L stirred bioreactor from the marine sponge-derived fungus Aspergillus terreus PF-26. Spore inoculation, low agitation speed, and aeration rate were proved to be suitable for A. terreus PF-26 to produce (+)-terrein in the stirred bioreactor. At 50?rpm agitation speed and 0.33?vvm aeration rate, 2.68?g/L (+)-terrein was achieved by feeding twofold concentrated maltose and glucose medium on the sixth day and controlling pH at 4.5 from the fourth day. This study lays foundation for the mass production of (+)-terrein by the marine filamentous A. terreus strain PF-26 in the stirred bioreactor.  相似文献   

12.
The objective of this study was to evaluate the production of pectinase by an isolated strain of Penicillium brasilianum in a bioreactor and to consider its potential for industrial applications (i.e. fruit juice). The optimization of production was achieved through experimental design. The maximum exo-polygalacturonase (Exo-PG) production in the bioreactor was 53.8?U mL?1 under the conditions of 180?rpm, an aeration rate of 1.5 vvm, 30?°C, pHinitial of 5.5, 5?×?106 spores mL?1, 32?g L?1 pectin, 10?g L?1 of yeast extract and 0.5?g L?1 magnesium sulfate and bioproduction for 36?h. The production of Exo-PG in the bioreactor was 1.3 times higher than that obtained in shake flasks, with aeration (1.5 vvm) and agitation (180?rpm) control. The crude enzyme complex, beyond the pectinolytic activity of Exo-PG (53.8?U mL?1), also contained activity pectin methylesterase (6.0?U mL?1) and pectin lyase (6.61?U mL?1). At a crude enzyme complex with a concentration of 0.5% (v/v), viscosity of peach juice was reduced by 11.66%, turbidity was reduced by 13.71% and clarification was increased by 26.92%. Based on the present results, we can conclude that the new strain of isolated P. brasilianum produced high amounts of pectinases in a bioreactor with mechanical agitation, and has the potential to be applied to in the clarification of juices.  相似文献   

13.
The optimization of tannase production by Lactobacillus plantarum CIR1 was carried out following the Taguchi methodology. The orthogonal array employed was L18 (21 × 35) considering six important factors (pH and temperature, also phosphate, nitrogen, magnesium, and carbon sources) for tannase biosynthesis. The experimental results obtained from 18 trials were processed using the software Statistical version 7.1 using the character higher the better. Optimal culture conditions were pH, 6; temperature, 40 °C; tannic acid, 15.0 g/L; KH2PO4, 1.5 g/L; NH4Cl, 7.0 g/L; and MgSO4, 1.5 g/L which were obtained and further validated resulting in an enhance tannase yield of 2.52-fold compared with unoptimized conditions. Tannase production was further carried out in a 1-L gas-lift bioreactor where two nitrogen flows (0.5 and 1.0 vvm) were used to provide anaerobic conditions. Taguchi methodology allowed obtaining the optimal culture conditions for the production of tannase by L. plantarum CIR1. At the gas-lift bioreactor the tannase productivity yields increase 5.17 and 8.08-fold for the flow rates of 0.5 and 1.0 vvm, respectively. Lactobacillus plantarum CIR1 has the capability to produce tannase at laboratory-scale. This is the first report for bacterial tannase production using a gas-lift bioreactor.  相似文献   

14.
《Process Biochemistry》2014,49(4):576-582
The specific properties of exopolysaccharides (EPS) from thermophilic microorganisms have attracted interest in their optimized production. In this study, the ability of Aeribacillus pallidus 418 to grow and produce polysaccharide in a 5-l stirred tank bioreactor was investigated. Agitation rates of 100, 200, 600, 900, and 1100 revolutions per minute (rpm), at an air flow rate of 0.5 gas volumes per unit medium volume per minute (vvm), and aeration rates of 0.25, 0.5, 1.0, and 1.5 vvm, at an agitation rate of 900 rpm, were examined. A maximum EPS yield of 170 μg/ml has been registered in a single impeller bioreactor equipped with an original Narcissus impeller at agitation speed of 900 rpm, with an aeration rate of 0.5 vvm. The bioprocess oxygen uptake rate (OUR) and oxygen mass transfer coefficient (KLa) were evaluated. The emulsifying properties of the specific EPS produced by A. pallidus 418 were determined. Stable oil-in-water emulsions, a low level of separated water phase and high dispersion stability were found, which together demonstrate the prospects for the industrial exploration of EPS production. Enhanced synergism between the A. pallidus 418 synthesized EPS and various commercially used hydrocolloids was observed; superior synergy was achieved in combination with xanthan gum.  相似文献   

15.
《Process Biochemistry》2007,42(1):93-97
Successful scale-up of Azadirachta indica suspension culture for azadirachtin production was done in stirred tank bioreactor with two different impellers. The kinetics of biomass accumulation, nutrient consumption and azadirachtin production of A. indica cell suspension culture were studied in a stirred tank bioreactor equipped with centrifugal impeller and compared with similar bioreactor with a setric impeller to investigate the role of O2 transfer efficiency of centrifugal impeller bioreactor on overall culture metabolism. The maximum cell mass for centrifugal impeller bioreactor and stirred tank bioreactor (with setric impeller) were 18.7 and 15.5 g/L (by dry cell weight) and corresponding azadirachtin concentrations were 0.071 and 0.05 g/L, respectively. Glucose and phosphate were identified as the major growth-limiting nutrients during the bioreactor cultivation. The centrifugal impeller bioreactor demonstrated less shearing and improved O2 transfer than the stirred tank bioreactor equipped with setric impeller with respect to biomass and azadirachtin production.  相似文献   

16.
Vitamin K2 (menaquinone or MK) plays an important role in blood clotting, cardiovascular disease, and anti-osteoporosis. A novel bacterial strain was isolated and identified as Bacillus natto based on 16SrDNA sequencing and LC-MS analysis. The objective of this study was to improve the extraction efficiency and productivity of MK-7 from B. natto. Acid-heating method efficiently disrupted B. natto cells for MK-7 extraction. Bacillus natto had a wide range of pH (5.0 ~ 9.0) for optimal growth. Its MK-7 yield was increased when rotation speed was increased to 200 rpm. The highest MK-7 yield was obtained when glycerol and soy peptone were used in the growth media. Batch fermentation was subsequently tested in 5 L bioreactor, which gave a high productivity of MK-7 (at 0.60 mg/L/h). A positive correlation between MK-7 yield and sporulation ratio was also found. This study provides valuable information on the extraction and production of menaquinone-7 from B. natto under submerged fermentation condition.  相似文献   

17.
Clavulanic acid (CA), a potent β-lactamase inhibitor, is produced by a filamentous bacterium. Here, the effect of DO and shear, expressed as impeller tip velocity, on CA production was examined. Cultivations were performed in a 4 L fermentor with speeds of 600, 800 and 1,000 rpm and a fixed air flow rate (0.5 vvm). Also, cultivation with automatic control of dissolved oxygen, at 50% air saturation, by varying stirrer speed and using a mixture of air and O2 (10% v/v) in the inlet gas, and a cultivation with fixed stirrer speed of 800 rpm and air flow rate of 0.5 vvm, enriched with 10% v/v O2, were performed. Significant variations in CA titer, CA production rate and O2 uptake-rate were observed. It was also found that the DO level has no remarkable effect on CA production once a critical level is surpassed. The most significant improvement in CA production was related to high stirrer speeds.  相似文献   

18.
Rhizopus oryzae was immobilized on a cotton matrix in a static bed bioreactor. Compared with free cells in a stirred tank bioreactor, immobilized R. oryzae in this bioreactor gave higher lactic acid production but lower ethanol production. The highest lactic acid production rate (2.09 g/L h) with the final concentration of 37.83 g/L from 70 g/L glucose was achieved when operating the bioreactor at 700 rpm and 0.5 vvm air. To better understand the relationship between shear effects (agitation and aeration) and R. oryzae morphology and metabolism, oxygen transfer rate, fermentation kinetics, and lactate dehydrogenase activity were determined. In immobilized cell culture, higher oxygen transfer rate and lactic acid production were achieved but lower lactate dehydrogenase activity was found as compared with those in free cell culture operated at the same conditions. These results clearly imply that mass transport was the rate controlling step in lactic acid fermentation by R. oryzae.  相似文献   

19.
A newly isolated strain of Kluyveromyces marxianus YS-1 was used for the production of extra cellular inulinase in a medium containing inulin, meat extract, CaCl2 and sodium dodecyl sulphate (SDS). Fermentation medium pH 6.5, cultivation temperature 30 degrees C and 5% (v/v) inoculum of 12 h-old culture were optimal for enzyme production (30.8 IU/ml) with a fermentation time of 72 h at shake flask level. Raw inulin (2%, w/v) extracted from dahlia tubers by processing at 15 kg/cm2 for 10 min was optimum for bioreactor studies. Maximum enzyme production (55.4 IU/ml) was obtained at an agitation rate of 200 rpm and aeration of 0.75 vvm in a stirred tank reactor with a fermentation time of 60 h.  相似文献   

20.
Unusual composition of an exopolymer (EP) from an obligate halophilic bacterium Chromohalobacter canadensis 28 has triggered an interest in development of an effective bioreactor process for its production. Its synthesis was investigated in 2‐L bioreactor at agitation speeds at interval 600‐1000 rpm, at a constant air flow rate of 0.5 vvm; aeration rates of 0.5, 1.0, and 1.5 vvm were tested at constant agitation rate of 900 rpm. EP production was affected by both, agitation and aeration. As a result twofold increase of EP yield was observed and additionally increased up to 3.08 mg/mL in a presence of surfactants. For effective scale‐up of bioreactors mass transfer parameters were estimated and lowest values of KLa obtained for the highest productivity fermentation was established. Emulsification activity of EP exceeded that of trade hydrocolloids xanthan, guar gum, and cellulose. A good synergism between EP and commercial cellulose proved its potential exploration as an enhancer of emulsifying properties of trade emulsions. A pronounced lipophilic effect of EP was established toward olive oil and liquid paraffin. Cultivation of human keratinocyte cells (HaCaT) with crude EP and purified γ‐polyglutamic acid (PGA) showed higher viability than control group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号