首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Until recently, only one native and three apparently introduced Daphnia species were known from New Zealand. We demonstrate that (1) Daphnia in subalpine habitats in southern New Zealand differ morphologically and genetically from the native taxon previously labelled Daphnia carinata to merit species nova status and (2) the name of the latter should revert to D. thomsoni, used by Sars (1894) for Daphnia described from New Zealand mud. We compare some key characteristics and cytochrome c oxidase subunit 1 (CO1) sequences of the New Zealand native and other morphologically similar species. Distinctive characteristics of subalpine populations, described as Daphnia tewaipounamu sp. nov., are a wide cephalic shield with lateral flanges curving dorsally via rounded fornices, dorsal cervical depression variably expressed as a ‘step’ in the cephalic shield exuviae and retention of ephippia within shed carapace exoskeletons long after ecdysis. CO1 sequences revealed that D. tewaipounamu sp. nov. belongs to the D. carinata complex but is highly divergent (>14%) from other known members of this complex. New Zealand D. thomsoni is divergent (>15%) from D. carinata s.s. However, it is not endemic to New Zealand, as we confirmed its presence in Tasmania, and some Australian populations are closely related to it.  相似文献   

2.
Invasive alien species are a major threat to ecosystems. Invasive terrestrial plants can produce allelochemicals which suppress native terrestrial biodiversity. However, it is not known if leached allelochemicals from invasive plants growing in riparian zones, such as Impatiens glandulifera, also affect freshwater ecosystems. We used mesocosms and laboratory experiments to test the impact of I. glandulifera on a simplified freshwater food web. Our mesocosm experiments show that leachate from I. glandulifera significantly reduced population growth rate of the water flea Daphnia magna and the green alga Acutodesmus obliquus, both keystone species of lakes and ponds. Laboratory experiments using the main allelochemical released by I. glandulifera, 2‐methoxy‐1,4‐naphthoquinone, revealed negative fitness effects in D. magna and A. obliquus. Our findings show that allelochemicals from I. glandulifera not only reduce biodiversity in terrestrial habitats but also pose a threat to freshwater ecosystems, highlighting the necessity to incorporate cross‐ecosystem effects in the risk assessment of invasive species.  相似文献   

3.
4.
The mussel genus Xenostrobus comprises eight named extant species from the Indo-West Pacific, including Xenostrobus inconstans, Xenostrobus pulex and Xenostrobus securis from Australia, the latter two also occurring in New Zealand. Xenostrobus species are predominantly restricted to estuaries or sheltered marine habitats although X. pulex inhabits the rocky intertidal on open coasts. Xenostrobus has recently been suggested to be congeneric with the freshwater invasive species Limnoperna fortunei. Xenostrobus securis is itself invasive in the Far East and Europe. This study employed DNA sequences from cytochrome c oxidase (COI), the D1 expansion region of 28S rRNA and the internal transcribed spacers of the ribosomal cistrons to investigate species relationships and habitat transitions in Australasian Xenostrobus. It is unlikely that Xenostrobus and Limnoperna are congeneric as their COI sequences are very different. There was unexpected complexity in defining Xenostrobus species. Xenostrobus pulex from New Zealand is probably a distinct species to the Australian taxon of that name with the name X. neozelanicus available for that taxon. Xenostrobus inconstans and Australian X. pulex were not reciprocally monophyletic in COI analyses. The phylogeography of the COI haplotypes of X. securis suggests that it may be a cryptic species complex, although this possibility could not be confirmed by sequences of the other genes.  相似文献   

5.
Global surface temperatures are expected to increase by several degrees in the next century, with potentially large but poorly understood impacts on ecological interactions. Here we propose potential effects of increased temperatures on ecologically dominant New Zealand grasses (Chionochloa spp.) that mass flower and mast seed. Twenty-two years’ data from five masting Chionochloa species in New Zealand showed that the cue for heavy flowering was unusually high temperature in the summer of the year before flowering. Attack by predispersal insect seed predators was much reduced in mast years, apparently because predator populations were satiated. Increased temperatures would greatly decrease interannual variation in Chionochloa flowering, allowing seed predator populations to increase and potentially to devastate the seed crop annually. Similar responses are likely in masting species worldwide. This previously unrecognized effect of global warming could have widespread impacts on temperate ecosystems.  相似文献   

6.
Understanding and predicting the outcomes of biological invasions is challenging where multiple invader and native species interact. We hypothesize that antagonistic interactions between invaders and natives could divert their impact on subsequent invasive species, thus facilitating coexistence. From field data, we found that, when existing together in freshwater sites, the native amphipod Gammarus duebeni celticus and a previous invader G. pulex appear to facilitate the establishment of a second invader, their shared prey Crangonyx pseudogracilis. Indeed, the latter species was rarely found at sites where each Gammarus species was present on its own. Experiments indicated that this may be the result of G. d. celticus and G. pulex engaging in more intraguild predation (IGP) than cannibalism; when the ‘enemy’ of either Gammarus species was present, that is, the other Gammarus species, C. pseudogracilis significantly more often escaped predation. Thus, the presence of mutual enemies and the stronger inter- than intraspecific interactions they engage in can facilitate other invaders. With some invasive species such as C. pseudogracilis having no known detrimental effects on native species, and indeed having some positive ecological effects, we also conclude that some invasions could promote biodiversity and ecosystem functioning.  相似文献   

7.
Forecasting the ecological impacts of invasive species is a major challenge that has seen little progress, yet the development of robust predictive approaches is essential as new invasion threats continue to emerge. A common feature of ecologically damaging invaders is their ability to rapidly exploit and deplete resources. We thus hypothesized that the ‘functional response’ (the relationship between resource density and consumption rate) of such invasive species might be of consistently greater magnitude than those of taxonomically and/or trophically similar native species. Here, we derived functional responses of the predatory Ponto-Caspian freshwater ‘bloody red’ shrimp, Hemimysis anomala, a recent and ecologically damaging invader in Europe and N. America, in comparison to the local native analogues Mysis salemaai and Mysis diluviana in Ireland and Canada, respectively. This was conducted in a novel set of experiments involving multiple prey species in each geographic location and a prey species that occurs in both regions. The predatory functional responses of the invader were generally higher than those of the comparator native species and this difference was consistent across invaded regions. Moreover, those prey species characterized by the strongest and potentially de-stabilizing Type II functional responses in our laboratory experiments were the same prey species found to be most impacted by H. anomala in the field. The impact potential of H. anomala was further indicated when it exhibited similar or higher attack rates, consistently lower prey handling times and higher maximum feeding rates compared to those of the two Mysis species, formerly known as ‘Mysis relicta’, which itself has an extensive history of foodweb disruption in lakes to which it has been introduced. Comparative functional responses thus merit further exploration as a methodology for predicting severe community-level impacts of current and future invasive species and could be entered into risk assessment protocols.  相似文献   

8.
Off-channel habitats play a crucial role in the life-cycles of many riverine fish species, but lateral movements of fish into these habitats are poorly understood. We tested how flow dynamics affects the movement of fish and shrimps between the main river channel and different types of off-channel habitats: a riverine lake and a wetland. Our study site was the lower Waikato River, North Island, New Zealand, where there are numerous off-channel habitats. Fish were sampled using directional fyke nets. Shortfin eel (Anguilla australis) migrated mostly into the wetland at night, particularly during high river flows. Common bullies (Gobiomorphus cotidianus) were most abundant during the day and in low-discharge conditions, moving mostly into the riverine lake, whereas freshwater shrimp (Paratya curvirostris) moved mostly into the wetland. High numbers of non-native larval common carp (Cyprinus carpio) moved out of the wetland with retreating flood water. This study emphasises the importance of lateral connectivity and flooding in functioning of this river system where numerous native fish, but also exotic fish, used off-channel habitats. Floodplain management strategies should promote ‘controlled connectivity’ measures that provide access for native species at key times while limiting opportunities for introduced species to utilise their favoured off-channel habitats.  相似文献   

9.
Extended leaf phenology (early budbreak and/or delayed leaf drop) and allelopathy are potentially key invasion mechanisms in North American deciduous forests. Because extended phenology confers increased access to light energy and allelochemical production is energetically costly, these traits may interact synergistically to determine invader impact. Garlic mustard (Alliaria petiolata) exhibits both traits, and may also exploit high light in open habitats. We manipulated seasonal light availability to examine effects of light on garlic mustard’s growth, allelochemical production, and impact on native species. Invaded and not-invaded woodland microcosms were exposed to three light treatments: shading year-round (‘extended shade’), shading when the local tree canopy was closed (‘natural shade’), and ambient light year-round (‘no-shade’). Regardless of native presence, garlic mustard biomass was highest under natural shade and, due to apparent irradiation damage, lowest under no-shade. Similarly, growth and fruit production of garlic mustard monocultures were reduced in unshaded conditions. Consistent with these results, garlic mustard reduced the growth of native woodland forbs Blephilia hirsuta and Ageratina altissima most under natural shade, suggesting that extended leaf phenology mediates impact on these herbaceous species. However, garlic mustard growth did not predict reduction of whole-community biomass: invasion reduced native community growth most under no-shade, where invader biomass was lowest but allelochemical production was highest. This result may be driven by a ‘post-mortem’ pulse of allelochemicals from decaying garlic mustard tissue. We conclude that extended leaf phenology may mediate garlic mustard’s impact on some native species, and that light and allelopathy may interact to drive invasion.  相似文献   

10.
A survey of genotypic diversity at 10 polymorphic enzyme loci in 855 isolates of Daphnia from three sites in northwestern Canada revealed a total of 46 genetically different clones. Three of these clones were identified as D. curvirostris and represent the first record of this taxon for North America. The remaining clones showed a continuous gradient of phenotypes from typical D. pulex to D. schodleri. These clones were shown to reproduce by obligate parthenogenesis, suggesting that the two ‘species’ are members of a single agamic complex.  相似文献   

11.
Pesticides, nutrients, and ecological stressors such as competition or predation co‐occur in freshwater ecosystems impacted by agriculture. The extent to which combinations of these stressors affect aquatic populations and the role of nutrients availability in modulating these responses requires further understanding. In this study, we assessed how pesticides affecting different taxonomic groups and predation influence the response of Daphnia pulex populations under different trophic conditions. An outdoor experiment was designed following a factorial design, with the insecticide chlorpyrifos, the herbicide diuron, and the predation by Notonecta sp. individuals as key stressors. The single impact of each of these stressors, and their binary and tertiary combinations, was evaluated on D. pulex abundance and population structure under mesotrophic and eutrophic conditions for 21 days. Data were analyzed using generalized linear mixed models estimated by means of a novel Bayesian shrinkage technique. Our study shows a significant influence of each of the evaluated stressors on D. pulex abundance; however, the impacts of the herbicide and predation were lower under eutrophic conditions as compared to the mesotrophic ones. We found that binary stressor interactions were generally additive in the mesotrophic scenario, except for the herbicide–predation combination, which resulted in synergistic effects. The impacts of the binary stressor combinations in the eutrophic scenario were classified as antagonistic, except for the insecticide–herbicide combination, which was additive. The tertiary interaction resulted in significant effects on some sampling dates; however, these were rather antagonistic and resembled the most important binary stressor combination in each trophic scenario. Our study shows that the impact of pesticides on freshwater populations depends on the predation pressure, and demonstrates that the combined effect of pesticides and ecological stressors is influenced by the food availability and organism fitness related to the trophic status of freshwater ecosystems.  相似文献   

12.
Daphnia subfossils from lake sediments are useful for exploring the impacts of environmental stressors on aquatic ecosystems. Unfortunately, taxonomic resolution of Daphnia remains is coarse, as only a small portion of the animal is preserved, and so the identification of daphniid subfossils typically relies upon postabdominal claws. Daphniid claws can be assigned to one of two species complexes: D. longispina or D. pulex. Both complexes contain species with differing environmental optima, and therefore improved taxonomic resolution of subfossil daphniid claws would aid paleolimnological analyses. To identify morphological features that may be used to help differentiate between species within complexes, we used species presence/absence data from net tows to select lakes in central Ontario (Canada) containing only a single species from a particular complex, then used remains preserved in surface sediments of these lakes to isolate four Daphnia species: D. ambigua and D. mendotae from the D. longispina complex, and D. pulicaria and D. catawba from the D. pulex complex. Our analyses demonstrate that, within the D. longispina complex, postabdominal claw length (PCL) and spinule length can be used to distinguish D. mendotae from D. ambigua. In addition, within the D. pulex complex, there are differences between D. pulicaria and D. catawba in the relative lengths of the proximal and middle combs on the postabdominal claw. However, the number of stout spines on the middle comb is an unreliable character for differentiating species. Overall, our data demonstrate that greater resolution within Daphnia species complexes is possible using postabdominal claws; however, the process is arduous, and applicability will likely decrease with the number of taxa present.  相似文献   

13.
Introduced predators can have profound impacts on prey populations, with subsequent ramifications throughout entire ecosystems. However, studies of predator–prey interaction strengths in community and food-web analyses focus on adults or use average body sizes. This ignores ontogenetic changes, or lack thereof, in predatory capabilities over the life-histories of predators. Additionally, large individual predators might not be physically capable of consuming very small prey individuals. Both situations are important to resolve, as native prey may or may not therefore experience ontogenetic or size refuges from invasive predators. Here, we find that the freshwater amphipod invader, Gammarus pulex, is predatory throughout its development from juvenile through to adult. All size classes collected in the field had a common prey, nymphs of the mayfly Baetis rhodani, in their guts. In an experiment with predator, prey and experimental arenas scaled for body size, G. pulex juveniles and adults consumed B. rhodani in all size-matched categories. In a second experiment, the largest G. pulex individuals were able to prey on the smallest B. rhodani. Thus, the prey do not benefit from any ontogenetic or size refuge from the predator. This corroborates with the known negative population abundance relationships between this invasive predator and its native prey species. Understanding and predicting invasive predator impacts will be best served when interactions among all life-history stages of predator and prey are considered.  相似文献   

14.
The present study was carried out with the objective of evaluating genomic STMS markers developed earlier in Brassica napus, B. oleracea, B. rapa and B. nigra for their use in Brassica juncea and B. carinata. Ninety-six of the 100 STMS markers used under standardized annealing temperatures and gel concentrations produced clear reproducible amplification pattern. For majority of the markers 60 °C annealing temperature and 3.5% metaphor agarose gel were found suitable. High cross-transferability of STMS markers to related Brassica species including B. carinata (91.6%) and B. juncea (87.5%) suggested the possibility of utilizing these markers for genome analysis in the species where no such markers are available. The ‘B’ genome derived markers showed lower level of transferability to the ‘A’ and ‘C’ genome Brassica species. The potential of STMS markers to detect polymorphism among Brassica species and genera was 98.9%. The level of inter-specific polymorphism was much higher than the intea-specific polymorphism. The markers capable of revealing polymorphism among Brassica species and genera would be useful in Brassica introgression breeding programme. The polymorphic markers were found efficient in establishing the expected evolutionary relationships among the six different Brassica species and two related genera. Low level of intra-specific polymorphism revealed by these markers suggested use of a large set of such markers for various applications in Brassica genetics, genomics and breeding.  相似文献   

15.
Environmental studies of the human-pathogenic bacterium Campylobacter jejuni have focused on linking distributions with potential sources. However, in aquatic ecosystems, the abundance of C. jejuni may also be regulated by predation. We examine the potential for grazing by the freshwater planktonic crustacean Daphnia carinata to reduce the survival of C. jejuni. We use a system for measuring grazing and clearance rates of D. carinata on bacteria and demonstrate that D. carinata can graze C. jejuni cells at a rate of 7% individual−1 h−1 under simulated natural conditions in the presence of an algal food source. We show that passage of C. jejuni through the Daphnia gut and incorporation into fecal material effectively reduces survival of C. jejuni. This is the first evidence to suggest that grazing by planktonic organisms can reduce the abundance of C. jejuni in natural waters. Biomanipulation of planktonic food webs to enhance Daphnia densities offers potential for reducing microbial pathogen densities in drinking water reservoirs and recreational water bodies, thereby reducing the risk of contracting water-borne disease.  相似文献   

16.
Characteristics of six cladocerans in relation to ecotoxicity testing   总被引:2,自引:0,他引:2  
Investigation was made to compare some biological characteristics relevant to ecotoxicity testing among six cladoceran species, including Daphnia magna, Daphnia carinata, Daphnia pulex, Ceriodaphnia quadrangular, Bosmina longirostris, and Simocephalus vetulus. The results show that D. carinata had advantages over other cladoceran species for being used as a test organism, particularly for ecotoxicological assessment of aquatic environments in tropical and subtropical areas. D. carinata had similar body size and total number of offspring per female to D. magna. However, D. carinata was more sensitive to the reference toxicant and had much shorter reproduction cycle than D. magna. D. carinata had similarity to D. pulex, C. quadrangular, S. vetulus and B. longirostris in terms of sensitivity to the reference toxicant and length of reproduction cycle. However, D. carinata was much larger in size and produced much more offspring per female than any of D. pulex, C. quadrangular, S. vetulus and B. longirostris. Among the investigated cladocerans, only the neonates (2- and 4-day-old) of D. carinata exhibited phototaxis that was sufficiently remarkable. The low among-generation variation in phototaxis index (Ip) of D. carinata and the close relationship between Ip and the concentration of the ISO standard toxicant (K2Cr2O7) appears to suggest that Ip can be used as an excellent test endpoint for ecotoxicity testing.  相似文献   

17.
  • 1 Ephemeroptera and Plecoptera in two sites of the Upper Rhône River (France) were examined using multivariate analyses to determine: (i) relationships among seventeen species traits; (ii) habitat utilization of the fifty-five species present; (iii) the relationship between species traits and habitat utilization; (iv) trends of species traits and species richness in a framework of spatial and temporal habitat variability.
  • 2 The species traits having the highest correlation ratios correspond to reproduction or life cycle, behavioural, and morphological characteristics. According to their traits, species of Baetidae, Caenidae, and Leptophlebiidae (Ephemeroptera) are opposite species of Perlidae and Perlodidae (Plecoptera).
  • 3 The distribution of species in thirteen habitat types of the Upper Rhône River floodplain demonstrates a transverse gradient from the main channel to the oxbow lakes. Plecoptera are restricted to the different main channel habitats; in contrast, Ephemeroptera families have a broader distribution with Baetidae and Leptophlebiidae occurring in most floodplain habitats.
  • 4 Plecoptera exhibit a significant relationship between species traits and habitat utilization but no relationship is evident for Ephemeroptera. Baetidae use many habitat types and have diverse species traits; in contrast, Leptophlebiidae, Heptageniidae, and Caenidae use many habitat types but each family has a rather uniform set of traits.
  • 5 Trends in species traits were significantly related to both the spatial and temporal variability of habitats. Considering only temporal variability, the distribution of species trait modalities (= categories) corresponded well to predictions on trends in the river habitat templet for ‘minimum age at reproduction’ and ‘potential longevity’, and in general for ‘descendants per reproductive cycle’, ‘reproductive cycles per year’, ‘potential size’, and ‘body flexibility’ trends in six other traits did not match predictions.
  • 6 No trends in species richness were evident in spatial–temporal framework of habitat variability.
  相似文献   

18.
Recent advances in sequencing technology and bioinformatic pipelines have allowed unprecedented access to the genomes of yet-uncultivated microorganisms from diverse environments. However, the catalogue of freshwater genomes remains limited, and most genome recovery attempts in freshwater ecosystems have only targeted specific taxa. Here, we present a genome recovery pipeline incorporating iterative subtractive binning, and apply it to a time series of 100 metagenomic datasets from seven connected lakes and estuaries along the Chattahoochee River (Southeastern USA). Our set of metagenome-assembled genomes (MAGs) represents >400 yet-unnamed genomospecies, substantially increasing the number of high-quality MAGs from freshwater lakes. We propose names for two novel species: ‘Candidatus Elulimicrobium humile’ (‘Ca. Elulimicrobiota’, ‘Patescibacteria’) and ‘Candidatus Aquidulcis frankliniae’ (‘Chloroflexi’). Collectively, our MAGs represented about half of the total microbial community at any sampling point. To evaluate the prevalence of these genomospecies in the chronoseries, we introduce methodologies to estimate relative abundance and habitat preference that control for uneven genome quality and sample representation. We demonstrate high degrees of habitat-specialization and endemicity for most genomospecies in the Chattahoochee lakes. Wider ecological ranges characterized smaller genomes with higher coding densities, indicating an overall advantage of smaller, more compact genomes for cosmopolitan distributions.  相似文献   

19.
Despite many ecological and evolutionary studies, the history of several species complexes within the freshwater crustacean genus Daphnia (Branchiopoda, Anomopoda) is poorly understood. In particular, the Daphnia longispina group, comprising several large-lake species, is characterized by pronounced phenotypic plasticity, many hybridizing species and backcrossing. We studied clonal assemblages from lakes and ponds comprising daphnids from several species complexes. In order to reveal patterns of reticulate evolution and introgression among species, we analysed three data sets and compared nuclear, mtDNA and morphological divergence using animals from 158 newly established clonal cultures. By examining 15 nuclear and 11 mitochondrial (12S/16S rDNA) genetic characters (allozymes/restriction enzymes), and 48 morphological traits, we found high clonal diversity and discontinuities in genotypic and morphological space which allowed us to group clones by cytonuclear differentiation into seven units (outgroup D. pulex). In contrast to six groups emerging from nuclear divergence (related to three traditional species, D. cucullata, D. galeata, D. hyalina and three pairwise intermediate hybrids), a seventh group of clones was clearly resolved by morphological divergence: distinct mtDNA haplotypes within one nuclear defined cluster, ‘D. hyalina’, resembled traditional D. hyalina and D. rosea phenotypes, respectively. In other nuclear defined clusters, association between mtDNA haplotype and morphology was low, despite hybridization being bidirectional (reciprocal crosses). Morphological divergence was greatest between young sister species which are separated on the lake/pond level, suggesting a significant role for divergent selection during speciation along with habitat shifts. Phylogenetic analyses were restricted to four cytonuclear groups of clones related to species. mtDNA and nuclear phylogenies were consistent in low genetic divergence and monophyly of D. hyalina and D. rosea. Incongruent patterns of phylogenies and different levels of genetic differentiation between traditional species suggest reticulate evolutionary processes.  相似文献   

20.
1. Data from field surveys, laboratory experiments and computer simulations of community dynamics revealed that a novel interaction among intraguild predation, physiological adaptation and environment may explain the complex distributions of two putatively competing aquatic amphipods. 2. Gammarus pulex and G. tigrinus both thrive in fresh and oligohaline waters in western Europe. However, the native European G. pulex excludes the invading North American G. tigrinus from freshwaters of relatively low conductivity, whereas the reverse occurs at higher conductivities. Additionally, there is much spatio-temporal fluctuation in the patterns of coexistence of these species. 3. Laboratory experiments in The Netherlands and Ireland revealed that mutual predation of moulting individuals occurred frequently between these species. However, predation frequencies were differentially in favour of G. pulex under the ionic conditions to which this species is physiologically adapted (freshwater). On the other hand, predation was not differential under the ionic conditions to which G. tigrinus is physiologically adapted (oligohaline water). 4. A mathematical model, which extends the logistic equation to include mutual intraguild predation, simulated interactions over a range of values of relevant population parameters. This indicated that G. pulex would be excluded when balanced instantaneous rates of mutual predation were combined with the known greater reproductive output of G. tigrinus. However, this reproductive advantage is overcome by any relatively small bias in the instantaneous rate of predation favouring G. pulex, leading to the exclusion of G. tigrinus. This occurs even when the reproductive advantage to G. tigrinus is relatively large. Moreover, the model generated ‘switches’ in species dominance that are determined by the relative values of reproductive rate and mutual predation. The time taken to ‘switch’ may explain the transient periods of apparent coexistence of these species observed in the field. 5. The complex community dynamics of such species may thus be understood in terms of variation in the intensity of species interactions mediated by behavioural, physiological and environmental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号