首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunogold localization of hydrogenase in free-living Frankia CpI1   总被引:1,自引:0,他引:1  
Abstract The free-living Frankia strain CpI1 cultured under nitrogen-fixing and non-nitrogen-fixing conditions was investigated for occurrence of hydrogenase protein by Western blots. Transmission electron microscopy and immunocytological labelling were used to study the distribution of hydrogenase in the Frankia strain.
Western immunoblots revealed that a 72-kDa protein in the Frankia strain CpI1 was immunologically related to the large subunit of a dimeric hydrogenase purified from Alcaligenes latus . Immunolocalization showed that the hydrogenase protein is located both in vesicles and hyphae in Frankia strain CpI1 grown in a nitrogen-free medium. Earlier reports that nitrogenase is localized in the vesicles [1,2], together with this finding, point out a possible role for hydrogenase in increasing relative efficiency of nitrogen fixation. In CpI1 grown in media containing nitrogen (lacking vesicles), the enzyme was evenly distributed in the hyphae. The impact of this result has to be further analysed.  相似文献   

2.
Long-distance transport is crucial for polar-growing cells, such as neurons and fungal hyphae. Kinesins and myosins participate in this process, but their functional interplay is poorly understood. Here, we investigate the role of kinesin motors in hyphal growth of the plant pathogen Ustilago maydis. Although the microtubule plus-ends are directed to the hyphal tip, of all 10 kinesins analyzed, only conventional kinesin (Kinesin-1) and Unc104/Kif1A-like kinesin (Kinesin-3) were up-regulated in hyphae and they are essential for extended hyphal growth. deltakin1 and deltakin3 mutant hyphae grew irregular and remained short, but they were still able to grow polarized. No additional phenotype was detected in deltakin1rkin3 double mutants, but polarity was lost in deltamyo5rkin1 and deltamyo5rkin3 mutant cells, suggesting that kinesins and class V myosin cooperate in hyphal growth. Consistent with such a role in secretion, fusion proteins of green fluorescent protein and Kinesin-1, Myosin-V, and Kinesin-3 accumulate in the apex of hyphae, a region where secretory vesicles cluster to form the fungal Spitzenk?rper. Quantitative assays revealed a role of Kin3 in secretion of acid phosphatase, whereas Kin1 was not involved. Our data demonstrate that just two kinesins and at least one myosin support hyphal growth.  相似文献   

3.
天麻吸收蜜环菌营养机制的细胞学研究   总被引:3,自引:0,他引:3  
天麻(Gastrodia elata BI.)地下块茎皮层内具三种染菌细胞:通道细胞、寄主细胞和消化细胞。超微结构的研究表明,通道细胞被真菌所破坏,寄主细胞与真菌保持共生关系,而消化细胞能反寄生于真菌并从真菌摄取营养。消化细胞首先释放溶酶体小泡消化真菌,然后通过内吞管和内吞泡吸收菌丝细胞质降解后渗漏的可溶性有机大分子物质,后期通过消化泡进一步吞噬和消化不溶性菌丝细胞壁物质。  相似文献   

4.
There are three type cells infected by the mycorrhizal fungus, ArmiUaria mellea (Vahl ex Fr. ) Karst in the tube cortex of Gastrodia elata BI., namely the passage cells, host cells and digesting cells. Ultrastructural study demonstrated that the passage cells were distroyed by the hyphae, the host cells kept symbiotic with the hyphae, but the digesting cells could become inversely parasitic on the hyphae from which nutrient were being uptaken. The detail process of the digesting cells obtaining nutrient'from the fungus is described as follows: Firstly the digesting cells began to attack the invading hyphae by releasing numerious electron-transparent vesicles of lysosomal property, secondly they took up the soluble organic material leaked out from the digested hyphae by forming many electron-dense endocytic tubes and vesicles, and finally they endocytosed and hydrolysed the insoluble hyphal walls by forming large digesting vacuole in which a piece of hyphal wall was completely enveloped.  相似文献   

5.
Intracellular hyphae and vesicles in mycorrhizal roots of yellow poplar were examined by electron microscopy. An investing layer of host wall material and cytoplasm enclosed the endophyte within the cells. Young developing hyphae contained abundant cytoplasm and few vacuoles. As hyphae matured, they became highly vacuolated and accumulated carbohydrate (glycogen) and lipid reserves. Mature vesicles were engorged with lipid droplets, possessed a trilaminate wall and were also enclosed by host wall material and cytoplasm. Compared with uninfected cells, infected cortical cells showed an increase in cytoplasmic volume, enlarged nuclei, and a reduction of starch reserves. Host nuclei were always proximal to the hyphae during hyphal development and deterioration. While other cytoplasmic components of infected and uninfected cells were comparable large electron-dense bodies occurred in vacuoles of most cells containing hyphae. Deterioration of intracellular hyphae occurred throughout the samples examined. Septa separated functional and degenerating portions of the hyphae. Hyphal deterioration involved degeneration and ultimate disappearance of fungal cytoplasm as well as collapse of hyphal walls. Based on these observations, the authors hypothesize that deterioration of the endophyte may release significant quantities of mineral nutrients, via hyphal contents, which are absorbed by the host.  相似文献   

6.
Cytoplasmic vesicles in germinating spores ofGilbertella persicaria   总被引:1,自引:0,他引:1  
Summary Germ tube apices ofGilbertella persicaria contain cytoplasmic vesicles, similar to the secretory vesicles found at the tips of vegetative hyphae. The vesicles are present at all stages of development, from the time of germ tube initiation to the establishment of branched hyphae. In contrast to the abundant vesicles at tips of established hyphae, the germ tubes have only a few apical vesicles in a layer next to the plasma membrane. When germinated spores are treated by washing and centrifuging prior to fixation, the cytoplasm is often disrupted near the apex, and the clusters of apical vesicles disappear. The findings indicate the delicate nature of hyphal tips and the necessity of avoiding prefixation stresses in order to preserve the apical apparatus of growing hyphae.  相似文献   

7.
The process of hyphal fusion (anastomosis) in growing colonies of Neurospora crassa, stained with the membrane-selective dyes FM1-43 and FM4-64, was visualized by confocal microscopy. Time-lapse, live-cell imaging illustrated the dynamics of hyphal growth and anastomosis during its pre-contact, contact and post-contact, and post-fusion stages. Fusion-competent hyphae were morphologically distinct and exhibited remote sensing, resulting in branch initiation and/or re-direction of growth to facilitate contact between participating hyphae. A stained Spitzenk?rper was often observed where fusion-competent hyphae met. It is suggested that this structure contains secretory vesicles responsible for the delivery of cell adhesion molecules at the point of contact, cell wall synthesizing enzymes for the swelling growth of fused hyphal tips, and digestive enzymes required for fusion pore formation. Dramatic changes in cytoplasmic flow frequently occurred between the participating hyphae following fusion. After anastomosis has taken place, septa commonly formed close to the fusion site. The live-cell imaging reported here has clearly shown the complexity of the hyphal homing and fusion process. The control and consequences of repeated anastomoses within a mycelium must be as complex as the process itself.  相似文献   

8.
Current models that describe the extension of fungal hyphae and development of a mycelium either do not describe the role of vesicles in hyphal extension or do not correctly describe the experimentally observed profile for distribution of vesicles along the hypha. The present work uses the n-tanks-in-series approach to develop a model for hyphal extension that describes the intracellular transport of nutrient to a sub-apical zone where vesicles are formed and then transported to the tip, where tip extension occurs. The model was calibrated using experimental data from the literature for the extension of reproductive aerial hyphae of three different fungi, and was able to describe different profiles involving acceleration and deceleration of the extension rate. A sensitivity analysis showed that the supply of nutrient to the sub-apical vesicle-producing zone is a key factor influencing the rate of extension of the hypha. Although this model was used to describe the extension of a single reproductive aerial hypha, the use of the n-tanks-in-series approach to representing the hypha means that the model has the flexibility to be extended to describe the growth of other types of hyphae and the branching of hyphae to form a complete mycelium.  相似文献   

9.
Vesicle formation and acetylene reduction (nitrogenase activity) were observed when washed hyphae from cultures of Frankia sp. CpI1 were transferred to a nitrogen-free medium containing ethylenediaminetetraacetic acid and succinate. Succinate could be replaced by malate or fumarate, but not other carbon sources. Maximum acetylene reduction and vesicle numbers were observed at a pH of 6.0-6.5, at 25-30 degrees Centigrade, and at atmos pheric Po2 or somewhat less (5-20 kPa). Addition of 1 mM NH4Cl almost completely inhibited vesicle formation and acetylene-reducing activity, but did not immediately inhibit such reducing activity by cultures with preexisting vesicles. Acetylene-reducing activity was never observed in the absence of vesicle formation.  相似文献   

10.
本文利用电子显微镜技术研究了内吸性杀菌剂甲霜灵(Metalaxyl)对大豆疫霉Phytophthoras ojae野生菌株和突变菌株的形态学及超微结构的影响。结果表明:不同浓度甲霜灵处理后可导致野生菌株和突变菌株发生一系列不同的变化。低浓度(1μg/mL)处理后,野生菌株在培养基上的生长即可受到抑制,菌丝呈现不规则的肿胀、过度分枝;菌丝细胞壁不规则加厚,菌丝细胞内液泡增加,脂肪粒累积,细胞器排列紊乱,原生质最终坏死。随浓度的升高,野生菌株立即停止生长,菌丝干瘪坏死。而突变菌株只在高浓度(10μg/mL)甲霜灵处理后顶端菌丝出现少量较小的分枝,菌丝细胞壁无增厚现象,但细胞内脂肪粒大量积累,明显高于敏感性菌株;突变菌株在高浓度甲霜灵压力下仍继续生长。  相似文献   

11.
S. IMHOF 《The New phytologist》1999,144(3):533-540
Afrothismia winkleri develops fleshy rhizomes, densely covered with small root tubercles, narrowing to filiform roots with age. The exclusively intracellular mycorrhizal fungus has distinct morphologies in different tissues of the plant. In the filiform root the hyphae grow straight and vesicles are borne on short hyphal stalks. The straight hyphae are present in the epidermis of the root tubercles, but change to loosely coiled and swollen hyphae in the rhizome tissue. No penetration from epidermis to root cortex was found. From the rhizome, a separating cell layer permits only one or rarely two hyphal penetrations into the cortex of each root tubercle. The hyphae proceed apically within the root hypodermis in a spiral row of distinctively coiled hyphae, branches of which colonize the inner root cortex. In the inner root cortex the hyphal coils degenerate to amorphous clumps. In older roots the cortex itself also deteriorates, but epidermis, hypodermis, endodermis and central cylinder persist. The mycorrhizal pattern in A. winkleri is interpreted as an elaborate exploitation system whereby the fungus provides carbon and nutrients to the plant and, simultaneously but spatially distinct, its hyphae are used to translocate and store the matter within the plant. Several features indicate that the endophyte is an arbuscular mycorrhizal fungus.  相似文献   

12.
The human fungal pathogen Candida albicans undergoes reversible morphogenetic transitions between yeast, hyphal and pseudohyphal forms. The fungal vacuole actively participates in differentiation processes and plays a key role supporting hyphal growth. The ABG1 gene of C. albicans encodes an essential protein located in the vacuolar membranes of both yeast and hyphae. Using fluorescence microscopy of a green fluorescent protein-tagged version of Abg1p, a fraction of the protein was detected in hyphal tips, not associated with vacuolar membranes. Live cell imaging of emerging germ tubes showed that Abg1p migrated to the polarized growth site and colocalized with endocytic vesicles. Phenotypic analysis of a methionine-regulated conditional mutant confirmed that Abg1p is involved in endocytosis.  相似文献   

13.
Morphogenesis of filamentous ascomycetes includes continuously elongating hyphae, frequently emerging lateral branches, and, under certain circumstances, symmetrically dividing hyphal tips. We identified the formin AgBni1p of the model fungus Ashbya gossypii as an essential factor in these processes. AgBni1p is an essential protein apparently lacking functional overlaps with the two additional A. gossypii formins that are nonessential. Agbni1 null mutants fail to develop hyphae and instead expand to potato-shaped giant cells, which lack actin cables and thus tip-directed transport of secretory vesicles. Consistent with the essential role in hyphal development, AgBni1p locates to tips, but not to septa. The presence of a diaphanous autoregulatory domain (DAD) indicates that the activation of AgBni1p depends on Rho-type GTPases. Deletion of this domain, which should render AgBni1p constitutively active, completely changes the branching pattern of young hyphae. New axes of polarity are no longer established subapically (lateral branching) but by symmetric divisions of hyphal tips (tip splitting). In wild-type hyphae, tip splitting is induced much later and only at much higher elongation speed. When GTP-locked Rho-type GTPases were tested, only the young hyphae with mutated AgCdc42p split at their tips, similar to the DAD deletion mutant. Two-hybrid experiments confirmed that AgBni1p interacts with GTP-bound AgCdc42p. These data suggest a pathway for transforming one axis into two new axes of polar growth, in which an increased activation of AgBni1p by a pulse of activated AgCdc42p stimulates additional actin cable formation and tip-directed vesicle transport, thus enlarging and ultimately splitting the polarity site.  相似文献   

14.
Candida albicans, an opportunistic human pathogen, displays three modes of growth: yeast, pseudohyphae and true hyphae, all of which differ both in morphology and in aspects of cell cycle progression. In particular, in hyphal cells, polarized growth becomes uncoupled from other cell cycle events. Yeast or pseudohyphae that undergo a cell cycle delay also exhibit polarized growth, independent of cell cycle progression. The Spitzenk?rper, an organelle composed of vesicles associated with hyphal tips, directs continuous hyphal elongation in filamentous fungal species and also in C. albicans hyphae. A polarisome mediates cell cycle dependent growth in yeast and pseudohyphae. Regulation of morphogenesis and cell cycle progression is dependent upon specific cyclins, all of which affect morphogenesis and some of which function specifically in yeast or hyphal cells. Future work will probably focus on the cell cycle checkpoints involved in connecting morphogenesis to cell cycle progression.  相似文献   

15.
 Interconnected hyphal tubes form the mycelia of a fungal colony. The growth of the colony results from the elongation and branching of these single hyphae. The material being incorporated into the extending hyphal wall is supplied by vesicles which are formed further back in the hyphal tip. Such wall-destined vesicles appear conspicuously concentrated in the interior of the hypha, just before the hyphal apex, in the form of an apical body or Spitzenk?rper. The cytoskeleton of the hyphal tube has been implicated in the organisation of the Spitzenk?rper and the transport of vesicles, but as yet there is no postulated mechanism for this. We propose a mechanism by which forces generated by the cytoskeleton are responsible for biasing the movement of vesicles. A mathematical model is derived where the cytoskeleton is described as a viscoelastic fluid. Viscoelastic forces are coupled to the conservation equation governing the vesicle dynamics, by weighting the diffusion of vesicles via the strain tensor. The model displays collapse and aggregation patterns in one and two dimensions. These are interpreted in terms of the formation of the Spitzenk?rper and the initiation of apical branching. Received: 16 September 1996 / Revised version: 20 July 1998  相似文献   

16.
Fine-structural Correlates of Growth in Hyphae of Ascodesmis sphaerospora   总被引:7,自引:5,他引:2  
Mycelial mats of Ascodesmis sphaerospora were fixed and embedded for electron microscopy, and thin sections of 1-mm blocks, taken from the 1st to the 7th mm behind the hyphal tips, were cut parallel to the long axis of the hyphae. The hyphal tip region is characterized by an outer zone of electron-transparent vesicles, 500 to 1,000 A in diameter, and is apparently associated with wall elaboration. Immediately behind this region, dense granules become evident along convoluted membrane systems and along the plasma membrane; in the same region are numerous small lomasomes in the lateral wall. As the hypha grows, septa are laid down at 3- to 7-min intervals at a distance of 200 to 250 μ behind the hyphal tip. A cylinder of endoplasmic reticulum is intimately involved in cross-wall deposition from its earliest stages; as the wall grows in, it becomes increasingly constricted in the pore region, finally assuming a torus-like configuration. Woronin bodies are shown to have a crystalline substructure and to originate in pouch-like membrane systems. Cross-walls from a 7- to 13-hr-old mycelium frequently show highly ordered structures in the vicinity of the pore. These structures may appear either as laminar stacks of discs to one side of the pore or as series of stubby concentric rings within the pore area itself. In the latter case, a mass of granular material is frequently seen plugging the pore. Other unusual organelles and inclusions in 7- to 13-hr hyphae are vesicles containing swirls of beaded or dilated membrane, membrane-enclosed rods, and stacks of unit membranes associated with spherical, electron-transparent vesicles.  相似文献   

17.
A mathematical model for hyphal growth and branching is described which relates cytological events within hyphae to mycelial growth kinetics. Essentially the model quantifies qualitative theories of hyphal growth in which it is proposed that vesicles containing wall precursors and/or enzymes required for wall synthesis are generated at a constant rate throughout a mycelium and travel to the tips of hyphae where they fuse with the plasma membrane, liberating their contents into the wall and increasing the surface area of the hypha to give elongation. The hypothesis that there is a duplication cycle in hyphae which is equivalent to the cell cycle observed in unicellular micro-organisms is also included in the model. Predictions from the model are compared with experimentally observed growth kinetics of mycelia of Geotrichum candidum and Aspergillus nidulans. The finite difference model which was constructed is capable of predicting changes in hyphal length and in the number and positions of branches and septa on the basis of changes in vesicle and nuclear concentration. Predictions were obtained using the model which were in good agreement with experimentally observed data.  相似文献   

18.
We have used light and electron microscopy to document the cytoplasmic effects of the ropy (ro-1) mutation in mature hyphae of Neurospora crassa and to better understand the role(s) of dynein during hyphal tip growth. Based on video-enhanced DIC light microscopy, the mature, growing hyphae of N. crassa wild type could be divided into four regions according to cytoplasmic organization and behavior: the apical region (I) and three subapical regions (II, III, and IV). A well-defined Spitzenk?rper dominated the cytoplasm of region I. In region II, vesicles ( approximately 0.48 micro m diameter) and mitochondria maintained primarily a constant location within the advancing cytoplasm. This region was typically void of nuclei. Vesicles exhibited anterograde and retrograde motility in regions III and IV and followed generally parallel paths along the longitudinal axis of the cell. A small population of mitochondria displayed rapid anterograde and retrograde movements, while most maintained a constant position in the advancing cytoplasm in regions III and IV. Many nuclei occupied the cytoplasm of regions III and IV. In ro-1 hyphae, discrete cytoplasmic regions were not recognized and the motility and/or positioning of vesicles, mitochondria, and nuclei were altered to varying degrees, relative to the wild type cells. Immunofluorescence microscopy revealed that the microtubule cytoskeleton was severely disrupted in ro-1 cells. Transmission electron microscopy of cryofixed cells confirmed that region I of wild-type hyphae contained a Spitzenk?rper composed of an aggregation of small apical vesicles that surrounded entirely or partially a central core composed, in part, of microvesicles embedded in a dense granular to fibrillar matrix. The apex of ro-1 the hypha contained a Spitzenk?rper with reduced numbers of apical vesicles but maintained a defined central core. Clearly, dynein deficiency in the mutant caused profound perturbation in microtubule organization and function and, consequently, organelle dynamics and positioning. These perturbations impact negatively on the organization and stability of the Spitzenk?rper, which, in turn, led to severe reduction in growth rate and altered hyphal morphology.  相似文献   

19.
Zhang Y  Guo LD 《Mycorrhiza》2007,17(4):319-325
We investigated the colonization and diversity of arbuscular mycorrhizal (AM) fungi associated with 24 moss species belonging to 16 families in China. AM fungal structures, i.e. spores, vesicles, hyphal coils (including intracellular hyphae), or intercellular nonseptate hyphae, were found in 21 moss species. AM fungal structures (vesicles, hyphal coils, and intercellular nonseptate hyphae) were present in tissues of 14 moss species, and spores and nonseptate hyphae on the surface of gametophytes occurred in 15 species. AM fungal structures were present in 11 of the 12 saxicolous moss species and in six of the ten terricolous moss species, but absent in two epixylous moss species. AM fungal structures were only observed in moss stem and leaf tissues, but not in rhizoids. A total of 15 AM fungal taxa were isolated based on trap culture with clover, using 13 moss species as inocula. Of these AM fungi, 11 belonged to Glomus, two to Acaulospora, one to Gigaspora, and one to Paraglomus. Our results suggest that AM fungal structures commonly occur in most mosses and that diverse AM fungi, particularly Glomus species, are associated with mosses.  相似文献   

20.
R. H. Berg  L. McDowell 《Protoplasma》1987,136(2-3):104-117
Summary This is an ultrastructural study of development of infected cells in nitrogen fixing root nodules ofCasuarina spp. While several aspects of development are similar to those found in many other actinorhizae, unusual aspects of development of the host cell and differentiation of the endophyte inCasuarina are correlated with unusual changes in the wall of the infected cell. Instead of vesicles the endophyte forms atypical hyphae in mature infected cells. These unusual hyphal forms are termed intracellular hyphae. Intracellular hyphae are nonseptate hyphae which originate and terminate within the same host cell, and have a varying diameter and a multidirectional growth and branching pattern. A laminate surface layer previously undescribed on hyphae ofFrankia is a feature common to mostCasuarina endophytic hyphae and is probably similar chemically to the laminae comprising the multilamellate envelope of endophytic vesicles in other actinorhizae.This paper is Florida Agricultural Experiment Station Journal Series No. 7350.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号