首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genotyping of 21 varicella-zoster virus (VZV) strains using a scattered single nucleotide polymorphism (SNP) method revealed ambiguous SNPs and two nontypeable isolates. For a further genetic characterization, the genomes of all strains were sequenced using the 454 technology. Almost-complete genome sequences were assembled, and most remaining gaps were closed with Sanger sequencing. Phylogenetic analysis of 42 genomes revealed five established and two novel VZV genotypes, provisionally termed VIII and IX. Genotypes VIII and IX are distinct from the previously reported provisional genotypes VI and VII as judged from the SNP pattern. The alignments showed evidence of ancient recombination events in the phylogeny of clade 4 and recent recombinations within single strains: 3/2005 (clade 1), 11 and 405/2007 (clade 3), 8 and DR (clade 4), CA123 and 413/2000 (clade 5), and strains of the novel genotypes VIII and IX. Bayesian tree inference of the thymidine kinase and the polymerase genes of the VZV clades and other varicelloviruses revealed that VZV radiation began some 110,000 years ago, which correlates with the out-of-Africa dispersal of modern humans. The split of ancestral clades 2/4 and 1/3/5/VIII/IX shows the greatest node height.  相似文献   

2.
Gondwanan evolution of the grass alliance of families (Poales)   总被引:14,自引:0,他引:14  
Phylogenetic interrelationships among all 18 families of Poales were assessed by cladistic analysis of chloroplast DNA rbcL and atpB sequences from 65 species. There are two well-supported main clades; the graminoid clade with Poaceae (grasses), Anarthriaceae, Centrolepidaceae, Ecdeiocoleaceae, Flagellariaceae, Joinvilleaceae, and Restionaceae; and the cyperoid clade with Cyperaceae, Juncaceae, and Thurniaceae. A sister group relationship between Poaceae and Ecdeiocoleaceae is identified with strong support. The sister group of this pair is Joinvilleaceae. These relationships help in elucidating the evolution of grasses and the grass spikelet. Dating of the tree was done by nonparametric rate smoothing of rbcL molecular evolution. Most Poales families date back to the Cretaceous >65 million years ago (mya). Dispersal-vicariance analysis indicates that the Poales originated in South America, the cyperoid clade in West Gondwana (South America or Africa), and the graminoid clade in East Gondwana (Australia). The Trans-Antarctic connection between South America and Australia, and its breakup about 35 mya, probably influenced the evolution of the Poales and the graminoid clade in particular, leading to vicariance between the continents, but the separation of Africa from the other Gondwanan areas, completed about 105 mya, is too old for such a relation.  相似文献   

3.
We examined phylogeographic differentiation of the red-eyed grass snake (Natrix astreptophora) using 1984 bp of mtDNA and 13 microsatellite loci from specimens collected across its distribution range in southwestern Europe and northwestern Africa. Based on phylogenetic analyses of mtDNA, European N. astreptophora constituted the sister clade to a weakly supported North African clade comprised of two deeply divergent and well-supported clades, one corresponding to Moroccan snakes and the other to snakes from Algeria and Tunisia. This tripartite differentiation was confirmed by analyses of microsatellite loci. According to a fossil-calibrated molecular clock, European and North African N. astreptophora diverged 5.44 million years ago (mya), and the two Maghrebian clades split 4.64 mya. These dates suggest that the radiation of the three clades was initiated by the environmental changes related to the Messinian Salinity Crisis and the reflooding of the Mediterranean Basin. The differentiation of N. astreptophora, with distinct clades in the Iberian Peninsula and in the western and eastern Maghreb, corresponds to a general phylogeographic paradigm and resembles the differentiation found in another co-distributed Natrix species, the viperine snake (N. maura). Despite both species being good swimmers, the Strait of Gibraltar constitutes a significant biogeographic barrier for them. The discovery that North Africa harbours two endemic lineages of N. astreptophora necessitates more conservation efforts for these imperilled snakes.  相似文献   

4.
Varicella-zoster virus (VZV) is a remarkably stable virus that until recently was thought to exhibit near-universal genetic homogeneity among circulating wild-type strains. In recent years, the expanding knowledge of VZV genetics has led to a number of groups proposing sequence-based typing schemes, but no study has yet examined the relationships between VZV genotypes at a full-genome level. A central hypothesis of this study is that VZV has coevolved with humankind. In this study, 11 additional full VZV genomic sequences are presented, bringing the current number of complete genomic sequences publicly available to 18. The full-genome alignment contained strains representing four distinct clades, but the possibility exists that a fifth clade comprised of African and Asian-like isolates was not represented. A consolidated VZV genotyping scheme employing the origin-associated region between reiteration region R4 and open reading frames (ORFs) 63 and 70 is described, one which accurately categorizes strains into one of four clades related to the geographic origin of the isolates. The full-genome alignment also provided evidence for recombination having occurred between the major circulating VZV clades. One Canadian clinical isolate was primarily Asian-like in origin, with most of the genome showing strong sequence identity to the Japanese-like clade B, with the exceptions being two putative recombination regions, located in ORFs 14 to 17 and ORFs 22 to 26, which showed clear similarity to the European/North American clade A. The very low rate of single-nucleotide polymorphisms scattered across the genome made full-genome sequencing the only definitive method for identifying specific VZV recombination events.  相似文献   

5.
Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is one of the major cereal pests in sub-Saharan Africa. Previous phylogeographic investigations on samples collected in Kenya, Cameroon and West-Africa showed the presence of three main clades (W, KI, KII) originated from populations isolated in West and East Africa around one million years ago. Demographic and phylogenetic analyses suggested that this event was followed by local demographic expansion and isolation by distance. These hypotheses were tested by a more comprehensive sampling across B. fusca’s geographic range in Africa. Comparisons of sequences of partial mitochondrial DNA gene (cytochrome b) from 489 individuals of 98 localities in southern, central, eastern and western African countries confirmed the presence of the three main clades. Phylogenetic, F-statistics, demographic parameters and nested clade phylogeographic analyses confirmed that the clades experienced geographic and demographic expansion with isolation by distance after their isolation in three refuge areas. The geographic range of clade KII, already known from East to Central sub-Saharan Africa was extended to Southern Africa. Mismatch distribution analysis and the negative values of Tajima’s D index are consistent with a demographic expansion hypothesis for these three clades. Significant genetic differentiations were revealed at various hierarchical levels by analysis of molecular variance (AMOVA). Hypotheses about the geographic origin of the three main clades are detailed.  相似文献   

6.
Theria includes Eutheria and its sister taxon Metatheria. Placentalia includes extant eutherians plus their most recent common ancestor. The oldest eutherian is from 125mya (million years ago). Molecular studies place this origin at about 130-185mya. Older dates cannot be refuted based on fossil evidence as earliest eutherian remains are scarce. Earliest superordinal clades (hence Placentalia) range from 64-104mya (median 84mya) based on molecules, similar to 85-90mya based on fossils. Superordinal clades Archonta, Ferungulata, Glires, and Paenungulata based on fossils are similar to molecularly based clades, except Afrotheria was not predicted by fossils. Both fossils and molecules recognize 16 of 18 extant placental orders. Fossils place the origins of orders around 65mya as do some molecular studies, but others suggest ordinal diversification as old as 100mya. Fossil evidence supports a Laurasian origin for Eutheria (and Metatheria) and Placentalia, although some molecular studies suggest a Gondwanan origin for both taxa.  相似文献   

7.
Rhododendron subgenus Hymenanthes subsection Pontica is exceptional among Tertiary relict groups in having a high proportion of species (4 of 11) native to SW Eurasia. A phylogeny based on cpDNA matK and trnL-F indicated that multiple Pontica lineages colonised each of SW Eurasia, SE North America, and NE Asia, with little or no speciation within regions thereafter. Therefore, multiple (3-4) Pontica lineages survived the Quaternary in SW Eurasia, in contrast to other Tertiary relict genera. Pontica comprises two major clades, one of which is wholly Eurasian, and paraphyletic with respect to at least some of the remaining 200 species of subgenus Hymenanthes, which are all distributed in SE Asia. The other clade has species from W and SE North America, SW Eurasia, and NE Asia. According to synonymous matK substitution data, the two clades diverged 9-6 million years ago (mya), whereas most divergence within them happened 5-3 mya. Although the phylogeny indicates probable trans-Atlantic migration for one of two America-Eurasia disjunctions in Pontica, the timing supports migration via Beringia for both.  相似文献   

8.
The phylogenetic relationships among populations of seaperch, Helicolenus spp., in the south-west Pacific were examined with mtDNA markers. Parts of the cytochrome b gene [459 base pair (bp)] and the control region (448 bp) were sequenced in 58 specimens from the south-west Pacific and four specimens of Helicolenus lengerichi from Chile. Only one clade was recognized in New Zealand coastal waters, despite a wide range of colour morphs. This clade also occurred in the mid Tasman Sea on the Norfolk Ridge and around Tasmania and Victoria. A second sympatric clade was identified around Tasmania and Victoria and to the west of New Zealand. A third allopatric clade was identified to the north of New Zealand and in deep water on the Chatham Rise and a fourth clade on the Foundation Seamounts and the Louisville Ridge. Helicolenus lengerichi from Chile formed a fifth clade. Assuming a molecular clock, the clades were estimated to have diverged c. 0·7–2·6 million years ago. Only two clades, around Tasmania and Victoria, were separated using morphology, colour (in live) and dorsal-fin soft ray counts and were confirmed as Helicolenus percoides and Helicolenus barathri . Two characters, orbit diameter and colour variation, previously used to identify two species in New Zealand waters were unreliable characters for species discrimination. Principle component analyses of 11 morphological measures from 67 individuals did not delineate the clades. A canonical discriminant analysis was able to separate four of the five clades, but mean discriminate probabilities were low (77·6%), except for the five Chilean specimens of H. lengerichi (100%).  相似文献   

9.
Maianthemum (Ruscaceae) comprises 28-38 species and includes the two traditionally recognized genera: Maianthemum sensu stricto and Smilacina. Thirty-seven samples representing 22 species of Maianthemum and six closely related outgroup taxa were sequenced for eight chloroplast and nuclear markers (trnL-F, rps16, rpl16, psbA-trnH, rbcL, ndhF, trnK, and ITS) with a total length of nearly 10,000 base pairs. Phylogenetic analyses supported the monophyly of Maianthemum with Maianthemum sensu stricto nested within Smilacina. Almost all species from the eastern Himalayan region in SW China except for Maianthemum tatsienense and M. stenolobum form a well supported clade. This clade is characterized morphologically by short filaments and large anthers, relatively large flowers, and pubescent stems and leaves. Maianthemum tatsienense and M. stenolobum from SW to central China form another clade. The other species from eastern Asia (central to NE China and Japan) and the New World fall into several clades. The intercontinental disjunction between eastern Asia and North America in Maianthemum sensu stricto is estimated to be at 1.68 million years ago (mya) with the Bayesian relaxed clock relying on uncorrelated rates. A recent radiation at about 2.04mya is suggested in the high mountains of SW China, corresponding to the geographical heterogeneity in that region after the uplift of the Himalayas. Long distance dispersal by birds may have facilitated the evolution of their intercontinental disjunction and their biogeographic diversifications in SW China.  相似文献   

10.
The phylogeny and biogeography of the Malayan freshwater crab genus Johora was studied using two mitochondrial genes, 16S rRNA (560 bp) and cytochrome oxidase subunit I (COI) (616 bp), and one nuclear gene, histone 3 (H3) (328 bp). Johora is shown to be monophyletic and composed of three clades that correspond with the topography of the Malay Peninsula. The three clades were estimated to be of similar age ( c . 11 million years ago (mya)). The Malayan island of Pulau Tioman (with five species) was determined to have been colonised independently by two separate clades (at c . 11 and 5 mya, respectively), one of which evolved semiterrestrial habits, possibly in response to competition by the second. A partitioned Bremer support (PBS) analysis reveals that most of the support for the phylogenetic tree comes from the COI gene fragment and that the nuclear protein-encoding genes H3 is useful for reconstructing the relationships of Johora .  相似文献   

11.
Wahlenbergia is a largely southern hemisphere genus of at least 260 species; within Campanulaceae only Campanula is larger. This first phylogeny of Wahlenbergia was reconstructed using about 20% of the 260 species in the genus based on the nuclear ribosomal ITS marker and the chloroplast trnL-F marker with samples from South Africa, Europe, Australia and New Zealand. Wahlenbergia was confirmed to be non-monophyletic, though most of the species form a clade. Our tree topology and date estimates indicate that Wahlenbergia diverged in South Africa about 29.6 mya, then dispersed to Australasia about 4.8 mya, thus indicating the radiation of Wahlenbergia occurred relatively recently. Radiations occurred in both of these main centres; there are currently about 170 species in South Africa and 45 species and subspecies in Australasia. New Zealand species comprise two clades, both rooted within the Australasian clade. We thus propose two dispersals from Australia to New Zealand, one leading to a radiation of species with the rhizomatous herbaceous growth form ca. 1.6 mya, and the other leading to a radiation of species with the radicate growth form 0.7 mya. Dispersals from Australia to New Zealand match the expected direction, following the west wind drift and ocean currents. The herbaceous growth form was shown to be ancestral for the genus as a whole, and polyploidy has been a mechanism of the evolution of the genus in Australasia.  相似文献   

12.
Relatively little is known about the relationship between Bufo gargarizans populations from Zhoushan Archipelago and nearby continental regions on the Pacific coast of eastern China.In this paper,155 new specimens of B.gargarizans from Zhoushan Archipelago and adjacent continents and 71 published specimens of B.gargarizans from mainland China were studied.Phylogeographical and dating analyses of B.gargarizans were performed using mitochondrial DNA sequencing with a length of 1436 bp.A mt DNA tree that indicated seven major clades was obtained.The earliest split in the mt DNA tree corresponding to the divergence of populations from the western highland region occurred approximately 4.0 million years ago(mya).A subsequent clade occurred about 3.4 mya,with cladogenesis continuing toward the end of the Pleistocene.The continental clades were distributed in the western,central and northeastern regions of China.Zhoushan Archipelago clades consisted of two largely geographically overlapping subclades with the mt DNA divergence time of 0.73 mya.These results indicated there was extensive dispersal after vicariance.The B.gargarizans populations on Zhoushan Archipelago most probably originated from populations in nearby eastern continental regions of China.It was concluded that geological uplifting during the Pliocene and several sea-level changes in Pleistocene might have influenced the divergence and population demographical history of this species.  相似文献   

13.
The phylogenetic relationship among freshwater crab species of Geothelphusa from northern Taiwan and the Yaeyama Group of islands (including Iriomote and Ishigaki) in the southern Ryukyus was studied using the mitochondrial genes 16S rRNA and COI. Our results support the hypothesis that speciation of Geothelphusa among these islands was the result of cyclic glaciations and interglaciations during the Pleistocene. Two main clades, one the Taiwan Group (containing several clades, including most Taiwanese Geothelphusa species except Geothelphusa miyazakii but including Geothelphusa minei from Yaeyama), was estimated to be separated from its sister group, the southern Ryukyus-northern Taiwan (SRN) clade (including G. miyazakii, Geothelphusa shokitai, Geothelphusa fulva and G. marginata from northern Taiwan, the Pinnacle Islands [=Diaoyutai Islands or Senkaku Islands] and Yaeyama) at about 5.3 million years ago (mya). G. shokitai was separated from others within the SRN clade at 2.4 mya, but was probably derived from G. miyazakii in northern Taiwan. The ancestor of G. miyazakii is hypothesised to have dispersed from ancestors in Yaeyama and then isolated at 2.0 mya during the Pleistocene interglaciations. This is similar to the speciation of G. minei in Yaeyama at 1.5 mya, except that its ancestors originated from north-eastern Taiwan. Four clades of freshwater crabs are present in the Fushan Botanical Garden, located in the mountainous area of north-eastern Taiwan, which might be due to the historical rearrangements of the drainage and proximity of the various river origins.  相似文献   

14.
Although there has been extensive debate about whether Trichuris suis and Trichuris trichiura are separate species, only one species of the whipworm T. trichiura has been considered to infect humans and non-human primates. In order to investigate potential cross infection of Trichuris sp. between baboons and humans in the Cape Peninsula, South Africa, we sequenced the ITS1-5.8S-ITS2 region of adult Trichuris sp. worms isolated from five baboons from three different troops, namely the Cape Peninsula troop, Groot Olifantsbos troop and Da Gama Park troop. This region was also sequenced from T. trichiura isolated from a human patient from central Africa (Cameroon) for comparison. By combining this dataset with Genbank records for Trichuris isolated from other humans, non-human primates and pigs from several different countries in Europe, Asia, and Africa, we confirmed the identification of two distinct Trichuris genotypes that infect primates. Trichuris sp. isolated from the Peninsula baboons fell into two distinct clades that were found to also infect human patients from Cameroon, Uganda and Jamaica (named the CP-GOB clade) and China, Thailand, the Czech Republic, and Uganda (named the DG clade), respectively. The divergence of these Trichuris clades is ancient and precedes the diversification of T. suis which clustered closely to the CP-GOB clade. The identification of two distinct Trichuris genotypes infecting both humans and non-human primates is important for the ongoing treatment of Trichuris which is estimated to infect 600 million people worldwide. Currently baboons in the Cape Peninsula, which visit urban areas, provide a constant risk of infection to local communities. A reduction in spatial overlap between humans and baboons is thus an important measure to reduce both cross-transmission and zoonoses of helminthes in Southern Africa.  相似文献   

15.
The monophyly of European newts of the genus Triturus within the family Salamandridae has for decades rested on presumably homologous behavioral and morphological characters. Molecular data challenge this hypothesis, but the phylogenetic position of Triturus within the Salamandridae has not yet been convincingly resolved. We addressed this issue and the temporal divergence of Triturus within the Salamandridae with novel Bayesian approaches applied to DNA sequence data from three mitochondrial genes (12S, 16S and cytb). We included 38 salamandrid species comprising all 13 recognized species of Triturus and 16 out of 17 salamandrid genera. A clade comprising all the "Newts" can be separated from the "True Salamanders" and Salamandrina clades. Within the "Newts" well-supported clades are: Tylototriton-Pleurodeles, the "New World Newts" (Notophthalmus-Taricha), and the "Modern Eurasian Newts" (Cynops, Pachytriton, Paramesotriton=together the "Modern Asian Newts", Calotriton, Euproctus, Neurergus and Triturus species). We found that Triturus is a non-monophyletic species assemblage, which includes four groups that are themselves monophyletic: (i) the "Large-Bodied Triturus" (six species), (ii) the "Small-Bodied Triturus" (five species), (iii) T. alpestris and (iv) T. vittatus. We estimated that the last common ancestor of Triturus existed around 64 million years ago (mya) while the root of the Salamandridae dates back to 95 mya. This was estimated using a fossil-based molecular dating approach and an explicit framework to select calibration points that least underestimated their corresponding nodes. Using the molecular phylogeny we mapped the evolution of life history and courtship traits in Triturus and found that several Triturus-specific courtship traits evolved independently.  相似文献   

16.
Abstract.— A major tenet of African Tertiary biogeography posits that lowland rainforest dominated much of Africa in the late Cretaceous and was replaced by xeric vegetation as a response to continental uplift and consequent widespread aridification beginning in the late Paleogene. The aridification of Africa is thought to have been a major factor in the extinction of many African humid-tropical lineages, and in the present-day disparity of species diversity between Africa and other tropical regions. This primarily geologically based model can be tested with independent phylogenetic evidence from widespread African plant groups containing both humid- and xeric-adapted species. We estimated the phylogeny and lineage divergence times within one such angiosperm group, the acridocarpoid clade (Malpighiaceae), with combined ITS, ndhF , and trnL-F data from 15 species that encompass the range of morphological and geographic variation within the group. Dispersal-vicariance analysis and divergence-time estimates suggest that the basal acridocarpoid divergence occurred between African and Southeast Asian lineages approximately 50 million years ago (mya), perhaps after a southward ancestral retreat from high-latitude tropical forests in response to intermittent Eocene cooling. Dispersion of Acridocarpus from Africa to Madagascar is inferred between approximately 50 and 35 mya, when lowland humid tropical forest was nearly continuous between these landmasses. A single dispersal event within Acridocarpus is inferred from western Africa to eastern Africa between approximately 23 and 17 mya, coincident with the widespread replacement of humid forests by savannas in eastern Africa. Although the spread of xeric environments resulted in the extinction of many African plant groups, our data suggest that for others it provided an opportunity for further diversification.  相似文献   

17.
Classification of freshwater fish in the subfamily Leuciscinae, Cyprinidae is hampered by complexity or lack of morphological diversity. In this study, analyses based on mtDNA sequences were undertaken to clarify phylogenetic relationships among Far Eastern, North American and European species in the Leuciscinae. Evolutionary rate in cytochrome b gene (Cyt-b) and D-loop sequences appear to be almost constant in Leuciscinae. The topology of phylogenetic trees generated by neighbor-joining (NJ) and maximum likelihood (ML) methods based on Cyt-b gene and D-loop sequences was similar. Five major clades, designated clades 1-5, and a minor clade were discriminated. Most of the Far Eastern, North American and European species were included in the major clades. Clade 1, comprised almost entirely of Far Eastern phoxinins, is monophyletic and greatly diverged from the other species of Leuciscinae. From the present phylogenetic relationships and the previous studies, we present the following hypotheses with respect to the evolutionary history of the Far Eastern phoxinins. The Far Eastern species should be classified into Far Eastern-specific genera, although ichthyologists have still insisted that the species should be included in the European genera. The Far Eastern clade 1 consists of two subclades, including genera Pseudaspius-Tribolodon and Far Eastern Phoxinus species. According to our phylogenetic analyses, Pseudaspius leptocephalus and Tribolodon species should be reclassified into the same genus. On the basis of evolutionary rate in Cyt-b gene in Cyprinidae, it is estimated that the Far Eastern lineage diverged approximately 10-14 million years ago (mya) from the common ancestor of Leuciscinae. It is deduced that speciation of the Far Eastern species occurred until approximately 4 mya, in relation to the formation of the Sea of Japan and the Japanese Islands.  相似文献   

18.
Theory predicts that clades diversifying via sympatric speciation will exhibit high diversification rates. However, the expected rate of diversification in clades characterized by allopatric speciation is less clear. Previous studies have documented significantly higher speciation rates in freshwater fish clades diversifying via sympatric versus allopatric modes, leading to suggestions that the geographic pattern of speciation can be inferred solely from knowledge of the diversification rate. We tested this prediction using an example from darters, a clade of approximately 200 species of freshwater fishes endemic to eastern North America. A resolved phylogeny was generated using mitochondrial DNA gene sequences for logperches, a monophyletic group of darters composed of 10 recognized species. Divergence times among logperch species were estimated using a fossil calibrated molecular clock in centrarchid fishes, and diversification rates in logperches were estimated using several methods. Speciation events in logperches are recent, extending from 4.20 +/- 1.06 million years ago (mya) to 0.42 +/- 0.22 mya, with most speciation events occurring in the Pleistocene. Diversification rates are high in logperches, at some nodes exceeding rates reported for well-studied adaptive radiations such as Hawaiian silverswords. The geographic pattern of speciation in logperches was investigated by examining the relationship between degree of sympatry and the absolute age of the contrast, with the result that diversification in logperches appears allopatric. The very high diversification rate observed in the logperch phylogeny is more similar to freshwater fish clades thought to represent examples of sympatric speciation than to clades representing allopatric speciation. These results demonstrate that the geographic mode of speciation for a clade cannot be inferred from the diversification rate. The empirical observation of high diversification rates in logperches demonstrates that allopatric speciation can occur rapidly.  相似文献   

19.
To examine relationships and test previous sectional delimitations within Fuchsia, this study used parsimony and maximum likelihood analyses with nuclear ITS and chloroplast trnL-F and rpl16 sequence data for 37 taxa representing all sections of Fuchsia and four outgroup taxa. Results support previous sectional delimitations, except for F. verrucosa, which is related to a Central American clade rather than to section Fuchsia and is described here as a new section Verrucosa. The basal relationships within Fuchsia are poorly resolved, suggesting an initial rapid diversification of the genus. Among the species sampled, there is strong support for a single South Pacific lineage, a southern South American/southern Brazilian lineage, a tropical Andean lineage, and one or two Central American and Mexican lineages. There is no clear support for an austral origin of the genus, as previously proposed, which is more consistent with Fuchsia's sister group relationship with the boreal Circaea. An ultrametric molecular clock analysis (all minimal dates) places the split between Fuchsia and Circaea at 41 million years ago (mya), with the diversification of the modern-day lineages of Fuchsia beginning at 31 mya. The South Pacific Fuchsia lineage branches off around 30 mya, consistent with fossil records from Australia and New Zealand. The large Andean section Fuchsia began to diversify around 22 mya, preceded by the divergence of the Caribbean F. triphylla at 25 mya. The Brazilian members of section Quelusia separated from the southern Andean F. magellanica around 13 mya, and the ancestor of the Tahitian F. cyrtandroides split off from the New Zealand species of section Skinnera approximately 8 mya.  相似文献   

20.
The phylogeny and evolutionary history of the rice tribe (Oryzeae) were explored using sequences of five DNA fragments (matK, trnL, nad1, Adh2, and GPA1) from chloroplast, mitochondrial, and nuclear genomes. Results indicate that (1) Oryzeae is monophyletic and falls into two main clades corresponding to the traditionally recognized subtribes; (2) previous recognition of three monotypic genera (Hydrochloa, Porteresia, and Prosphytochloa) is not justified; and (3) close affinities of the monoecious genera are not supported, suggesting the possibility of multiple origins of unisexual florets. Based on the magnitude of matK and GPA1 sequence divergence, we suggest that Oryza and Leersia branched off from the remaining genera of Oryzeae ~20 million years ago (mya), and separated from each other ~14 mya. A divergence time of ~9 mya is obtained for the most basal split within Oryza. These estimates suggest that Oryzeae diverged during the Miocene, and thus imply that long-distance dispersal appears to be one of the important factors in the diversification of the tribe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号