首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HLA-DM plays an essential role in the peptide loading of classical class II molecules and is present both at the cell surface and in late endosomal peptide-loading compartments. Trafficking of DM within antigen-presenting cells is complex and is, in part, controlled by a tyrosine-based targeting signal present in the cytoplasmic tail of DMβ. Here, we show that DM also undergoes post-translational modification through ubiquitination of a single lysine residue present in the cytoplasmic tail of the α chain, DMα. Ubiquitination of DM by MARCH1 and MARCH9 induced loss of DM molecules from the cell surface by a mechanism that cumulatively involved both direct attachment of ubiquitin chains to DMα and a functional tyrosine-based signal on DMβ. In contrast, MARCH8-induced loss of surface DM was entirely dependent upon the tyrosine signal on DMβ. In the absence of this tyrosine residue, levels of DM remained unchanged irrespective of whether DMα was ubiquitinated by MARCH8. The influence of MARCH8 was indirect and may have resulted from modification of components of the endocytic machinery by ubiquitination.  相似文献   

2.
Poxviruses and gamma-2 herpesviruses share the K3 family of viral immune evasion proteins that inhibit the surface expression of glycoproteins such as major histocompatibility complex class I (MHC-I), B7.2, ICAM-1, and CD95(Fas). K3 family proteins contain an amino-terminal PHD/LAP or RING-CH domain followed by two transmembrane domains. To examine whether human homologues are functionally related to the viral immunoevasins, we studied seven membrane-associated RING-CH (MARCH) proteins. All MARCH proteins located to subcellular membranes, and several MARCH proteins reduced surface levels of known substrates of the viral K3 family. Two closely related proteins, MARCH-IV and MARCH-IX, reduced surface expression of MHC-I molecules. In the presence of MARCH-IV or MARCH-IX, MHC-I was ubiquitinated and rapidly internalized by endocytosis, whereas MHC-I molecules lacking lysines in their cytoplasmic tail were resistant to downregulation. The amino-terminal regions containing the RING-CH domain of several MARCH proteins examined catalyzed multiubiquitin formation in vitro, suggesting that MARCH proteins are ubiquitin ligases. The functional similarity of the MARCH family and the K3 family suggests that the viral immune evasion proteins were derived from MARCH proteins, a novel family of transmembrane ubiquitin ligases that seems to target glycoproteins for lysosomal destruction via ubiquitination of the cytoplasmic tail.  相似文献   

3.
The eleven members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family are relatively unexplored. Upon exogenous (over)expression, a number of these ligases can affect the trafficking of membrane molecules. However, only for MARCH-1 endogenous functions have been demonstrated. For the other endogenous MARCH proteins, no functions or substrates are known. We report here that TRAIL-R1 is a physiological substrate of the endogenous MARCH-8 ligase. Human TRAIL-R1 and R2 play a role in immunosurveillance and are targets for cancer therapy, because they selectively induce apoptosis in tumor cells. We demonstrate that TRAIL-R1 is down-regulated from the cell surface, with great preference over TRAIL-R2, by exogenous expression of MARCH ligases that are implicated in endosomal trafficking, such as MARCH-1 and -8. MARCH-8 attenuated TRAIL-R1 cell surface expression and apoptosis signaling by virtue of its ligase activity. This suggested that ubiquitination of TRAIL-R1 was instrumental in its down-regulation by MARCH-8. Indeed, in cells with endogenous MARCH expression, TRAIL-R1 was ubiquitinated at steady-state, with the conserved membrane-proximal lysine 273 as one of the potential acceptor sites. This residue was also essential for the interaction of TRAIL-R1 with MARCH-1 and MARCH-8 and its down-regulation by these ligases. Gene silencing identified MARCH-8 as the endogenous ligase that ubiquitinates TRAIL-R1 and attenuates its cell surface expression. These findings reveal that endogenous MARCH-8 regulates the steady-state cell surface expression of TRAIL-R1.  相似文献   

4.
Major histocompatibility complex class II (MHC-II) molecules accumulate in exocytic vesicles, called exosomes, which are secreted by antigen presenting cells. These vesicles are released following the fusion of multivesicular bodies (MVBs) with the plasma membrane. The molecular mechanisms regulating cargo selection remain to be fully characterized. As ubiquitination of the MHC-II β-chain cytoplasmic tail has recently been demonstrated in various cell types, we sought to determine if this post-translational modification is required for the incorporation of MHC-II molecules into exosomes. First, we stably transfected HeLa cells with a chimeric HLA-DR molecule in which the β-chain cytoplasmic tail is replaced by ubiquitin. Western blot analysis did not indicate preferential shedding of these chimeric molecules into exosomes. Next, we forced the ubiquitination of MHC-II in class II transactivator (CIITA)-expressing HeLa and HEK293 cells by transfecting the MARCH8 E3 ubiquitin ligase. Despite the almost complete downregulation of MHC-II from the plasma membrane, these molecules were not enriched in exosomes. Finally, site-directed mutagenesis of all cytoplasmic lysine residues on HLA-DR did not prevent inclusion into these vesicles. Taken together, these results demonstrate that ubiquitination of MHC-II is not a prerequisite for incorporation into exosomes.  相似文献   

5.
The Bordetella pertussis adenylate cyclase toxin-hemolysin (ACT or CyaA) is a multifunctional protein. It forms small cation-selective channels in target cell and lipid bilayer membranes and it delivers into cell cytosol the amino-terminal adenylate cyclase (AC) domain, which catalyzes uncontrolled conversion of ATP to cAMP and causes cell intoxication. Here, we demonstrate that membrane translocation of the AC domain into cells is selectively dissociated from ACT membrane insertion and channel formation when a helix-breaking proline residue is substituted for glutamate 509 (Glu-509) within a predicted transmembrane amphipathic alpha-helix. Neutral substitutions of Glu-509 had little effect on toxin activities. In contrast, charge reversal by lysine substitutions of the Glu-509 or of the adjacent Glu-516 residue reduced the capacity of the toxin to translocate the AC domain across membrane and enhanced significantly its specific hemolytic activity and channel forming capacity in lipid bilayer membranes. Combination of the E509K and E516K mutations in a single molecule further exacerbated hemolytic and channel forming activity and ablated translocation of the AC domain into cells. The lysine substitutions strongly decreased the cation selectivity of the channels, indicating that Glu-509 and Glu-516 are located within or close to the membrane channel. These results suggest that the structure including glutamate residues 509 and 516 is critical for AC membrane translocation and channel forming activity of ACT.  相似文献   

6.
7.
The translocation of the diphtheria toxin catalytic domain from the lumen of early endosomes into the cytosol of eukaryotic cells is an essential step in the intoxication process. We have previously shown that the in vitro translocation of the catalytic domain from the lumen of toxin pre‐loaded endosomal vesicles to the external medium requires the addition of cytosolic proteins including coatomer protein complex I (COPI) to the reaction mixture. Further, we have shown that transmembrane helix 1 plays an essential, but as yet undefined role in the entry process. We have used both site‐directed mutagenesis and a COPI complex precipitation assay to demonstrate that interaction(s) between at least three lysine residues in transmembrane helix 1 are essential for both COPI complex binding and the delivery of the catalytic domain into the target cell cytosol. Finally, a COPI binding domain swap was used to demonstrate that substitution of the lysine‐rich transmembrane helix 1 with the COPI binding portion of the p23 adaptor cytoplasmic tail results in a mutant that displays full wild‐type activity. Thus, irrespective of sequence, the ability of transmembrane helix 1 to bind to COPI complex appears to be the essential feature for catalytic domain delivery to the cytosol.  相似文献   

8.
Misfolded or damaged proteins are typically targeted for destruction by proteasome‐mediated degradation, but the mammalian ubiquitin machinery involved is incompletely understood. Here, using forward genetic screens in human cells, we find that the proteasome‐mediated degradation of the soluble misfolded reporter, mCherry‐CL1, involves two ER‐resident E3 ligases, MARCH6 and TRC8. mCherry‐CL1 degradation is routed via the ER membrane and dependent on the hydrophobicity of the substrate, with complete stabilisation only observed in double knockout MARCH6/TRC8 cells. To identify a more physiological correlate, we used quantitative mass spectrometry and found that TRC8 and MARCH6 depletion altered the turnover of the tail‐anchored protein heme oxygenase‐1 (HO‐1). These E3 ligases associate with the intramembrane cleaving signal peptide peptidase (SPP) and facilitate the degradation of HO‐1 following intramembrane proteolysis. Our results highlight how ER‐resident ligases may target the same substrates, but work independently of each other, to optimise the protein quality control of selected soluble and tail‐anchored proteins.  相似文献   

9.
Delta ligands are important for regulating Notch signaling through transcellular stimulation of Notch receptors. The cytoplasmic tails of Delta ligands have multiple potential regulatory sites including several lysine residues that are putative targets for ubiquitination by the E3 ubiquitin ligases, Mind Bomb and Neuralized. To identify possible roles for specific lysine residues in the cytoplasmic tail of the Notch ligand Dll1 a mutational and functional analysis was performed. Examination of a panel of individual or clustered lysine mutants demonstrated that lysine 613 (K613) in the cytoplasmic tail of Dll1 is a key residue necessary for transcellular activation of Notch signaling. Multi-ubiquitination of the Dll1 mutant Dll1-K613R was altered compared to wild type Dll1, and the K613R mutation blocked the ability of Dll1 to interact with Notch1. Finally, mutation of K613 did not affect the stability of Dll1 or its ability to traffic to recycle to the plasma membrane, but did enhance the fraction associated with lipid rafts. Collectively these results suggest that the transcellular defect in Notch signaling attributed to residue K613 in cytoplasmic tail of Dll1 may result from altering its multi-ubiquitination and increasing its retention in lipid rafts.  相似文献   

10.
Ubiquitination is a regulated post-translational modification that conjugates ubiquitin (Ub) to lysine residues of target proteins and determines their intracellular fate. The canonical role of ubiquitination is to mediate degradation by the proteasome of short-lived cytoplasmic proteins that carry a single, polymeric chain of Ub on a specific lysine residue. However, protein modification by Ub has much broader and diverse functions involved in a myriad of cellular processes. Monoubiquitination, at one or multiple lysine residues of transmembrane proteins, influences their stability, protein-protein recognition, activity and intracellular localization. In these processes, Ub functions as an internalization signal that sends the modified substrate to the endocytic/sorting compartments, followed by recycling to the plasma membrane or degradation in the lysosome. E3 ligases play a pivotal role in ubiquitination, because they recognize the acceptor protein and hence dictate the high specificity of the reaction. The multitude of E3s present in nature suggests their nonredundant mode of action and the need for their controlled regulation. Here we give a short account of E3 ligases that specifically modify and regulate membrane proteins. We emphasize the intricate network of interacting proteins that contribute to the substrate-E3 recognition and determine the substrate's cellular fate.  相似文献   

11.
Because the amyloid β-peptide (Aβ) functions as approximately half of the transmembrane domain of the amyloid precursor protein and interaction of Aβ with membranes is proposed to result in neurotoxicity, the association of Aβ with membranes likely is important in the etiology of Alzheimer’s disease. Atomic details of the interaction of Aβ with membranes are not accessible with most experimental techniques, but computational methods can provide this information. Here, we present the results of ten 100-ns molecular dynamics (MD) simulations of the 40-residue amyloid β-peptide (Aβ40) embedded in a dipalmitoylphosphatidylcholine (DPPC) bilayer. The present study examines the effects of insertion depth, protonation state of key residues, and ionic strength on Aβ40 in a DPPC bilayer. In all cases, a portion of the peptide remained embedded in the bilayer. In the case of deeper insertion depth, Aβ40 adopted a near-transmembrane orientation, drawing water molecules into the bilayer to associate with its charged amino acids. In the case of shallower insertion, the most widely-accepted construct, the peptide associated strongly with the membrane-water interface and the phosphatidylcholine headgroups of the bilayer. In most cases, significant disordering of the extracellular segment of the peptide was observed, and the brief appearance of a β-strand was noted in one case. Our results compare well with a variety of experimental and computational findings. From this study, we conclude that Aβ associated with membranes is dynamic and capable of adopting a number of conformations, each of which may have significance in understanding the progression of Alzheimer’s disease.  相似文献   

12.
γ-Secretase is a multiprotein intramembrane cleaving aspartyl protease (I-CLiP) that catalyzes the final cleavage of the amyloid β precursor protein (APP) to release the amyloid β peptide (Aβ). Aβ is the primary component of senile plaques in Alzheimer's disease (AD), and its mechanism of production has been studied intensely. γ-Secretase executes multiple cleavages within the transmembrane domain of APP, with cleavages producing Aβ and the APP intracellular domain (AICD), referred to as γ and ε, respectively. The heterogeneous nature of the γ cleavage that produces various Aβ peptides is highly relevant to AD, as increased production of Aβ 1-42 is genetically and biochemically linked to the development of AD. We have identified an amino acid in the juxtamembrane region of APP, lysine 624, on the basis of APP695 numbering (position 28 relative to Aβ) that plays a critical role in determining the final length of Aβ peptides released by γ-secretase. Mutation of this lysine to alanine (K28A) shifts the primary site of γ-secretase cleavage from 1-40 to 1-33 without significant changes to ε cleavage. These results further support a model where ε cleavage occurs first, followed by sequential proteolysis of the remaining transmembrane fragment, but extend these observations by demonstrating that charged residues at the luminal boundary of the APP transmembrane domain limit processivity of γ-secretase.  相似文献   

13.
Signal regulatory protein α (SIRPα), a highly glycosylated type-1 transmembrane protein, is composed of three immunoglobulin-like extracellular loops as well as a cytoplasmic tail containing three classical tyrosine-based inhibitory motifs. Previous reports indicate that SIRPα binds to humoral pattern recognition molecules in the collectin family, namely surfactant proteins D and A (Sp-D and Sp-A, respectively), which are heavily expressed in the lung and constitute one of the first lines of innate immune defense against pathogens. However, little is known about molecular details of the structural interaction of Sp-D with SIRPs. In the present work, we examined the molecular basis of Sp-D binding to SIRPα using domain-deleted mutant proteins. We report that Sp-D binds to the membrane-proximal Ig domain (D3) of SIRPα in a calcium- and carbohydrate-dependent manner. Mutation of predicted N-glycosylation sites on SIRPα indicates that Sp-D binding is dependent on interactions with specific N-glycosylated residues on the membrane-proximal D3 domain of SIRPα. Given the remarkable sequence similarity of SIRPα to SIRPβ and the lack of known ligands for the latter, we examined Sp-D binding to SIRPβ. Here, we report specific binding of Sp-D to the membrane-proximal D3 domain of SIRPβ. Further studies confirmed that Sp-D binds to SIRPα expressed on human neutrophils and differentiated neutrophil-like cells. Because the other known ligand of SIRPα, CD47, binds to the membrane-distal domain D1, these findings indicate that multiple, distinct, functional ligand binding sites are present on SIRPα that may afford differential regulation of receptor function.  相似文献   

14.
T cell receptor (TCR) signaling in response to antigen recognition is essential for the adaptive immune response. Cholesterol keeps TCRs in the resting conformation and mediates TCR clustering by directly binding to the transmembrane domain of the TCRβ subunit (TCRβ-TM), while cholesterol sulfate (CS) displaces cholesterol from TCRβ. However, the atomic interaction of cholesterol or CS with TCRβ remains elusive. Here, we determined the cholesterol and CS binding site of TCRβ-TM in phospholipid bilayers using solution nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulation. Cholesterol binds to the transmembrane residues within a CARC-like cholesterol recognition motif. Surprisingly, the polar OH group of cholesterol is placed in the hydrophobic center of the lipid bilayer stabilized by its polar interaction with K154 of TCRβ-TM. An aromatic interaction with Y158 and hydrophobic interactions with V160 and L161 stabilize this reverse orientation. CS binds to the same site, explaining how it competes with cholesterol. Site-directed mutagenesis of the CARC-like motif disrupted the cholesterol/CS binding to TCRβ-TM, validating the NMR and MD results.  相似文献   

15.
BACE (β-site amyloid precursor protein cleaving enzyme, β-secretase) is a type-I membrane protein which functions as an aspartic protease in the production of β-amyloid peptide, a causative agent of Alzheimer's disease. Its cytoplasmic tail has a characteristic acidic-cluster dileucine motif recognized by the VHS domain of adaptor proteins, GGAs (Golgi-localizing, γ-adaptin ear homology domain, ARF-interacting). Here we show that BACE is colocalized with GGAs in the trans -Golgi network and peripheral structures, and phosphorylation of a serine residue in the cytoplasmic tail enhances interaction with the VHS domain of GGA1 by about threefold. The X-ray crystal structure of the complex between the GGA1-VHS domain and the BACE C-terminal peptide illustrates a similar recognition mechanism as mannose 6-phosphate receptors except that a glutamine residue closes in to fill the gap created by the shorter BACE peptide. The serine and lysine of the BACE peptide point their side chains towards the solvent. However, phosphorylation of the serine affects the lysine side chain and the peptide backbone, resulting in one additional hydrogen bond and a stronger electrostatic interaction with the VHS domain, hence the reversible increase in affinity.  相似文献   

16.
Protein modification by one or more ubiquitin chains serves a critical signalling function across a wide range of cellular processes. Specificity within this system is conferred by ubiquitin E3 ligases, which target the substrates. Their activity is balanced by deubiquitylating enzymes (DUBs), which remove ubiquitin from both substrates and ligases. The RING-CH ligases were initially identified as viral immunoevasins involved in the downregulation of immunoreceptors. Their cellular orthologues, the Membrane-Associated RING-CH (MARCH) family represent a subgroup of the classical RING genes. Unlike their viral counterparts, the cellular RING-CH proteins appear highly regulated, and one of these in particular, MARCH7, was of interest because of a potential role in neuronal development and lymphocyte proliferation. Difficulties in detection and expression of this orphan ligase lead us to search for cellular cofactors involved in MARCH7 stability. In this study, we show that MARCH7 readily undergoes autoubiquitylation and associates with two deubiquitylating enzymes – ubiquitin-specific protease (USP)9X in the cytosol and USP7 in the nucleus. Exogenous expression and short interfering RNA depletion experiments demonstrate that MARCH7 can be stabilized by both USP9X and USP7, which deubiquitylate MARCH7 in the cytosol and nucleus, respectively. We therefore demonstrate compartment-specific regulation of this E3 ligase through recruitment of site-specific DUBs.  相似文献   

17.
Siglecs are vertebrate cell-surface receptors that recognize sialylated glycans. Here we have identified and characterized a novel Siglec, named Siglec-15. Siglec-15 is a type-I transmembrane protein consisting of: (i) two immunoglobulin (Ig)-like domains, (ii) a transmembrane domain containing a lysine residue, and (iii) a short cytoplasmic tail. Siglec-15 is expressed on macrophages and/or dendritic cells of human spleen and lymph nodes. We show that the extracellular domain of Siglec-15 preferentially recognizes the Neu5Acalpha2-6GalNAcalpha- structure. Siglec-15 associates with the activating adaptor proteins DNAX activation protein (DAP)12 and DAP10 via its lysine residue in the transmembrane domain, implying that it functions as an activating signaling molecule. Siglec-15 is the second human Siglec identified to have an activating signaling potential; unlike Siglec-14, however, it does not have an inhibitory counterpart. Orthologs of Siglec-15 are present not only in mammals but also in other branches of vertebrates; in contrast, no other known Siglec expressed in the immune system has been conserved throughout vertebrate evolution. Thus, Siglec-15 probably plays a conserved, regulatory role in the immune system of vertebrates.  相似文献   

18.
Integrins are heterodimeric membrane-spanning adhesion receptors that are essential for a wide range of biological functions. Control of integrin conformational states is required for bidirectional signalling across the membrane. Key components of this control mechanism are the transmembrane and cytoplasmic domains of the α and β subunits. These domains are believed to interact, holding the integrin in the inactive state, while inside-out integrin activation is accompanied by domain separation. Although there are strong indications for domain interactions, the majority of evidence is insufficient to precisely define the interaction interface. The current best model of the complex, derived from computational calculations with experimental restraints, suggests that integrin activation by the cytoplasmic protein talin is accomplished by steric disruption of the α/β interface. Better atomic-level resolution structures of the α/β transmembrane/cytoplasmic domain complex are still required for the resting state integrin to corroborate this. Integrin activation is also controlled by competitive interactions involving the cytoplasmic domains, particularly the β-tails. The concept of the β integrin tail as a focal adhesion interaction ‘hub’ for interactions and regulation is discussed. Current efforts to define the structure and affinity of the various complexes formed by integrin tails, and how these interactions are controlled, e.g. by phosphorylation and localization, are described.  相似文献   

19.
The CTRdelta e13 splice variant of the rabbit calcitonin receptor, which lacks the 14 amino acids of the seventh transmembrane domain (TMD) that are encoded by exon 13, is poorly expressed on the cell surface, fails to mobilize intracellular calcium or activate Erk, and inhibits the cell surface expression of the full-length C1a isoform. Nuclear magnetic resonance- and fluorescence-activated cell sorter-based experiments showed that the residual seventh TMD of CTRdelta e13 fails to partition into the lipid bilayer, resulting in an extracellular C terminus. Truncating the receptor after residue 397 to delete the cytoplasmic tail resulted in reduced cell surface expression and an inability to mobilize intracellular calcium or activate Erk, but the truncated receptor did not inhibit C1a cell surface expression. In contrast, when the receptor was truncated after residue 374 to eliminate the entire seventh TMD domain and the C-terminal domain, the resulting receptor reduced the cell surface expression of C1a in a manner similar to that of CTRdelta e13. Thus, normal cell surface expression, mobilization of intracellular calcium, and Erk activation requires the cytoplasmic C-terminal tail of the CTR, whereas the absence of the seventh TMD in the transmembrane helical bundle causes the dominant-negative effect on the surface expression of C1a.  相似文献   

20.
Lysine acetylation is known as a post translational modification (PTM) by histone acetyltransferases (HAT) that modifies histones and non-histone proteins to regulate gene expression. Serine acetylation, however, is reported in mammalian hosts by serine acetyltransferase of Yersinia pestis (YopJ) during infection. The protein target and cellular function of bacterial YopJ in mammalian systems are not fully addressed. Here we report dual acetylation at the serine and lysine residues by transiently expressed serine acetyltransferase YopJ mimicking Y. pestis infection in HeLa cells. Using shotgun proteomics followed by label-free quantification, we demonstrate an increase of dual acetylation in YopJ transfected human cells, including 10 Ser- (YopJ/non-YopJ 1.3-fold, p = 0.02) and 8 Lys- (YopJ/non-YopJ 3.5-fold, p = 0.00003) acetylation sites. Specifically, YopJ expression augments acetylation of membrane-associated E3 ubiquitin ligase MARCH8 at the serine residue Sac44, Sac71 and Sac253, and the lysine residue Kac247 and Kac252. YopJ-mediated Ser- and Lys-acetylation of MARCH8 is further confirmed by Western blotting using the specific antibodies against MARCH8 Sac71 and pan-acetyl lysine. Functional study demonstrates that YopJ-mediated Ser- and Lys-acetylation affects the auto-ubiquitination of MARCH8. The mutant C172A of YopJ previously shown to abolish the acetyltransferase activity also reduces Ser- and Lys-acetylation and diminishes the auto-ubiquitination of MARCH8. In support, MARCH8 is indeed acetylated at serine and lysine in vitro by purified YopJ but the activity is reduced by the C172A mutant in YopJ. Our study provides evidence that bacterial serine acetyltransferase YopJ mediates Ser- and Lys-acetylation and affects auto-ubiquitination of ubiquitin ligase MARCH8 in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号