共查询到20条相似文献,搜索用时 15 毫秒
1.
Restoring small-scale habitat heterogeneity in highly diverse systems, like tropical forests, is a conservation challenge and offers an excellent opportunity to test factors affecting community assembly. We investigated whether (1) the applied nucleation restoration strategy (planting tree islands) resulted in higher habitat heterogeneity than more homogeneous forest restoration approaches, (2) increased heterogeneity resulted in more diverse tree recruitment, and (3) the mean or coefficient of variation of habitat variables best explained tree recruitment. We measured soil nutrients, overstory and understory vegetation structure, and tree recruitment at six sites with three 5- to 7-year-old restoration treatments: control (no planting), planted tree islands, and conventional, mixed-species tree plantations. Canopy openness and soil base saturation were more variable in island treatments than in controls and plantations, whereas most soil nutrients had similar coefficients of variation across treatments, and bare ground was more variable in control plots. Seedling and sapling species density were equivalent in plantations and islands, and were substantially higher than in controls. Species spatial turnover, diversity, and richness were similar in island and plantation treatments. Mean canopy openness, rather than heterogeneity, explained the largest proportion of variance in species density. Our results show that, whereas canopy openness and soil base saturation are more heterogeneous with the applied nucleation restoration strategy, this pattern does not translate into greater tree diversity. The lack of a heterogeneity–diversity relationship is likely due to the fact that recruits respond more strongly to mean resource gradients than variability at this early stage in succession, and that seed dispersal limitation likely reduces the available species pool. Results show that planting tree islands facilitates tree recruitment to a similar degree as intensive plantation-style restoration strategies. 相似文献
2.
Although recent studies have revealed that the relationship between diversity and environmental heterogeneity is not always positive, as classical niche theory predicts, scientists have had difficulty interpreting these results from an ecological perspective. We propose a new concept—microfragmentation—to explain how small-scale heterogeneity can have neutral or even negative effect on species diversity. We define microfragmentation as a community level process of splitting habitat into a more heterogeneous environment that can have non-positive effects on the diversity through habitat loss and subsequent isolation. We provide support for the microfragmentation concept with results from spatially explicit heterogeneity–diversity model simulations, in which varying sets of species (with different ratios of specialist and generalist species) were modeled at different levels of configurational heterogeneity (meaning that only the habitat structure was changed, not its composition). Our results indicate that environmental heterogeneity can affect community diversity in the same way as fragmentation at the landscape level. Although generalist species might not be seriously affected by microfragmentation, the persistence of specialist species can be seriously disturbed by small-scale patchiness. The microfragmentation concept provides new insight into community level diversity dynamics and can influence conservation and management strategies. 相似文献
3.
Plant community productivity generally increases with biodiversity, but the strength of this relationship exhibits strong empirical variation. In meta-food-web simulations, we addressed if the spatial overlap in plants' resource access and animal space-use can explain such variability. We found that spatial overlap of plant resource access is a prerequisite for positive diversity–productivity relationships, but causes exploitative competition that can lead to competitive exclusion. Space-use of herbivores causes apparent competition among plants, resulting in negative relationships. However, space-use of larger top predators integrates sub-food webs composed of smaller species, offsetting the negative effects of exploitative and apparent competition and leading to strongly positive diversity–productivity relationships. Overall, our results show that spatial overlap of plants' resource access and animal space-use can greatly alter the strength and sign of such relationships. In particular, the scaling of animal space-use effects opens new perspectives for linking landscape processes without effects on biodiversity to productivity patterns. 相似文献
4.
The interspecific relationship between local abundance and regional distribution, as well as the occupancy frequency distribution, are widely studied topics in macroecology. A positive abundance-occupancy relationship has been found in a majority of studies, and satellite species modes are typically dominant in occupancy frequency distributions. However, there are a number of exceptions to these "general" findings, and only a few studies have examined these patterns and their temporal variability in stream organisms. I examined both abundance-occupancy relationships and occupancy frequency distributions in stream insects in a boreal drainage system over six consecutive years. I found that the positive interspecific abundance-occupancy relationship was highly stable temporally, with coefficients of determination ranging from 0.25 to 0.47 over the years. There were no strong differences in the strength and slope of the abundance-occupancy relationship between non-predatory and predatory insect species in each year. Temporally stable abundance-occupancy relationships were paralleled by among-year patterns in both abundance and occupancy, with locally abundant and widely distributed species remaining locally abundant and widely distributed over the years, while locally uncommon and regionally rare species showed the opposite. Occupancy frequency distributions were strongly right-skewed, mirroring the dominance of the left-most satellite mode of regionally rare species. That the abundance-occupancy relationship, species' abundances and distributions, as well as the dominance of satellite species in occupancy frequency distribution were temporally stable suggest that niche-based models are strong candidates for explaining these patterns in stream insects. By contrast, metapopulation-based models that predict clear temporal variability in species' abundance and occupancy, as well as bimodal occupancy frequency distributions, are less plausible candidates for explaining the observed patterns. The present findings are the opposite to those in some terrestrial studies, but they are in agreement with other terrestrial studies and with a few previous studies on stream organisms. 相似文献
5.
A relationship between global sea levels and the diversity of marine invertebrates throughout the Phanerozoic remains an urgent matter for debates. Its recognition depends on a proper selection of diversity and eustatic curves. A comparison of changes in the revised sample-standardized generic diversity and long-term global sea-level changes provides a weaker evidence for a direct covarying relationship than established earlier, although the eustatic control on diversity dynamics of marine invertebrates was important during ∼74% of the Phanerozoic. Multiple causation of biodiversity changes, data bias, erroneous reconstructions, and conceptual misinterpretations are likely explanations of observed difference between the new biodiversity and eustatic curves. 相似文献
6.
For a period of one year we injected a solution of stream water enriched with glucose and inorganic nitrogen and phosphorus at two experimental sites into the hyporheic sediments of the Oberer Seebach, Austria. The biofilm reacted with a quantitative increase after two weeks. The hyporheic invertebrates were sampled with the Cage Pipe Trap method, where the number of trapped animals is determined by the spatial density and the activity of the invertebrates. Within two and six weeks, the hyporheic invertebrates exhibited a reaction indicating an utilization of the new food resources. Over a longer period of one year, three different reaction patterns appeared. The number of nematods and ostracods increased extensively, presumably caused by the modification of the spatial structure of the environment due to biofilm growth. The number of the small sized invertebrates decreased, reflecting the reduced feeding effort. And the number of the large insect larvae increased indicating that these group is mainly limited by space. The hyporheic zone is described as a ‘self-cleaning DOC filter’, an attribute that is particularly assigned to the ecotone between the riparian soil zone and the stream hyporheic zone. 相似文献
7.
The relationship between dry weight and body length for larvae of Plecoptera ( Leuctra spp., Isoperla grammatica, Nemoura cinerea) and Ephemeroptera ( Baetis spp., Habrophlebia fusca, Paraleptophlebia submarginata, Ecdyonurus helveticus, Rhithrogena semicolorata), collected from a carbonate stream in the Apennine (central Italy), is reported. The power equation f( x) = Ax
B
has been applied to fit the curves of dry weight vs. body size (length) in the ranges 0.03–13.00 mg and 2–14 mm, respectively;
a total of 674 larvae were examined. The power model was in very good agreement with experimental data. Moreover, the error
between measured and estimated weight was in the 4–20% range. The data on Isoperla grammatica, Leuctra spp., Rhithrogena semicolorata and Baetis spp. were compared to those in a previous study in a different geographical setting (south-western Germany’s Black Forest)
obtaining similar results but with lower errors. We used and compared two methods: the weighted least-square method (WLS)
and an analysis of covariance (ANCOVA). The values of the A and B coefficients obtained with the two methods were very similar (<6% discrepancy for either A or B). We found the best fits for all the examined Plecoptera (species, genus, and order level), while the results for Ephemeroptera
were varied, with loose fits at the order level and also for Leptophlebiidae collectively considered.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Handling editor: R. Bailey 相似文献
10.
Research on island species–area relationships (ISAR) has expanded to incorporate functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these three categories of island diversity–area relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs at the global scale using 51 avian archipelagic data sets representing true and habitat islands. Using null models, we explore how richness-corrected functional and phylogenetic diversity scale with island area. We also provide the largest global assessment of the impacts of species introductions and extinctions on the IDAR. Results show that increasing richness with area is the primary driver of the (non-richness corrected) IPDAR and IFDAR for many data sets. However, for several archipelagos, richness-corrected functional and phylogenetic diversity changes linearly with island area, suggesting that the dominant community assembly processes shift along the island area gradient. We also find that archipelagos with the steepest ISARs exhibit the biggest differences in slope between IDARs, indicating increased functional and phylogenetic redundancy on larger islands in these archipelagos. In several cases introduced species seem to have ‘re-calibrated’ the IDARs such that they resemble the historic period prior to recent extinctions. 相似文献
11.
An understanding of relationships between species diversity and disturbance gradient is important to comprehend the role of disturbances in the structure of plant communities. Although some studies have demonstrated incongruence in diversity–disturbance relationships (hereafter DDRs) between aboveground vegetation and soil seedbank, the process that causes the difference remains unclear. This incongruence between the two DDRs could result in the decrease in the source of recovery of aboveground vegetation following disturbances being overlooked when only aboveground vegetation is surveyed. Here, we verified a process that species turnover across the disturbance gradient causes the incongruence. Based on a vegetation and seedbank survey, we examined DDRs and species turnover of aboveground vegetation and seedbank along disturbance duration (i.e., excluding years of ungulate grazing). The degree of species turnover was considerably greater in aboveground vegetation than in seedbank; thus, the degree of species turnover along a disturbance gradient caused the difference in DDR between aboveground vegetation and seedbank. 相似文献
12.
The global decline in biodiversity is causing increasing concern about the effects of biodiversity loss on ecosystem services such as productivity. Biodiversity has been hypothesised to be important in maintaining productivity of biological assemblages because niche complementarity and facilitation among the constituent species can result in more efficient use of resources. However, these conclusions are primarily based on studies with plant communities, and the relationship between diversity and productivity at higher trophic levels is largely unknown, especially in the marine environment. Here, we used a manipulative field experiment to test the effects of species richness and species identity on biomass accumulation in coral reef fish assemblages at Lizard Island. Small patch reefs were stocked with a total of 30 juveniles belonging to three planktivorous damselfish (genus Pomacentrus) according to three different levels of fish species richness (one, two and three species) and seven different combinations of fish species. Species richness had no effect on the relative growth in this assemblage after 18 days, but relative growth differed among individual fish species and the different combinations of species. Patterns of increase in biomass were best explained by species-specific differences and variable effects of intra- and interspecific competition on growth. These results suggest that niche complementarity and facilitation are not the most influential drivers of total productivity within this guild of planktivorous fishes. Total productivity may be resilient to declining reef fish biodiversity, but this will depend on which species are lost and on the life-history traits of remaining species. 相似文献
13.
生物和非生物因素决定高山草甸物种多样性-生产力相互关系自然条件下物种多样性-生产力相互关系取决于生物和非生物因素,但其相对重要性及相互作用仍不清晰,特别是在未来的气候变化情景下。为此,我们在中国玉龙雪山3处不同海拔的高山草甸开展了模拟气候变暖和大气氮沉降的完全随机组块析因试验。除物种多样性外,我们根据株高、比叶面积、叶片碳、氮、磷含量计算了实验处理下草甸植物群落的功能多样性,并将其作为关键生物因素。此外,我们测量了气温、降雨以及土壤的化学属性作为潜在重要的非生物因素。我们利用广义线性混合模型研究了物种多样性和植物生产力对海拔、增温、施肥及其可能的交互作用的响应,同时评估了上述生物和非生物因素对物种多样性-生产力相互关系的影响。研究结果表明,物种多样性随海拔升高而降低并且在增温处理下有下降趋势且在中间海拔最为强烈。相对而言,植物生产力仅随海拔升高而下降。功能丰富度、最高气温、土壤pH对物种多样性-生产力相互关系表现出强烈的负交互作用,即物种多样性-生产力相互关系随着这些因素的增加从正相互关系变为中性关系,然后变为轻微的负相互关系。我们的研究指出短期增温对高山草甸物种多样性的负面影响,并强调生物和非生物因素决定了自然条件下物种多样性-生产力相互关系。 相似文献
14.
Unlike other macroecological principles, relationships between productivity and diversity have not been effectively tested for microbial communities. Here we describe an experiment in which the availability of resources to soil bacterial communities was manipulated in a model system, the McMurdo Dry Valleys of Antarctica. Mannitol additions were used to simulate a productivity gradient such that a response in bacterial biomass production, taxonomic diversity and functioning (e.g., enzyme activity) were induced. Resource amendment induced a positive linear response in microbial productivity ( P < 0.001) but a unimodal (hump-shaped) response in microbial diversity at multiple taxonomic scales ( P = 0.035). Putative oligotrophic (e.g., phyla Nitrospirae and Cyanobacteria) and copiotrophic (e.g., phylum Proteobacteria) taxa were apparent through substantial community turnover along the resource gradient. Soil enzyme activity was inversely related to bacterial biomass but positively related to diversity, suggesting the latter may be a stronger control over enzyme-mediated decomposition. The mechanisms behind this pattern are consistent with macroecological theory of a shift from environmental (e.g., stress tolerance) to biotic (e.g., competition) drivers with increasing resource availability. This evidence is among the first of its kind to document a significant unimodal productivity–diversity relationship for soil bacteria. 相似文献
15.
Although a widely accepted ecological theory predicts that more diverse plant communities should be better able to capture resources and turn carbon dioxide into biomass, the most productive communities known are low diversity agricultural ones. This paradox has fuelled a long running controversy in ecology surrounding the nature of the relationship between diversity, productivity and fertility. Here, an evolutionary computer model is used which demonstrates that given the opportunity, species-rich communities may evolve under high fertility conditions. In contrast to low diversity, highly productive agricultural communities are shown to probably be a recent phenomenon. In simulations where fertility was applied to communities that had evolved under lower nutrient conditions, a few species had the ability to become ‘dominant’. These species were responsible for the loss of diversity and for the majority of biomass production. These results are consistent with complementarity theory applying in nature in old co-evolved low nutrient communities, whereas in recently established fertile agricultural communities, dominant species appear to regulate biomass production. Understanding the nature of these ‘dominant’ species throws light on our understanding of phenotypic plasticity and the ecology of invasive species. The appendices files are currently available at . 相似文献
16.
Assembly rules are ecological processes imposed on a regional species bank to establish the structure of communities and define diversity patterns regarding space and time. Here, we investigated the trait distribution of periphytic algae in floodplain lakes that are naturally under contrasting environmental pressures with and without flood pulse action (low and high water phases) and the relationship between functional traits and environmental variables at regional and local scales. We hypothesized that functional clustering will be related to the low water phase in local scale, based on environment filters, and functional overdispersion to the high water phase in regional scale. With respect to traits, we can expect that the flood pulse would favored the prevalence of nanoperiphyton, filamentous forms and loosely attached. For this, we conducted a two-year assessment of the structure and dynamic of periphytic algae communities regarding their functional traits in lakes belonging to two sub-basins in a subtropical floodplain (upper Paraná River floodplain). The samplings occurred during the high water phase in 2010 and 2011 and the low water phase in 2011. The functional diversity values of the communities were quantified and compared with the mean value of communities randomly generated using null models. The relationships between functional traits and environmental variables were examined using RLQ analysis. We have shown that the traits respond to abiotic factors, and they indicated overdispersion in high water phase, and higher functional diversity in most preserved environments with absence of the pulse. The flood pulse favored the prevalence of colonial life form, stalked, entangled and heterotrichous species. This study showed spatial and temporal differences in the limnological characteristics between the lakes caused by hydrological phase and local forces in different sub-basins and the importance mainly of assimilable nutrients in the evaluation of trait–environment relationships. The overdispersion result can be assigned to flood pulse, which promotes a higher probability of dispersion and colonization of new areas for rare species, disturbance and more heterogeneous habitats, allowing opportunities for resource partitioning and regeneration of different species strategies. Moreover, the higher periphytic algae functional diversity in preserved sites emphasizes the importance of understanding ecological patterns linked to environmental degradation, as well as of conservation initiatives, because variation in periphytic algal communities implies in changes in the trophic structure, dynamics and in the functioning of environments. 相似文献
17.
A series of aliphatic esters of the non-opioid anaesthetic/analgesic ketamine were prepared and their properties as shorter-acting analogues of ketamine itself were explored in an infused rat model, measuring the time after infusion to recover from both the anaesthetic (righting reflex) and analgesic (response to stimulus) effects. The potency of the esters as sedatives was not significantly related to chain length, but Me, Et and i-Pr esters were the more dose potent (up to twofold less than ketamine), whereas n-Pr esters were less potent (from 2- to 6-fold less than ketamine). For the Me, Et and i-Pr esters recovery from anaesthesia was 10–15-fold faster than from ketamine itself, and for the n-Pr esters it was 20–25-fold faster than from ketamine. A new dimethylamino ketamine derivative (homoketamine) had ketamine-like sedative effects but was slightly less potent than, but ester analogues of homoketamine had very weak sedative effects. 相似文献
18.
Coloured dissolved organic matter (CDOM) modifies the light penetration into water bodies due to stronger absorbance of UV and short wavelengths of light. Therefore, in natural waters with high CDOM concentration, the spectrum of sunlight is shifted towards brown, also referred to as brownification. Here, the relation between the spectrophotometrically measured water colour (CDOM) and landscape properties is examined. These properties explained at best > 40% of the CDOM variability among the study lakes larger than 10 km 2. The key “permanent” landscape variables were lake percentage (Lake %) in the uppermost catchment area, and the peat land coverage (Peat %) of the catchment, which indeed was strongly correlated with lake elevation above the sea level. High Lake % indicated low CDOM concentration, while high Peat % indicated the opposite. Relative to the Peat % of the catchment, the CDOM concentrations were, on average, slightly higher in medium-size lakes (area 10–100 km 2) than in large lakes (area > 100 km 2), while relative to Lake % the concentrations declined more in medium-size lakes. 相似文献
19.
Intensive forestry and other activities that alter riparian vegetation may disrupt the connectivity and the flux of energy between terrestrial and aquatic habitats and have large effects on biota, especially in small streams. We manipulated the amount of in-stream wood and the flux of terrestrial invertebrate subsidies to determine how these factors affected potential food resources for drift-feeding brown trout (Salmo trutta ) in a boreal Swedish forest stream. Specifically, we followed the effects on the abundance of aquatic and terrestrial invertebrate fauna from June to August 2007. The treatments were 1) addition of wood, unmanipulated terrestrial invertebrate inputs, 2) reduction of terrestrial invertebrate inputs (using canopy covers), no addition of wood, 3) unmanipulated ambient conditions, 4) simultaneous addition of wood and reduction of terrestrial invertebrate inputs. Added wood resulted in greater biomass of aquatic invertebrate biomass, and both input and drift of terrestrial invertebrates were reduced by canopy covers. In terms of total potential prey biomass, the addition of wood with ambient levels of terrestrial invertebrate inputs had the highest standing crop of benthic, wood-living and terrestrial invertebrates combined, whereas the treatment with reduced terrestrial input and no wood added had the lowest standing crop. Our study indicates that forest practices that both reduce the recruitment of wood and the input of terrestrial invertebrates to small streams have negative effects on prey availability for drift-feeding brown trout. The positive effects of wood addition on biomass of aquatic macroinvertebrates may partly compensate for the negative effects of reduced terrestrial invertebrate subsidies. 相似文献
20.
Forest fragments embedded within agricultural landscapes have the potential to provide a “forest reset effect” by mitigating
agricultural effects on water quality, and acting as refugia and conservation reserves for aquatic species. We investigated
the ability of forest fragments to reset agricultural effects using four catchments in the South Island, New Zealand. Two
catchments were dominated by agricultural activities, but each had an isolated forest fragment in the lower valley, and two
catchments had continuous riparian forest along the valley floor. Riffles sampled in continuous forest were generally deeper
than those in agricultural and forest fragments, and not surprisingly streams in forest fragments and continuous forest received
less light than those in agricultural land. All sites had circum-neutral pH, but both conductivity and temperature were significantly
lower at continuous forest sites than agricultural and forest fragment sites. Taxonomic richness, Margalef’s index and numbers
of Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa were significantly higher in continuous forest than at forest fragment
sites, but overall invertebrate densities did not differ between fragments and continuous forest. Several taxa were abundant
at agricultural and forest fragment sites, but absent or at low densities in continuous forest. They included the blackfly
Austrosimulium spp. and two caddisflies Pycnocentrodes sp. and Hydrobiosis parumbripennis. Conversely, the mayflies Austroclima sp. and Coloburiscus humeralis and the blepharicerid Neocurupira chiltoni were either restricted to continuous forest, or abundant in continuous forest but rare in agricultural and forest fragments.
An ordination of communities separated those in agricultural and continuous forest sites, but communities at forest fragment
sites were clustered among the agricultural sites. In this study forest fragments of 5–7 ha, located in the lower reaches
of the catchment did not mitigate the negative upstream effects of agriculture on stream functioning. Fragment size (or riparian
forest length), riparian forest width and vegetation type, and fragment location in the catchment may have critical roles
in enabling forest fragments to reset the negative impacts of agriculture. Determining these characteristics of fragments
has important consequences for stream remediation. 相似文献
|