首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Based on energy and CO2 emission efficiencies, this paper proposes a definition of the elasticity of the potential of emission reduction to energy saving (Eperes), and measures the elasticity in China’s 30 provincial regions. Although Eperes is a relative definition, it can be used (1) to measure the amount of reduced CO2 emissions per unit fossil energy saving, (2) to reflect the effectiveness of fossil energy saving for CO2 emission reduction in different regions, and (3) to provide decision-making criteria for selecting pathways for emission reductions in different regions. The results show that compared with energy saving, emission reduction is a more serious issue in China. This indicates that energy saving policies have been highly effective since their implementation during the 11th “Five-Year Plan”. With respect to provincial disparities, the emission reductions caused by fossil energy saving are not significant in Beijing, Shanghai, and Guangdong. Fujian province has significant Eperes, indicating that emission reduction causing by fossil energy saving is effective. Eperes has been increasing over time in Hunan and Hubei. Hainan’s Eperes has remained less than 1, indicating that its emission-reduction effect of fossil energy saving is worse than in other provinces. Moreover, the elasticity of Eastern China is greater than that of Central China and Western China. This finding sheds light on pathway selection for energy saving and emission reduction in China: it would be more appropriate to encourage fossil energy saving in Eastern China, and to promote clean energy use (e.g., water electricity and solar energy) in Central China and Western China.  相似文献   

2.
Energy saving mechanisms in nature allow following organisms to expend less energy than leaders. Queues, or ordered rows of individuals, may form when organisms exploit the available energy saving mechanism while travelling at near‐maximal sustainable metabolic capacities; compact clusters form when group members travel well below maximal sustainable metabolic capacities. The group size range, given here as the ratio of the difference between the size of the largest and smallest group members, and the size of the largest member (as a percentage), has been hypothesized to correspond proportionately to the energy saving quantity because weaker, smaller, individuals sustain the speeds of stronger, larger, individuals by exploiting the energy saving mechanism (as a percentage). During migration, small individuals outside this range may perish, or form sub‐groups, or simply not participate in migratory behaviour. We approximate drag forces for leading and following individuals in queues of the late Devonian (c. 370 Ma) trilobite Trimerocephalus chopini. Applying data from literature on Rectisura herculea, a living crustacean, we approximate the hypothetical walking speed and maximal sustainable speeds for T. chopini. Our findings reasonably support the hypothesis that among the population of fossilized queues of T. chopini reported in the literature, trilobite size range was 75%, while the size range within queues was 63%; this corresponds reasonably with drag reductions in following positions that permit c. 61.5% energy saving for trilobites following others in optimal low‐drag positions. We model collective trilobite behaviour associated with hydrodynamic drafting.  相似文献   

3.
Using the first-principle density functional calculations, the equilibrium geometries and electronic properties of anionic and neutral aluminum-sulfur Al n S m (2?≤?n?+?m?≤?6) clusters have been systematically investigated at B3PW91 level. The optimized results indicate that the lowest-energy structures of the anionic and neutral Al n S m clusters prefer the low spin multiplicities (singlet or doublet) except the Al2 ̄, Al2, S2, Al4 and Al2S4 clusters. A significant odd-even oscillation of the highest occupied-lowest unoccupied molecular orbital (HOMO-LUMO) energy gaps for the Al n S m  ̄ clusters is observed. Electron detachment energies (both vertical and adiabatic) are discussed and compared with the photoelectron spectra observations. Furthermore, a good agreement between experimental and theoretical results gives confidence in the most stable clusters considered in the present study and validates the chosen computational method. In addition, the variation trend of chemical hardness is in keeping with that of HOMO-LUMO energy gaps for the Al n S m clusters. Upon the interaction of oxygen with the stable AlS m  ̄ clusters, the dissociative chemisorptions are favorable in energy. The binding energy and Gibbs free energy change show completely opposite oscillating behaviors as the cluster size increases.  相似文献   

4.
An optimization of power and energy consumptions is the important concern for a design of modern-day and future computing and communication systems. Various techniques and high performance technologies have been investigated and developed for an efficient management of such systems. All these technologies should be able to provide good performance and to cope under an increased workload demand in the dynamic environments such as Computational Grids (CGs), clusters and clouds. In this paper we approach the independent batch scheduling in CG as a bi-objective minimization problem with makespan and energy consumption as the scheduling criteria. We use the Dynamic Voltage Scaling (DVS) methodology for scaling and possible reduction of cumulative power energy utilized by the system resources. We develop two implementations of Hierarchical Genetic Strategy-based grid scheduler (Green-HGS-Sched) with elitist and struggle replacement mechanisms. The proposed algorithms were empirically evaluated versus single-population Genetic Algorithms (GAs) and Island GA models for four CG size scenarios in static and dynamic modes. The simulation results show that proposed scheduling methodologies fairly reduce the energy usage and can be easily adapted to the dynamically changing grid states and various scheduling scenarios.  相似文献   

5.
This study aimed to ascertain the functional and phylogenetic relationships within an m-xylene degrading sulfate-reducing enrichment culture, which had been maintained for several years in the laboratory with m-xylene as the sole source of carbon and energy. Previous studies indicated that a phylotype affiliated to the Desulfobacteraceae was the main m-xylene assimilating organism. In the present study, genes and gene products were identified by a metaproteogenomic approach using LC-MS/MS analysis of the microbial community, and 2426 peptides were identified from 576 proteins. In the metagenome of the community, gene clusters encoding enzymes involved in fumarate addition to a methyl moiety of m-xylene (nms, bss), as well as gene clusters coding for enzymes involved in modified beta-oxidation to (3-methyl)benzoyl-CoA (bns), were identified in two separate contigs. Additionally, gene clusters containing homologues to bam genes encoding benzoyl-CoA reductase (Bcr) class II, catalyzing the dearomatization of (3-methyl)benzoyl-CoA, were identified. Time-resolved protein stable isotope probing (protein-SIP) experiments using 13C-labeled m-xylene showed that the respective gene products were highly 13C-labeled. The present data suggested the identification of gene products that were similar to those involved in methylnaphthalene degradation even though the consortium was not capable of growing in the presence of naphthalene, methylnaphthalene or toluene as substrates. Thus, a novel branch of enzymes was found that was probably specific for anaerobic m-xylene degradation.  相似文献   

6.
7.
The properties of noble gas systems can be greatly extended by heterogeneous mixtures of elements. The geometrical structures and energies of mixed Ar–Kr–Xe clusters were investigated using ternary Lennard-Jones (TLJ) potential. For the Ar19Kr n Xe19, Ar19Kr19Xe n , and Ar n Kr19Xe19 (n?=?0–17) clusters investigated, the results show that only two minimum energy configurations exist, i.e., polytetrahedron and six-fold pancake. The inner core of all these clusters is composed mainly of Ar atoms, and Kr and Xe atoms are distributed on the surface with well mixed pattern for polytetrahedral and segregate pattern for six-fold pancake configurations. The relative stability property of Ar–Kr–Xe clusters with a certain composition is discussed. Moreover, the role of heterogeneity on the strain was investigated, and reduced strain energies in Ar–Kr–Xe clusters were studied to find possible ways of reducing strain. The results showed that the strain energies were affected mainly by Ar–Ar, Ar–Kr, and Xe–Xe bonds.
Figure
Investigation of the structures of Ar19Kr n Xe19, Ar19Kr19Xe n , and Ar n Kr19Xe19 (n?=?0–17) clusters reveal the existence of only exist two minimum energy configurations, i.e., polytetrahedron and six-fold pancake. Furthermore, reduced strain energies in Ar–Kr–Xe clusters were studied for the possible ways of reducing strain.  相似文献   

8.
The cysteine desulfurase, IscS, is a highly conserved and essential component of the mitochondrial iron–sulfur cluster (ISC) system that serves as a sulfur donor for Fe–S clusters biogenesis. Fe–S clusters are versatile and labile cofactors of proteins that orchestrate a wide array of essential metabolic processes, such as energy generation and ribosome biogenesis. However, no information regarding the role of IscS or its regulation is available in Leishmania, an evolving pathogen model with rapidly developing drug resistance. In this study, we characterized LdIscS to investigate the ISC system in AmpB-sensitive vs resistant isolates of L. donovani and to understand its regulation. We observed an upregulated Fe–S protein activity in AmpB-resistant isolates but, in contrast to our expectations, LdIscS expression was upregulated in the sensitive strain. However, further investigations showed that LdIscS expression is positively correlated with ROS level and negatively correlated with Fe–S protein activity, independent of strain sensitivity. Thus, our results suggested that LdIscS expression is regulated by ROS level with Fe–S clusters/proteins acting as ROS sensors. Moreover, the direct evidence of a mechanism, in support of our results, is provided by dose-dependent induction of LdIscS-GFP as well as endogenous LdIscS in L. donovani promastigotes by three different ROS inducers: H2O2, menadione, and Amphotericin B. We postulate that LdIscS is upregulated for de novo synthesis or repair of ROS damaged Fe–S clusters. Our results reveal a novel mechanism for regulation of IscS expression that may help parasite survival under oxidative stress conditions encountered during infection of macrophages and suggest a cross talk between two seemingly unrelated metabolic pathways, the ISC system and redox metabolism in L. donovani.  相似文献   

9.
10.
Daily torpor is a means of saving energy by controlled lowering of the metabolic rate (MR) during resting, usually coupled with a decrease in body temperature. We studied nocturnal daily torpor under natural conditions in free-living common swifts Apus apus resting in their nests as a family using two non-invasive approaches. First, we monitored nest temperature (Tnest) in up to 50 occupied nests per breeding season in 2010–2015. Drops in Tnest were the first indication of torpor. Among 16 673 observations, we detected 423 events of substantial drops in Tnest of on average 8.6°C. Second, we measured MR of the families inside nest-boxes prepared for calorimetric measurements during cold periods in the breeding seasons of 2017 and 2018. We measured oxygen consumption and carbon dioxide production using a mobile indirect respirometer and calculated the percentage reduction in MR. During six torpor events observed, MR was gradually reduced by on average 56% from the reference value followed by a decrease in Tnest of on average 7.6°C. By contrast, MR only decreased by about 33% on nights without torpor. Our field data gave an indication of daily torpor, which is used as a strategy for energy saving in free-living common swifts.  相似文献   

11.
To date, several actinomycete genomes have been completed and annotated. Among them, Streptomyces microorganisms are of major pharmaceutical interest because they are a rich source of numerous secondary metabolites. S. avermitilis is an industrial microorganism used for the production of an anthelmintic agent, avermectin, which is a commercially important antiparasitic agent in human and veterinary medicine, and agricultural pesticides. Genome analysis of S. avermitilis provides significant information for not only industrial applications but also understanding the features of this genus. On genome mining of S. avermitilis, the microorganism has been found to harbor at least 38 secondary metabolic gene clusters and 46 insertion sequence (IS)-like sequences on the genome, which have not been searched so far. A significant use of the genome data of Streptomyces microorganisms is the construction of a versatile host for heterologous expression of exogenous biosynthetic gene clusters by genetic engineering. Since S. avermitilis is used as an industrial microorganism, the microorganism is already optimized for the efficient supply of primary metabolic precursors and biochemical energy to support multistep biosynthesis. The feasibility of large-deletion mutants of S. avermitilis has been confirmed by heterologous expression of more than 20 exogenous biosynthetic gene clusters.  相似文献   

12.
The reactions of mass-selected iron clusters Fen + (n=1-5) with dimethyl carbonate, (CH3O)2CO, are examined by means of Fourier-transform ion-cyclotron-resonance mass spectrometry. For the bare metal cation Fe+, loss of a methyl radical prevails which leads to the iron carbonate species FeOC(O)OCH3 +. For the corresponding Fen + clusters, this type of reaction is not observed anymore. Instead, the clusters show a strong tendency for a formal O-atom abstraction leading to the formation of the corresponding monoxide clusters FenO+ In addition, several bond activations of dimethyl carbonate are observed which markedly differ from the behavior of the mononuclear cation. Nevertheless, a mechanistic analysis implies that the initial steps are the same for bare Fe+ as well as small Fen + clusters.  相似文献   

13.
Anaerobic digestion (AD) is an attractive microbiological technology for both waste treatment and energy production. Syntrophic acetogenic bacteria are an important guild because they are essential for maintaining efficient and stable AD operation. However, this guild is poorly understood due to difficulties to culture them. In this study, we developed specific PCR assays targeting the propionate-CoA transferase genes (pct) to investigate their diversity and distribution in several mesophilic anaerobic digesters and a bench-scale temperature-phased AD (TPAD) system. Phylogenetic analysis of sequenced pct amplicons revealed the occurrence of Syntrophobacter fumaroxidans and six other clusters of putative pct genes. Principal coordinate analysis (PCoA) showed that pct diversity and abundance were largely correlated to the feedstocks of the digesters, while little difference was seen between the granular and the liquid fractions of each digester or between the two digesters of the TPAD system. Cluster-specific qPCR analysis revealed major impact of feedstocks and fractions on the abundance of pct genes. Readily fermentable substrates such as sugar- or starch-rich feedstocks selected for pct genes (Cluster I) related to Syntrophobacter, while manure feedstock selected for pct clusters related to pct of Clostridium spp. These results suggest that propionate metabolism can be affected by feedstocks and partition differently between solid and liquid phases in digesters. The PCR assays developed in this study may serve as a tool to investigate propionate-oxidizing bacteria in anaerobic digesters and other anaerobic environments.  相似文献   

14.
BackgroundMonitoring and evaluation (M&E) is a key component of large-scale neglected tropical diseases (NTD) control programs. Diagnostic tests deployed in these M&E surveys are often imperfect, and it remains unclear how this affects the population-based program decision-making.MethodologyWe developed a 2-stage lot quality assurance sampling (LQAS) framework for decision-making that allows for both imperfect diagnostics and spatial heterogeneity of infections. We applied the framework to M&E of soil-transmitted helminth control programs as a case study. For this, we explored the impact of the diagnostic performance (sensitivity and specificity), spatial heterogeneity (intra-cluster correlation), and survey design on program decision-making around the prevalence decisions thresholds recommended by WHO (2%, 10%, 20% and 50%) and the associated total survey costs.Principal findingsThe survey design currently recommended by WHO (5 clusters and 50 subjects per cluster) may lead to incorrect program decisions around the 2% and 10% prevalence thresholds, even when perfect diagnostic tests are deployed. To reduce the risk of incorrect decisions around the 2% prevalence threshold, including more clusters (≥10) and deploying highly specific diagnostic methods (≥98%) are the most-cost saving strategies when spatial heterogeneity is moderate-to-high (intra-cluster correlation >0.017). The higher cost and lower throughput of improved diagnostic tests are compensated by lower required sample sizes, though only when the cost per test is <6.50 US$ and sample throughput is ≥3 per hour.Conclusion/SignificanceOur framework provides a means to assess and update M&E guidelines and guide product development choices for NTD. Using soil-transmitted helminths as a case study, we show that current M&E guidelines may severely fall short, particularly in low-endemic and post-control settings. Furthermore, specificity rather than sensitivity is a critical parameter to consider. When the geographical distribution of an NTD within a district is highly heterogeneous, sampling more clusters (≥10) may be required.  相似文献   

15.
Our goal was to identify evolutionary conserved frame transitions in protein coding regions and to uncover an underlying functional role of these structural aberrations. We used the ab initio frameshift prediction program, GeneTack, to detect reading frame transitions in 206 991 genes (fs-genes) from 1106 complete prokaryotic genomes. We grouped 102 731 fs-genes into 19 430 clusters based on sequence similarity between protein products (fs-proteins) as well as conservation of predicted position of the frameshift and its direction. We identified 4010 pseudogene clusters and 146 clusters of fs-genes apparently using recoding (local deviation from using standard genetic code) due to possessing specific sequence motifs near frameshift positions. Particularly interesting was finding of a novel type of organization of the dnaX gene, where recoding is required for synthesis of the longer subunit, τ. We selected 20 clusters of predicted recoding candidates and designed a series of genetic constructs with a reporter gene or affinity tag whose expression would require a frameshift event. Expression of the constructs in Escherichia coli demonstrated enrichment of the set of candidates with sequences that trigger genuine programmed ribosomal frameshifting; we have experimentally confirmed four new families of programmed frameshifts.  相似文献   

16.
Recent research has indicated that different scales of water clusters can cause different biological effects from normal water clusters. In this study, we used the cyanobacterium Microcystis aeruginosa FACHB-905 as a model organism to investigate the effect of small water clusters (SWCs) on the growth and toxin production of toxic cyanobacteria. The results showed that SWCs were able to stimulate the growth of M. aeruginosa, which resulted in increased cell numbers and higher specific growth rates after a 20-day treatment. Moreover, the SWCs treatment up-regulated microcystin (MC) synthesis and exudation in 6 days in M. aeruginosa. Subsequently, the intracellular MC content decreased after the 16th day. SWCs had positive effects on the photochemical system as well as the uptake of nitrogen and phosphorus for the majority of the period. Moreover, the cell photosynthetic pigment concentrations were transitorily stimulated by SWCs. It is assumed that SWCs stimulated cell growth by promoting photosynthesis as well as nitrogen and phosphorus uptake, whereas the enhanced MC production is related to pigment concentrations (Chl a and carotenoid). This study reveals that SWCs is a novel environmental factor that stimulates growth and enhances MC production in M. aeruginosa.  相似文献   

17.
Genetic variation of 33 enteroinvasive Escherichia coli (EIEC), 12 non-EIEC and 39 Shigella strains (representing the 4 species of this genus) was analyzed using the random amplified polymorphic DNA (RAPD) technique. Reproducible polymorphisms were generated and the combined data allowed us to construct a dendrogram using Jaccard's distance. Two main groups were obtained: one for Shigella and the other for EIEC and non-EIEC strains. The first group contained four clusters, one for each Shigella species. The second group contained one cluster for EIEC and another for non-EIEC strains. The main clusters encompassed many small clusters corresponding to different serotypes. It was possible to characterize each one of the 84 strains under study as well as the boundaries among Shigella species and between this genus and EIEC strains.  相似文献   

18.
Searching for materials and technologies of efficient CO2 capture is of the utmost importance to reduce the CO2 impact on the environment. Therefore, the (AlN)n clusters (n = 3–5) are researched using density functional theoretical calculations. The results of the optimization show that the most stable structures of (AlN)n clusters all display planar configurations at B3LYP and G3B3 methods, which are consistent with the reported results. For these planar clusters, we further systematically studied their interactions with carbon dioxide molecules to understand their adsorption behavior at the B3LYP/6–311+G(d,p) level, including geometric optimization, binding energy, bond index, and electrostatic. We found that the planar structures of (AlN)n (n = 3–5) can capture 3–5 CO2 molecules. The result indicates that (AlN)n (n = 3–5) clusters binding with CO2 is an exothermic process (the capture of every CO2 molecule on (AlN)n clusters releases at least 30 kcal mol-1 in relative free energy values). These analysis results are expected to further motivate the applications of clusters to be efficient CO2 capture materials.  相似文献   

19.
BackgroundCluster randomised trials (CRTs) are commonly analysed using mixed-effects models or generalised estimating equations (GEEs). However, these analyses do not always perform well with the small number of clusters typical of most CRTs. They can lead to increased risk of a type I error (finding a statistically significant treatment effect when it does not exist) if appropriate corrections are not used.MethodsWe conducted a small simulation study to evaluate the impact of using small-sample corrections for mixed-effects models or GEEs in CRTs with a small number of clusters. We then reanalysed data from TRIGGER, a CRT with six clusters, to determine the effect of using an inappropriate analysis method in practice. Finally, we reviewed 100 CRTs previously identified by a search on PubMed in order to assess whether trials were using appropriate methods of analysis. Trials were classified as at risk of an increased type I error rate if they did not report using an analysis method which accounted for clustering, or if they had fewer than 40 clusters and performed an individual-level analysis without reporting the use of an appropriate small-sample correction.ResultsOur simulation study found that using mixed-effects models or GEEs without an appropriate correction led to inflated type I error rates, even for as many as 70 clusters. Conversely, using small-sample corrections provided correct type I error rates across all scenarios. Reanalysis of the TRIGGER trial found that inappropriate methods of analysis gave much smaller P values (P ≤ 0.01) than appropriate methods (P = 0.04–0.15). In our review, of the 99 trials that reported the number of clusters, 64 (65 %) were at risk of an increased type I error rate; 14 trials did not report using an analysis method which accounted for clustering, and 50 trials with fewer than 40 clusters performed an individual-level analysis without reporting the use of an appropriate correction.ConclusionsCRTs with a small or medium number of clusters are at risk of an inflated type I error rate unless appropriate analysis methods are used. Investigators should consider using small-sample corrections with mixed-effects models or GEEs to ensure valid results.  相似文献   

20.
Ab initio calculations (B3LYP and PBE-D3) of the structures, stabilities, vibrational, electronic and hydrogen adsorption behaviour of (MgO)n clusters are performed using 6-311+ + G(d,p) basis set. The planar (MgO)n clusters are found to be global minima for n ≤ 3 and local minima for n = 4 and 5. In addition, we have also analysed global minimum structures of (MgO)4 and (MgO)5. The binding energies suggest that their stabilities increase successively. Vibrational frequencies and IR intensities further support the enhanced stability with an increase in the size of (MgO)n clusters. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) surfaces are used to explain and discuss the electronic properties. Finally, we have demonstrated hydrogen storage capacity of (MgO)n clusters, considering hydrogen adsorption on planar as well as global minimum (MgO)4 and (MgO)5 clusters. We have noticed that four and five H2 molecules can be easily adsorbed by (MgO)4 and (MgO)5 clusters having adsorption energy of 0.13–0.14 eV with mass ratio of 4.76%. Thus, the present study is expected to motivate further the applications of small clusters for efficient hydrogen energy storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号