首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Min JY  Lee EY 《Biotechnology letters》2011,33(9):1789-1796
Biodiesel [fatty acid methyl esters (FAMEs)] and glycerol carbonate were synthesized from corn oil and dimethyl carbonate (DMC) via transesterification using lipase (Novozyme 435) in solvent-free reaction in which excess DMC was used as the substrate and reaction medium. Glycerol carbonate was also simultaneously formed from DMC and glycerol. Conversions of FAMEs and glycerol carbonate were examined in batch reactions. The FAMEs and glycerol carbonate reached 94 and 62.5% from oil and DMC (molar ratio of 1:10) with 0.2% (v/v) water and 10% (w/w) Novozyme 435 (based on oil weight) at 60°C. When Novozyme 435 was washed with acetone after each reaction, more than 80% activity still remained after seven recycling.  相似文献   

2.
The enzymatic coproduction of biodiesel and glycerol carbonate by the transesterification of soybean oil was studied using lipase as catalyst in organic solvent. To produce biodiesel and glycerol carbonate simultaneously, experiments were designed sequentially. Enzyme screening, the molar ratio of dimethyl carbonate (DMC) to soybean oil, reaction temperature and solvent effects were investigated. The results of enzyme screening, at 100 g/L Novozym 435 (immobilized Candida antarctica lipase B), biodiesel and glycerol carbonate showed conversions of 58.7% and 50.7%, respectively. The optimal conditions were 60 °C, 100 g/L Novozym 435, 6.0:1 molar ratio with tert-butanol as solvent: 84.9% biodiesel and 92.0% glycerol carbonate production was achieved.  相似文献   

3.
The detrimental effects of waste cooking oil on sewer system attracted attention toward its proper management and reusing this waste oil for making biodiesel provides commercial and environmental advantage. In the present study, biodiesel has been successfully produced from waste cooking oil and dimethyl carbonate by transesterification, instead of the conventional alcohol. In this optimization study, the effect of various reaction conditions such as solvent, time and temperature, molar ratio of DMC to oil, enzyme loading and reusability, on the yield of fatty acid methyl ester (FAME) has been studied. The Maximum conversion of FAMEs achieved was 77.87% under optimum conditions (solvent free system, reaction time of 24 h, 60 °C, molar ratio of DMC to oil 6:1, catalyst amount 10% Novozym 435 (based on the oil weight)). Moreover, there was no obvious loss in the conversion after lipases were reused for 6 batches under optimized conditions.  相似文献   

4.
In this study, we report the enzymatic production of glycerol acetate from glycerol and methyl acetate. Lipases are essential for the catalysis of this reaction. To find the optimum conditions for glycerol acetate production, sequential experiments were designed. Type of lipase, lipase concentration, molar ratio of reactants, reaction temperature and solvents were investigated for the optimum conversion of glycerol to glycerol acetate. As the result of lipase screening, Novozym 435 (Immobilized Candida antarctica lipase B) was turned out to be the optimal lipase for the reaction. Under the optimal conditions (2.5 g/L of Novozym 435, 1:40 molar ratio of glycerol to methyl acetate, 40 °C and tert-butanol as the solvent), glycerol acetate production was achieved in 95.00% conversion.  相似文献   

5.
Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.  相似文献   

6.
Six‐membered cyclic carbonates are potential monomers for phosgene and/or isocyanate free polycarbonates and polyurethanes via ring‐opening polymerization. A two‐step process for their synthesis comprising lipase‐catalyzed transesterification of a polyol, trimethylolpropane (TMP) with dimethylcarbonate (DMC) in a solvent‐free system followed by thermal cyclization was optimized to improve process efficiency and selectivity. Using full factorial designed experiments and partial least squares (PLS) modeling for the reaction catalyzed by Novozym®435 (N435; immobilized Candida antarctica lipase B), the optimum conditions for obtaining either high proportion of monocarbonated TMP and TMP‐cyclic‐carbonate (3 and 4), or dicarbonated TMP and monocarbonated TMP‐cyclic‐carbonate (5 and 6) were found. The PLS model predicted that the reactions using 15%–20% (w/w) N435 at DMC:TMP molar ratio of 10–30 can reach about 65% total yield of 3 and 4 within 10 h, and 65%–70% total yield of 5 and 6 within 32–37 h, respectively. High consistency between the predicted results and empirical data was shown with 66.1% yield of 3 and 4 at 7 h and 67.4% yield of 5 and 6 at 35 h, using 18% (w/w) biocatalyst and DMC:TMP molar ratio of 20. Thermal cyclization of the product from 7 h reaction, at 110°C in the presence of acetonitrile increased the overall yield of cyclic carbonate 4 from about 2% to more than 75% within 24 h. N435 was reused for five consecutive batches, 10 h each, to give 3+4 with a yield of about 65% in each run. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013.  相似文献   

7.
This article addresses the issue of effect of fermentation parameters for conversion of glycerol (in both pure and crude form) into three value-added products, namely, ethanol, butanol, and 1,3-propanediol (1,3-PDO), by immobilized Clostridium pasteurianum and thereby addresses the statistical optimization of this process. The analysis of effect of different process parameters such as agitation rate, fermentation temperature, medium pH, and initial glycerol concentration indicated that medium pH was the most critical factor for total alcohols production in case of pure glycerol as fermentation substrate. On the other hand, initial glycerol concentration was the most significant factor for fermentation with crude glycerol. An interesting observation was that the optimized set of fermentation parameters was found to be independent of the type of glycerol (either pure or crude) used. At optimum conditions of agitation rate (200 rpm), initial glycerol concentration (25 g/L), fermentation temperature (30°C), and medium pH (7.0), the total alcohols production was almost equal in anaerobic shake flasks and 2-L bioreactor. This essentially means that at optimum process parameters, the scale of operation does not affect the output of the process. The immobilized cells could be reused for multiple cycles for both pure and crude glycerol fermentation.  相似文献   

8.
Plants are the prime source of phytoconstituents that can act as potent agents for the prevention and treatment of various diseases. Heterospathe elata is a plant belonging to the Arecaceae family having numerous medicinal properties. The present study was undertaken to prepare crude extracts of Heterospathe elata leaves with solvents of different polarity dimethyl carbonate (DMC), isopropyl alcohol (IPA), hydro alcohol (HYA) and water (WTR) by using successive Soxhlet extraction method. Further, the antioxidant, antidiabetic, and anti-inflammatory activities were assessed by the spectrophotometric method and possible bioactive phytoconstituents from the hydro alcohol extract of Heterospathe elata leaves using GC/MS. In our study, it was found that the GC/MS analysis revealed the presence of nineteen bioactive phytoconstituents. The highest antioxidant activity was found in the water extract. In antidiabetic and anti-inflammatory activity highest potential was shown by hydro alcohol extract and the lowest was in the dimethyl carbonate extract. These findings support the Heterospathe elata leaves showed the high biological potential attributed to a high amount of bioactive phytoconstituents and could be utilized as value-added functional food and medicine.  相似文献   

9.
非水相酶促合成癸酸偏甘油酯的研究   总被引:5,自引:0,他引:5  
对无溶剂非水相中癸酸与甘油的酶促酯化反应进行了研究,发现Pseudomonas fluoresces脂肪酶(PFL)、Mucor miehei脂肪酶(MML)和Candida antarictica脂肪酶(CAL)均有较好的催化活性。CAL酶促转化癸酸的最适反应条件为:60℃,加酶量为20~100u/g,初始加水量为甘油质量的12%。CAL的1,3位置专一性在最终产物中未表达。CAL酶催化剂的失活主要与机械磨损有关,反应5批次后酶活残留量为96.4%。敞开物系、真空脱水或分子筛脱水均为有效脱水方式。敞开物系中反应物量比不影响平衡转化率而会影响单甘酯平衡产率。用碳酸氢钠水溶液萃取可有效脱除产品中的残余癸酸,终产品酸价为0.68mg KOH/g。提高甘油比例并使用非脱水原料,无外加水结合部分流加癸酸的工艺,可以减少减压脱水或敞开反应的时间,5h后癸酸最高转化率可达96.9%。   相似文献   

10.
Herein, we demonstrated a environmental-friendly biocatalytic route for the synthesis of dimethyl carbonate (DMC), which is the first example to use enzyme in the process. Moreover, immobilization of Penicillium expansum lipase (PEL) using environmentally benign and biodegradable CMC–PVA polymer has significantly enhanced the catalytic activity thus making them an eligible biocatalyst for synthesis of DMC. The biocatalyst revealed high catalytic performance even under ambient pressure and low temperature (conversion of EC to 94%, yield of DMC to 93% and selectivity of DMC to 99%). The immobilized lipase was effectively recycled for four consecutive cycles providing good yields of the desired product. Accompanying with the intense requirement for the green chemicals and process, our work can provide a useful idea for “green and clean” of harmful chemical reaction.  相似文献   

11.
Furfural is an important inhibitor of yeast metabolism in lignocellulose-derived substrates. The effect of furfural on the physiology of Saccharomyces cerevisiae CBS 8066 was investigated using anaerobic continuous cultivations. Experiments were performed with furfural in the feed medium (up to 8.3 g/L) using three different dilution rates (0.095, 0.190, and 0.315 h(-1)). The measured concentration of furfural was low (< 0.1 g/L) at all steady states obtained. However, it was not possible to achieve a steady state at a specific conversion rate of furfural, q(f), higher than approximately 0.15 g/g.h. An increased furfural concentration in the feed caused a decrease in the steady-state glycerol yield. This agreed well with the decreased need for glycerol production as a way to regenerate NAD+, i.e., to function as a redox sink because furfural was reduced to furfuryl alcohol. Transient experiments were also performed by pulse addition of furfural directly into the fermentor. In contrast to the situation at steady-state conditions, both glycerol and furfuryl alcohol yields increased after pulse addition of furfural to the culture. Furthermore, the maximum specific conversion rate of furfural (0.6 g/g.h) in dynamic experiments was significantly higher than what was attainable in the chemostat experiments. The dynamic furfural conversion could be described by the use of a simple Michaelis-Menten-type kinetic model. Also furfural conversion under steady-state conditions could be explained by a Michaelis-Menten-type kinetic model, but with a higher affinity and a lower maximum conversion rate. This indicated the presence of an additional component with a higher affinity, but lower maximum capacity, either in the transport system or in the conversion system of furfural.  相似文献   

12.
The aim of this work is to study the transesterification of vegetable oil with a high acid number at unchanged reaction conditions. Rapeseed oil was used as the raw material and its acid number was changed by the addition of oleic acid (from 0.89 to 12.25 mg KOH/g). Methanol was used for transesterification (molar ratio of oil to methanol 1:6) and potassium hydroxide was used as a catalyst. After the reaction time, the residue of the catalyst was neutralised by gaseous carbon dioxide and the methanol excess was removed. After the separation of two phases, each of them was analyzed (in the ester phase: yield, content of methyl ester and acid number; in the glycerol phase: yield, density, viscosity, content of glycerol, soaps, methyl ester, potassium carbonate and hydrogen carbonate). The obtained data was compared with theoretical material balances and the effect on the saponification of oil was discussed. The results show that the yield of methyl ester (biodiesel) is significantly affected by a higher acid number, as well as enhanced soap formation. On the other hand, the conversion of the oil and acid number of the ester phase remain at constant values in studied borders.  相似文献   

13.
Enzymatic production of dihydroxyacetone (DHA) was studied by immobilization of the whole cells of acetic acid bacteria capable of oxidizing glycerol to DHA. Acetobacter xylinum A-9 cells immobilized in a polyacrylamide gel were selected as the most favorable enzyme preparation. The enzymatic properties of immobilized cells converting glycerol to DHA were investigated and compared with those of intact cells. The optimum pH for the immobilized cells was broad (4.0 to 5.5), whereas the intact cells had a narrow pH optimum at 5.5. The thermal stability of the immobilized cells was somewhat higher than that of the intact cells. Apparent Km values for glycerol with both intact and immobilized cells were about equal, 6.3 × 10−2 to 6.5 × 10−2 M. The complete conversion of glycerol to DHA was achieved within 40 h under optimum conditions, and pure crystalline DHA was readily isolated from the reaction mixture with over 80% yield.  相似文献   

14.
Lee  Ji-Yeon  Kim  Mee Ree  Sok  Dai-Eun 《Neurochemical research》1998,23(6):899-905
Enzymatic conversion of glycosylphosphatidylinositol (GPI)-linked Zn2+-glycerophosphocholine phosphodiesterase was investigated. The activity of glycosylphosphatidylinositol-specific phospholipase-D (GPI-PLD), based on the conversion of amphiphilic form of phosphodiesterase into hydrophilic form, showing an optimum pH of about pH 6.6, increased continuously until 60 min. The activity of membrane-bound GPI-PL, based on the formation of hydrophilic form of phosphodiesterase, exhibiting an optimum pH of 7.4, increased up to 30 min, and reached a plateau. Inhibition studies indicate that while GPI-PLD activity was generally sensitive to ionic bio-detergents, it was not inhibited by myristoyl glycerol, a neutal detergent. Meanwhile, the membrane-bound GPI-PL was not affected remarkably by these detergents except that myristoyl glycerol expressed a modest increase of activity of membrane bound GPI-PL. In addition, the membrane-bound GPI-PL appeared to be enhanced by by suramin or oleic acid, which strongly inhibited GPI-PLD. From this results, it is suggested that in brain there may be two phospholipases responsible for the conversion of membrane-bound GPI-anchors to hydrophilic forms, and that this conversion might be regulated by endogenous lipids.  相似文献   

15.
Ilham Z  Saka S 《Bioresource technology》2009,100(5):1793-1796
In this study, the non-catalytic supercritical method has been studied in utilizing dimethyl carbonate. It was demonstrated that, the supercritical dimethyl carbonate process without any catalysts applied, converted triglycerides to fatty acid methyl esters with glycerol carbonate and citramalic acid as by-products, while free fatty acids were converted to fatty acid methyl esters with glyoxal. After 12 min of reaction at 350 degrees C/20 MPa, rapeseed oil treated with supercritical dimethyl carbonate reached 94% (w/w) yield of fatty acid methyl ester. The by-products from this process which are glycerol carbonate and citramalic acid are much higher in value than glycerol produced by the conventional process. In addition, the yield of the fatty acid methyl esters as biodiesel was almost at par with supercritical methanol method. Therefore, supercritical dimethyl carbonate process can be a good candidate as an alternative biodiesel production process.  相似文献   

16.
Studies have been conducted on L-phenylalanine (L-Phe) production and phenylalanine ammonia lyase (PAL) stabilization in the presence of several optimum effectors and reducing agents under bioconversion of transcinnamic acid (t-CA) conditions during repeated batch operations. L-Phe production was maximized and reuseability of PAL catalyst was extended to eight consecutive cycles (repeated batches) in the presence of optimum effectors (glutamic acid, polyethylene glycol and glycerol), thioglycolic acid and sparging with nitrogen gas. These best optimum bioconversion conditions desensitize the PAL catalyst to substantially elevated higher substrate t-CA concentrations and inhibit inactivation of PAL enzyme over longer reaction periods compared to the control. The fed batch mode operation of bioconversion of total t-CA (300 mM) to L-Phe was superior (65.2%, conversion), comparing with conventional batch and repeated batch (58.4%, conversion) operations after 120 h. Gamma irradiation process was employed to polymerize and crosslink polyvinyl alcohol (PVA) with N,N'-methylene-bisacrylamide (BIS) agent. The use of immobilized PAL biocatalyst containing cells in PVA-BIS copolymer gel carrier produced by radiation polymerization is obviously advantageous with regards to the yield of L-Phe which was increased in average 1.2-fold when compare to those obtained with free cells during optimum bioconversion process. When comparing the magnitudes of gamma irradiation effects on immobilized entrapped yeast cells in PVA-BIS copolymer gel carrier using scanning electron microscopy it was show that yeast cells were protected and capable to overcome these conditions and had normal shape and other features as free (unirradiated) intact yeast cells. Optimum conditions for continuous production of L-Phe by PVA-BIS copolymer carrier entrapped yeast cells in a packed bed column reactor in recycle fed-batch mode were investigated. Under these optimum conditions L-Phe accumulated to concentration 240.1 mM represts a total conversion yield of 80% (w/w) from (300 mM) t-CA after 84 h of reaction process, which was higher than that obtained after 120 h of reaction, 65.2% (w/w) from (300 mM) t-CA with free cells in fed-batch mode. The results also demonstrated that during about 4 weeks of repeated continuous recycle fed batch mode experiments (using immobilized cells in packed bed reactor), the final production of L-Phe concentrations decreased gradually in eight consecutive runs with no sign of breakage or disintegration of the carrier gel beads.  相似文献   

17.
Three different biodiesel production processes were simulated using the SuperPro Designer program. The process for producing biodiesel from soybean oil and methanol was designed using commercial chemical catalysts. This chemical process was compared with the biological process catalyzed by immobilized enzymes. In addition, a hybrid process consisting of catalytic biodiesel production and enzymatic glycerol carbonate production was designed and simulated for the conversion of waste glycerol to value-added chemical. Finally, the economics and productivity of these processes were evaluated to determine economic feasibility.  相似文献   

18.
Glycerol carbonate is a key multifunctional compound employed as solvent, additive, monomer, and chemical intermediate. Enzymatic synthesis of glycerol carbonate from renewable starting materials (glycerol and dimethyl carbonate) was successfully achieved by immobilized lipase from Candida antarctica (CALB, Novozym 435). Addition of molecular sieves as scavenger for the removal of methanol, which was generated from dimethyl carbonate during the reaction, accelerated a reaction rate. After the optimization, the equimolar use of glycerol and dimethyl carbonate in the Novozym 435-catalyzed reaction yielded a glycerol carbonate with almost quantitative yield. The resulting glycerol carbonate from 60 °C reaction has shown the low enantiomeric excess (13% ee) as configuration of (R)-enantiomer.  相似文献   

19.
《Chirality》2017,29(6):304-314
S‐naproxen by enantioselective hydrolysis of racemic naproxen methyl ester was produced using immobilized lipase. The lipase enzyme was immobilized on chitosan beads, activated chitosan beads by glutaraldehyde, and Amberlite XAD7. In order to find an appropriate support for the hydrolysis reaction of racemic naproxen methyl ester, the conversion and enantioselectivity for all carriers were compared. In addition, effects of the volumetric ratio of two phases in different organic solvents, addition of cosolvent and surfactant, optimum pH and temperature, reusability, and inhibitory effect of methanol were investigated. The optimum volumetric ratio of two phases was defined as 3:2 of aqueous phase to organic phase. Various water miscible and water immiscible solvents were examined. Finally, isooctane was chosen as an organic solvent, while 2‐ethoxyethanol was added as a cosolvent in the organic phase of the reaction mixture. The optimum reaction conditions were determined to be 35 °C, pH 7, and 24 h. Addition of Tween‐80 in the organic phase increased the accessibility of immobilized enzyme to the reactant. The optimum organic phase compositions using a volumetric ratio of 2‐ethoxyethanol, isooctane and Tween‐80 were 3:7 and 0.1% (v /v/v), respectively. The best conversion and enantioselectivity of immobilized enzyme using chitosan beads activated by glutaraldehyde were 0.45 and 185, respectively.  相似文献   

20.
When cells of Klebsiella pneumoniae NRRL B-199 (ATCC 8724) were grown aerobically on a rich glycerol medium and then suspended in buffer supplemented with semicarbazide and glycerol, aerobic conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA) ensued. Depending on conditions, 0.38 to 0.67 g of 3-HPA were formed per gram of glycerol consumed. This means that up to 83.8% of the carbon invested as glycerol could potentially be recovered as the target product, 3-HPA. Production of 3-HPA was sensitive to the age of cells harvested for resuspension and was nonexistent if cells were cultivated on glucose instead of glycerol as the sole carbon source. Compared with 24- and 72-h cells, 48-h cells produced 3-HPA at the highest rate and with the greatest yield. The cell biomass concentration present during the fermentation was never particularly critical to the 3-HPA yield, but initial fermentation rates and 3-HPA accumulation displayed a linear dependence on biomass concentration that faded when biomass exceeded 3 g/liter. Fermentation performance was a function of temperature, and an optimum initial specific 3-HPA productivity occurred at 32 degrees C, although the overall 3-HPA yield increased continuously within the 25 to 37 degrees C range studied. The pH optimum based on fermentation rate was different from that based on overall yield; 8 versus 7, respectively. Initial glycerol concentrations in the 20 to 50 g/liter range optimized initial 3-HPA productivity and yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号