首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phylogenetic position and generic composition of the moss family Plagiotheciaceae were explored using DNA sequence data from three genomes: plastid trnL‐F and rps4, mitochondrial nad5 intron and nuclear ITS1‐5.8S‐ITS2. Our phylogenetic analyses included 35 terminals from Plagiotheciaceae and 71 outgroup taxa from a representative set of hypnalean moss families. The family Plagiotheciaceae is resolved in the early‐diverging Hypnales grade, together with Fontinalaceae, Habrodontaceae and several genera which are mainly distributed in the area of the former Gondwanan supercontinent. However, monophyly of the family can only be attained if the three Southern Hemisphere genera, Acrocladium, Catagonium and Rhizofabronia, are excluded. Ancestral state reconstruction for eight morphological characters reveals that many characters used to delimit the family, such as a lack of pseudoparaphyllia and rhizoids inserted in the leaf axils, were already present in the ancestor of Hypnales. Dispersal–vicariance analysis suggests that Plagiotheciaceae and Fontinalaceae have their ancestral distributions in the area of the former Laurasian supercontinent. As the analyses also reveal a Gondwanan distribution for the ancestor of Hypnales in general, Plagiotheciaceae and Fontinalaceae represent the first diverging Laurasian lineages in the order. © 2013 The Linnean Society of London  相似文献   

2.
Abstract: The ability of the internal transcribed spacers (ITS regions) of ribosomal DNA to resolve phylogenetic relationships within the euascomycetous order Arthoniales, focusing on the family Roccellaceae was investigated. The effect of alignment on phylogenetic hypotheses was evaluated. A data matrix from the ITS regions was constructed from 33 specimens representing 14 genera, including the outgroup Arthothelium spectabile. Six different alignments were analysed cladistically using parsimony jackknifing. Most groups in the six trees were congruent and well supported under the different alignment settings. In a conservative analysis, where only unambiguously alignable regions were included, the resolution was low. These results indicate that the ITS regions contain phylogenetic structure, and all information, including the variable regions, should be utilised. A data matrix from the SSU rDNA sequences was constructed for the same taxa. The SSU rDNA tree was less resolved than the ITS trees. There were only minor conflicts between the two sources of data and an incongruence test confirmed that the ITS and SSU rDNA data matrices were not significantly incongruent. The six differently aligned data matrices generated from the ITS regions were each combined with the SSU rDNA data. Simultaneous analysis of the combined data sets is the best approach as it uses all available evidence. As with the ITS trees, most groups in the combined trees were congruent and well supported. The SSU rDNA provided resolution within one clade, otherwise the ITS sequences provided most of the signal in the combined analysis, both at the basal nodes and at the tips of the tree. Molecular data clearly indicates that the fruticose/crustose habits have evolved multiple times even in comparatively small groups as in the family Roccellaceae and that the characters such as fruticose-crustose may be overemphasized in morphological analyses.  相似文献   

3.
The bacterial family Rickettsiaceae includes a group of well-known etiological agents of many human and vertebrate diseases, including epidemic typhus-causing pathogen Rickettsia prowazekii. Owing to their medical relevance, rickettsiae have attracted a great deal of attention and their host-pathogen interactions have been thoroughly investigated. All known members display obligate intracellular lifestyles, and the best-studied genera, Rickettsia and Orientia, include species that are hosted by terrestrial arthropods. Their obligate intracellular lifestyle and host adaptation is reflected in the small size of their genomes, a general feature shared with all other families of the Rickettsiales. Yet, despite that the Rickettsiaceae and other Rickettsiales families have been extensively studied for decades, many details of the origin and evolution of their obligate host-association remain elusive. Here we report the discovery and single-cell sequencing of ‘Candidatus Arcanobacter lacustris'', a rare environmental alphaproteobacterium that was sampled from Damariscotta Lake that represents a deeply rooting sister lineage of the Rickettsiaceae. Intriguingly, phylogenomic and comparative analysis of the partial ‘Candidatus Arcanobacter lacustris'' genome revealed the presence chemotaxis genes and vertically inherited flagellar genes, a novelty in sequenced Rickettsiaceae, as well as several host-associated features. This finding suggests that the ancestor of the Rickettsiaceae might have had a facultative intracellular lifestyle. Our study underlines the efficacy of single-cell genomics for studying microbial diversity and evolution in general, and for rare microbial cells in particular.  相似文献   

4.
Sequence data from nuclear (ITS) and chloroplast (trnL-F) regions for 89 accessions representing 56 out of 64 species from all five genera of the tribe Chorisporeae (plus Dontostemon tibeticus) have been studied to test the monophyly of the tribe and its component genera, clarify its boundaries, and elucidate its phylogenetic position in the family. Both data sets showed strong support for the monophyly of the Chorisporeae as currently delimited, though the position of its tentative member D. tibeticus was not resolved by ITS. Parrya and Pseudoclausia are poly- and paraphyletic with regard to each other, and Chorispora is either polyphyletic or at least paraphyletic (comprising Diptychocarpus) within a weakly supported monophyletic clade. The incongruence in branching pattern among the markers was most likely caused by hybridization and possibly influenced by incomplete lineage sorting. The present results suggest uniting Pseudoclausia, Clausia podlechii, and Achoriphragma with Parrya and transferring P. beketovii and P. saposhnikovii to Leiospora (Euclidieae). We also obtained support for splitting Chorispora into two geographically defined groups, one of which is closer to Diptychocarpus. Both data sets revealed a close relationship of the Chorisporeae to Dontostemoneae, while ITS also indicated affinity to Hesperideae. Therefore, the position of Chorisporeae needs further verification.  相似文献   

5.
The chloroplast gene matK and the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were sequenced from 17 samples of 13 species representing 6 genera of the angiosperm family Rhizophoraceae from China. Phylogenetic analyses were initially conducted based on sequences of the matK gene and the ITS regions, respectively, using Byrsonima crassifolia and Bunchosia armeniaca (Malpighiaceae) as outgroups. The partition–homogeneity test indicated that the two data sets are homogeneous. A combined analysis of the matK and ITS data generated a well supported phylogeny, which is topologically congruent with the two gene trees based on the Templeton test. The combined phylogeny shows that each genus formed a monophyletic group and the monophyletic relationships of the mangrove genera and of the inland genera were strongly supported.  相似文献   

6.
Relationships among the species of Northern Hemisphere smelts (family Osmeridae) have long been debated in the fish systematics literature. Eight independent studies based on morphological characters failed to reach any consensus on osmerid interrelationships. We reconstruct the osmerid phylogeny based on DNA sequence data from three mitochondrial (cytb, 16S, 12S) and three nuclear (ITS2, S71, RAG1) gene regions from multiple individuals of the 14 species in 6 genera, using the Japanese ayu (Plecoglossus altivelis) as the outgroup. Analyses with different combinations of nuclear and mitochondrial datasets yielded a generally well-resolved phylogeny of the genera that conflicts with previous hypotheses of osmerid interrelationships, and Shimodaira–Hasegawa tests suggest our topology with the current molecular dataset is significantly better than earlier reconstructions. In addition, mapping 114 morphological characters used in previous studies onto our phylogeny shows widespread homoplasy, which is likely the source of the systematic disagreement produced in earlier works.  相似文献   

7.
This paper gives an overview of current research into the biology of hemiparasiticOrobanchaceae, formerly part of theScrophulariaceae. It is based on presentations and discussions that took place during the First International Symposium on non-weedy hemiparasiticOrobanchaceae in April 2004 in Wageningen. Aspects such as taxonomy and evolution, ecophysiology, population and restoration ecology are discussed, thus identifying challenges for future research. Hemiparasites have very different life histories, and the robust molecular phylogeny will now permit testing hypotheses regarding the evolution of these life histories, degree of parasitism and host specialization. In a number of genera, evolution is in full swing, leading to taxonomical complications, but at the same time offering opportunities for phylogeographical research. In ecophysiology, the challenge is to better understand what makes a good host and to investigate further the chemical signals emitted by the host and their use in regulating parasite development. Finally, the results of sowing hemiparasites to speed up the restoration of nutrient-poor grasslands are still very variable, and we need a more thorough understanding of the factors influencing population dynamics, which should also enable us to devise better management plans for threatened hemiparasitic species.  相似文献   

8.
Based on variable nuclear and/or organellar DNA sequences among vastly divergent species as well as morphologically indistinguishable species, DNA barcoding is widely applicable in species identification, biodiversity studies, forensic analyses, and authentication of medicinal plants. The roots of Astragalus membranaceus and A. membranaceus var. mongholica are commonly used as Radix Astragali in several Asian countries, including China, Japan, and Korea. However, in addition to the two species recorded in the Chinese Pharmacopoeia, there are twenty-three species from different genera including Astragalus, Oxytropis, Hedysarum, and Glycyrrhiza, which have been used as adulterants not only in trading markets but also by the herbal medicine industry. Therefore, a simple, reliable, and accurate classification method is important for distinguishing authentic Radix Astragali from its adulterants. In this study, we acquired data for 37 samples from four related genera within the family Fabaceae. Then we compared four candidate DNA barcoding markers using ITS, matK, rbcL, and coxI sequences from nuclear, chloroplast, and mitochondrial genomes, all commonly used for plants to identify genetic variations among genera, intraspecies, and interspecies. We observed higher divergences among genera and interspecies for ITS, which have the average Kimura 2-parameter distances of 4.5% and 14.1%, respectively, whereas matK was found to have sufficient divergence at the intraspecific level. Moreover, two indels detected in the matK sequence are useful for PCR studies in distinguishing Radix Astragali from its adulterants. This study suggests that the combined barcoding regions of ITS and matK are superior barcodes for Radix Astragali and further studies should focus on evaluating the applicability and accuracy of such combined markers for a wide range of traditional Chinese herbs.  相似文献   

9.
Pollen grains of all three genera of Dichapetalaceae (Dichapetalum, Stephanopodium and Tapura) comprising about 150 species have been studied. Twenty-nine pollen types were recognized and the family has to be considered eurypalynous. A key to the pollen types is added. Based on evolutionary trends it was possible to give a scheme to the mutual relationships of the pollen types. It is concluded that the centre of origin of the family may be Africa. It was pot possible to point to distinct relationships with other families on pollenmorphological data alone.  相似文献   

10.
DNA barcoding has been proposed to be one of the most promising tools for accurate and rapid identification of taxa. However, few publications have evaluated the efficiency of DNA barcoding for the large genera of flowering plants. Dendrobium, one of the largest genera of flowering plants, contains many species that are important in horticulture, medicine and biodiversity conservation. Besides, Dendrobium is a notoriously difficult group to identify. DNA barcoding was expected to be a supplementary means for species identification, conservation and future studies in Dendrobium. We assessed the power of 11 candidate barcodes on the basis of 1,698 accessions of 184 Dendrobium species obtained primarily from mainland Asia. Our results indicated that five single barcodes, i.e., ITS, ITS2, matK, rbcL and trnH-psbA, can be easily amplified and sequenced with the currently established primers. Four barcodes, ITS, ITS2, ITS+matK, and ITS2+matK, have distinct barcoding gaps. ITS+matK was the optimal barcode based on all evaluation methods. Furthermore, the efficiency of ITS+matK was verified in four other large genera including Ficus, Lysimachia, Paphiopedilum, and Pedicularis in this study. Therefore, we tentatively recommend the combination of ITS+matK as a core DNA barcode for large flowering plant genera.  相似文献   

11.
Although several investigators have presented data suggesting that the Caprifoliaceae is polyphyletic in origin, the family has been retained as a taxon in recent classifications. Serological analyses of the taxa included within the family have been undertaken to provide additional taxonomic data. Precipitin techniques of double diffusion (Ouchterlony) and nephelometry (Boyden Procedure) were used to analyse serological similarities of seed proteins from representatives of the family. Three distinct groupings were detected for the taxa included in the Caprifoliaceae. AlthoughViburnum exhibited greatest serological similarity withSambucus, Viburnum was quite distinct from all members of the family investigated.Sambucus also was somewhat distinct from the other genera and exhibited about as much serological correspondence withCornus of the Cornaceae as with any tested member of the Caprifoliaceae. The remaining species examined formed a very close serological grouping. These data can be interpreted as supporting either a monophyletic or polyphyletic origin of the family as presently composed, because of the different arrangements of the families Caprifoliaceae and Cornaceae in the various systems of classification.  相似文献   

12.
The tribe Inuleae (Asteraceae) has 10 species endemic to the Macaronesian islands, including the three endemic genera Allagopappus, Schizogyne, and Vierea. Phylogenetic analyses of DNA sequence data from the internal transcribed spacers (ITS) of the nuclear ribosomal DNA of 47 taxa were performed using all Macaronesian endemics and representative species from 21 of the 36 genera of the Inuleae. The resulting ITS phylogeny reveals that Allagopappus is sister to a large clade that contains all genera with a predominantly Mediterranean distribution. This finding suggests that Allagopappus may represent an ancient lineage that found refuge in the Canary Islands following the major climatic and/or geologic changes in the Mediterranean basin after the Tertiary. The Macaronesian endemic genus Schizogyne is sister to Limbarda from the Mediterranean. The third Macaronesian endemic genus, Vierea, is sister to Perralderia, which is restricted to Morocco and Algeria. Pulicaria canariensis is sister to P. mauritanica, a species endemic to Morocco and Algeria. In contrast, P. diffusa from the Cape Verde Islands is sister to a broadly distributed species, P. crispa, that occurs from North Africa to the Arabian peninsula. Based on the ITS data, the genera Blumea, Inula, and Pulicaria are not monophyletic. The ITS trees suggested that Blumea mollis belongs to the tribe Plucheeae, a finding that is congruent with recent morphological evidence. A possible southern African origin for the core of the Laurasian taxa of the Inuleae is also suggested.  相似文献   

13.
Abstract: The lichen family Umbilicariaceae is accepted by most lichenologists as consisting of two genera, Lasallia and Umbilicaria. The monophyly of these two genera was examined by phylogenetic analyses of nucleotide sequences of ITS1 and ITS2 rDNA. Sequences of these regions from three Lasallia and 17Umbilicaria species were aligned to those of seven representatives of the outgroup taxa including Eurotiales, Onygenales and Caliciales (Mycocaliciaceae) and subjected to maximum parsimony, maximum likelihood and neighbour-joining analyses. The resulting phylogenetic hypotheses supported the monophyly of the representative species of Lasallia. However, the species of Umbilicaria did not form a monophyletic sister-group to Lasallia due to the basal placement of otherUmbilicaria species in some analyses. Based on these analyses, if Lasallia is recognized as a separate genus thenUmbilicaria appears to be paraphyletic. Although further taxon sampling is required to resolve the monophyly ofUmbilicaria , for the present we recommend retaining the current treatment of Lasallia as separate fromUmbilicaria .  相似文献   

14.
The phylogenetic relationships between Baikalian endemic green alga Draparnaldioides simplex C. Meyer et Skabitch., 1976 and holarctic taxa of green algae have been studied using the 18S rDNA gene fragment and internal transcribed ITS1 and ITS2 spacers of nuclear DNA. The Baikalian genus Draparnaldioides was shown to be a separate taxon. The level of genetic difference between the studied species and non-Baikalian taxa of sister groups of green algae is insignificant, which indicates the young age of the genus Draparnaldioides and its recent radiation from the common ancestor with genera Draparnaldia and Chaetophora.  相似文献   

15.
The family Poritidae formerly included 6 genera: Alveopora, Goniopora, Machadoporites, Porites, Poritipora, and Stylaraea. Morphologically, the genera can be differentiated based on the number of tentacles, the number of septa and their arrangement, the length of the polyp column, and the diameter of the corallites. However, the phylogenetic relationships within and between the genera are unknown or contentious. On the one hand, Alveopora has been transferred to the Acroporidae recently because it was shown to be more closely related to this family than to the Poritidae by previous molecular studies. On the other hand, Goniopora is morphologically similar to 2 recently described genera, Machadoporites and Poritipora, particularly with regard to the number of septa (approximately 24), but they have not yet been investigated at the molecular level. In this study, we analyzed 93 samples from all 5 poritid genera and Alveopora using 2 genetic markers (the barcoding region of the mitochondrial COI and the ITS region of the nuclear rDNA) to investigate their phylogenetic relationships and to revise their taxonomy. The reconstructed molecular trees confirmed that Alveopora is genetically distant from all poritid genera but closely related to the family Acroporidae, whereas the other genera are genetically closely related. The molecular trees also revealed that Machadoporites and Poritipora were indistinguishable from Goniopora. However, Goniopora stutchburyi was genetically isolated from the other congeneric species and formed a sister group to Goniopora together with Porites and Stylaraea, thus suggesting that 24 septa could be an ancestral feature in the Poritidae. Based on these data, we move G. stutchburyi into a new genus, Bernardpora gen. nov., whereas Machadoporites and Poritipora are merged with Goniopora.  相似文献   

16.
Sequence data from the nuclear encoded ribosomal internal transcribed spacer (ITS) region were used to determine monophyly of tribes, tribal limits, and tribal relationships of 96 so far unassigned or tentatively assigned genera (represented by 101 taxa/accessions) within the Brassicaceae. Maximum-parsimony and maximum-likelihood analyses of 185 ITS Brassicaceae sequences, which also included representatives of each of the 34 currently recognized tribes, supported the separate phylogenetic distinctness of these tribes and permitted the tribal assignment of all but 12 of the unassigned genera into tribal clades. The data support the recognition of eight new, well-resolved, uni- or oligogeneric tribes recognized herein as the Alyssopsideae [96% bootstrap support (BS); including the central and southwestern Asian Alyssopsis and Calymmatium], Asteae (100% BS; including the Mexican Asta), Eudemeae (97% BS; South American Brayopsis, Eudema, and Xerodraba), Kernereae (96% BS; European Kernera and Rhizobotrya), Notothlaspideae (100% BS; New Zealandic Notothlaspi), Oreophytoneae (100% BS; eastern African Oreophyton and southern European Murbeckiella), and Yinshanieae (100% BS; Chinese Yinshania), as well as the moderately supported Microlepidieae (75% BS; Australian Microlepidium and Carinavalva). Furthermore, the results fully support the recent findings that the tribes Schizopetaleae and Thelypodieae ought to be recognized as two distinct tribes instead of a single tribe, as well as provide some support for the re-establishment of the tribe Cremolobeae, bringing the total number to 44 tribes in the family. Nearly 92% (308) of the 336 genera in the family have been assigned to a tribe. The earlier-published Anastaticeae is taken here to replace the Malcolmieae.  相似文献   

17.
Molecular phylogeny suggests a close relationship of Asteraceae to the early evolution of Golovinomyces. The family Asteraceae, with a geographic origin in South America, expanded into the Northern Hemisphere, where it may have been infected by an ancestor of Golovinomyces, thus starting a close host–parasite relationship. Using this event as a calibration point, we designed molecular clocks for powdery mildews using the 28S rDNA D1/D2 and internal transcribed spacer (ITS) regions. According to these clocks, the powdery mildews originated in the Late Cretaceous and the first radiation of the major lineages occurred at the Cretaceous/Paleogene boundary. Ancestral powdery mildews may have first radiated on broad-leaved deciduous trees in the high latitudes of the Northern Hemisphere, and continued further speciation whilst migrating to southward during the world cooling in the Paleogene and Neogene periods. The cradle of four herb infecting genera, viz. Blumeria, Golovinomyces, Leveillula, and Neoërysiphe may be within the area extending from Central/West Asia to the Mediterranean.  相似文献   

18.
The flyingfish family Exocoetidae is a diverse group of marine fishes that are widespread and abundant in tropical and subtropical seas. Flyingfishes are epipelagic specialists that are easily distinguished by their enlarged fins, which are used for gliding leaps over the surface of the water. Although phylogenetic hypotheses have been proposed for flyingfish genera based on morphology, no comprehensive molecular studies have been performed. In the present study, we describe a species‐level molecular phylogeny for the family Exocoetidae, based on data from the mitochondrial cytochrome b gene (1137 bp) and the nuclear RAG2 gene (882 bp). We find strong support for previous morphology‐based phylogenetic hypotheses, as well as the monophyly of most currently accepted flyingfish genera. However, the most diverse genus Cheilopogon is not monophyletic. Using our novel flyingfish topology, we examine previously proposed hypotheses for the origin and evolution of gliding. The results support the progressive transition from two‐wing to four‐wing gliding. We also use phylogenetic approaches to test the macroecological effects of two life history characters (e.g. egg buoyancy and habitat) on species range size in flyingfishes. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 161–174.  相似文献   

19.
Species definitions for plant pathogens have considerable practical impact for measures such as plant protection or biological control, and are also important for comparative studies involving model organisms. However, in many groups, the delimitation of species is a notoriously difficult taxonomic problem. This is particularly evident in the obligate biotrophic downy mildew genera (Peronosporaceae, Peronosporales, Oomycetes), which display a considerable diversity with respect to genetic distances and host plants, but are, for the most part, morphologically rather uniform. The recently established genus Hyaloperonospora is of particular biological interest because it shows an impressive radiation on virtually a single host family, Brassicaceae, and it contains the downy mildew parasite, Arabidopsis thaliana, of importance as a model organism. Based on the most comprehensive molecular sampling of specimens from a downy mildew genus to date, including various collections from different host species and geographic locations, we investigate the phylogenetic relationships of Hyaloperonospora by molecular analysis of the nuclear ribosomal ITS and LSU sequences. Phylogenetic trees were inferred with ML and MP from the combined dataset; partitioned Bremer support (PBrS) was used to assess potential conflict between data partitions. As in other downy mildew groups, the molecular data clearly corroborate earlier results that supported the use of narrow species delimitations and host ranges as taxonomic markers. With few exceptions, suggested species boundaries are supported without conflict between different data partitions. The results indicate that a combination of molecular and host features is a reliable means to discriminate downy mildew species for which morphological differences are unknown.  相似文献   

20.
Heldreichia Boiss. is a monospecific genus mainly distributed in Anatolia and the Lebanon. Although morphological variation and infrageneric phylogenetic relationships were recently studied in detail, Heldreichia remained as one of the few orphan genera that have not yet been assigned to any tribe. In the current study, we used sequence data from the nuclear ITS and chloroplast ndhF regions of Heldreichia and representatives of main Brassicaceae lineages and tribes to determine its tribal affiliation. Bayesian-based phylogenetic analyses clearly show with high support that Heldreichia is a member of the recently expanded tribe Biscutelleae. Furthermore, we characterize the tribe Biscutelleae morphologically and provide a determination key for all its genera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号