首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Theory predicts that males have a limited amount of resources to invest in reproduction, suggesting a trade‐off between traits that enhance mate acquisition and those that enhance fertilization success. Here, we investigate the relationship between pre‐ and post‐copulatory investment by comparing the mating behaviour and reproductive morphology of four European and five North American populations of the dung fly Sepsis punctum (Diptera) that display a reversal of sexual size dimorphism (SSD). We show that the geographic reversal in SSD between the continents (male biased in Europe, female biased in North America) is accompanied by differential investment in pre‐ vs. post‐copulatory traits. We find higher remating rates in European populations, where larger males acquire more matings and consequently have evolved relatively larger testes and steeper hyper‐allometry with body size. American populations, in sharp contrast, display much reduced, if any, effect of body size on those traits. Instead, North American males demonstrate an increased investment in mate acquisition prior to copulation, with more mounting attempts and a distinctive abdominal courtship display that is completely absent in Europe. When controlling for body size, relative female spermathecal size is similar on both continents, so we find no direct evidence for the co‐evolution of male and female internal reproductive morphology. By comparing allopatric populations of the same species that apparently have evolved different mating systems and consequently SSD, we thus indirectly demonstrate differential investment in pre‐ vs. post‐copulatory mechanisms increasing reproductive success.  相似文献   

2.
    
The likelihood of speciation is assumed to increase when sexually selected traits diverge together with ecologically important traits. According to sexual selection theory, the evolution of exaggerated display behavior is driven by increased mating success, but limited by natural selection, for example, through predation. However, the evolution of aposematic coloration (i.e., an ecologically important trait) could relieve the evolution of exaggerated display behavior from the bound of predation, resulting in joint divergence in aposematic coloration and sexual display behavior between populations. We tested this idea by examining conspicuousness, using color contrasts between individuals and their native backgrounds, and sexual display of 118 males from genetically diverged populations of the Strawberry poison frog, Dendrobates pumilio. Our results show that the level of conspicuousness of the population predicts the sexual display behavior of males. Males from conspicuous populations used more exposed calling sites. We argue that changes in aposematic coloration may rapidly cause not only postmating isolation due to poorly adapted hybrids, but also premating isolation through shifts in mating behaviors.  相似文献   

3.
Bumblebees and other eusocial bees offer a unique opportunity to analyze the evolution of body size differences between sexes. The workers, being sterile females, are not subject to selection for reproductive function and thus provide a natural control for parsing the effects of selection on reproductive function (i.e., sexual and fecundity selection) from other natural selection. Using a phylogenetic comparative approach, we explored the allometric relationships among queens, males, and workers in 70 species of bumblebees (Bombus sp.). We found hyperallometry in thorax width for males relative to workers, indicating greater evolutionary divergence of body size in males than in sterile females. This is consistent with the hypothesis that selection for reproductive function, most probably sexual selection, has caused divergence in male size among species. The slope for males on workers was significantly steeper than that for queens on workers and the latter did not depart from isometry, providing further evidence of greater evolutionary divergence in male size than female size, and no evidence that reproductive selection has accelerated divergence of females. We did not detect significant hyperallometry when male size was regressed directly on queen size and our results thus add the genus Bombus to the increasing list of clades that have female-larger sexual size dimorphism and do not conform to Rensch's rule when analyzed according to standard methodology. Nevertheless, by using worker size as a common control, we were able to demonstrate that bumblee species do show the evolutionary pattern underlying Rensch's rule, that being correlated evolution of body size in males and females, but with greater evolutionary divergence in males.  相似文献   

4.
  总被引:10,自引:0,他引:10  
Mechanisms of speciation are not well understood, despite decades of study. Recent work has focused on how natural and sexual selection cause sexual isolation. Here, we investigate the roles of divergent natural and sexual selection in the evolution of sexual isolation between sympatric species of threespine sticklebacks. We test the importance of morphological and behavioral traits in conferring sexual isolation and examine to what extent these traits have diverged in parallel between multiple, independently evolved species pairs. We use the patterns of evolution in ecological and mating traits to infer the likely nature of selection on sexual isolation. Strong parallel evolution implicates ecologically based divergent natural and/or sexual selection, whereas arbitrary directionality implicates nonecological sexual selection or drift. In multiple pairs we find that sexual isolation arises in the same way: assortative mating on body size and asymmetric isolation due to male nuptial color. Body size and color have diverged in a strongly parallel manner, similar to ecological traits. The data implicate ecologically based divergent natural and sexual selection as engines of speciation in this group.  相似文献   

5.
    
Female rejections of males are crucial events in sexual selection by female choice and sexually antagonistic coevolution, but there are few detailed studies of the process of rejection. Female struggles when mounted by males are often assumed to function to dislodge the male. But this study, in which female receptivity was manipulated by using females of different ages, showed that this “dislodgement” males. Mounts in Archisepsis diversiformis often failed, but males were nevertheless seldom thrown off; instead, they almost always dismounted while the female was quiet. Males also showed signs of being in control of dismounts, as they dismounted more quickly if the female had recently been mounted by another male. Predictions from two other hypotheses for the function of female resistance behaviour also either failed or were not consistently supported: (1) females resist in order to filter males with respect to their ability to hold on to the female or outlast her resistance, or to court while mounted (“male endurance/female exhaustion” hypothesis); (2) females resist in order to sense the male's grip on her wings and thus filter males with respect to their species-specific clamps or to elicit other male courtship (“male screening” hypothesis). Several predictions of a further possibility, that (3) females resist in order to communicate their lack of receptivity to the male, and to induce him to leave (“communication” hypothesis), hypothesis is incorrect in a group (sepsid flies) in which energetic female shaking behaviour was previously interpreted as female attempts to dislodge were confirmed. Although one type of data did not fit easily with the communication hypothesis, overall it was the most likely explanation for female shaking behaviour. Our results call into question conclusions from previous studies regarding male-female conflict in this and other groups, and suggest testable alternative hypotheses. A survey of behaviour in other flies (which are presumably indicative of other animals in this respect) indicates that female “resistance” behaviour probably has a variety of functions. In sum, facile interpretations of a forceful resistance function should not be accepted without careful analyses.  相似文献   

6.
    
We compare morphological characteristics of male and female Barisia imbricata, Mexican alligator lizards, and find that mass, head length, coloration, incidence of scars from conspecifics, tail loss, and frequency of bearing the color/pattern of the opposite sex are all sexually dimorphic traits. Overall size (measured as snout–vent length), on the other hand, is not different between the two sexes. We use data on bite scar frequency and fecundity to evaluate competing hypotheses regarding the selective forces driving these patterns. We contend that sexual selection, acting through male‐male competition, may favor larger mass and head size in males, whereas large females are likely favored by natural selection for greater fecundity. In addition, the frequency of opposite‐sex patterning in males versus females may indicate that the costs of agonistic interactions among males are severe enough to allow for an alternative mating strategy. Finally, we discuss how sexual and natural selective forces may interact to drive or mask the evolution of sexually dimorphic traits.  相似文献   

7.
Four hypotheses that could explain the elaborate species-specific morphology of the clasping organs on the front legs of male Archisepsis diversiformis flies were tested: direct male–male combat, mechanical fit, male–female conflict of interests, and male stimulation of the female. Experimental modification of the shape of the male clasper and of the female wing base where the male clasped the female both strongly reduced the chances that a mount would result in copulation. This reduction was not predicted by the male–male combat hypothesis but was predicted by the others. Males in the field did nave to fight other males to remain mounted on females, as expected by the male–male combat hypothesis. Reduced male copulatory success was not due to inferior male ability to grasp and hold onto the female's wings, as predicted by the mechanical fit and male–female conflict hypotheses but to a reduction in the likelihood that the female would allow intromission, as predicted by the stimulation hypothesis. By a process of elimination, and in combination with data from a previous morphological study, the data support the hypothesis that the species-specific aspects of grasping organs in these flies function to stimulate females. Further behavioral data will be needed to test alternative possibilities.  相似文献   

8.
    
Sexual selection plays a key role in the diversification of numerous animal clades and may accelerate trait divergence during speciation. However, much of our understanding of this process comes from phylogenetic comparative studies, which rely on surrogate measures such as dimorphism that may not represent selection in wild populations. In this study, we assess sexual selection pressures for multiple male visual signals across four barn swallow (Hirundo rustica) populations. Our sample encompassed 2400 linear km and two described subspecies: European H. r. rustica (in the Czech Republic and Romania) and eastern Mediterranean H. r. transitiva (in Israel), as well as a potential area of contact (in Turkey). We demonstrate significant phenotypic differentiation in four sexual signalling axes, despite very low‐level genomic divergence and no comparable divergence in an ecological trait. Moreover, the direction of phenotypic divergence is consistent with differences in sexual selection pressures among subspecies. Thus, H. r. transitiva, which have the darkest ventral plumage of any population, experience directional selection for darker plumage. Similarly, H. r. rustica, which have the longest tail feathers of any population, experience directional selection for elongated tail feathers and disruptive selection for ventral plumage saturation. These results suggest that sexual selection is the primary driver of phenotypic differentiation in this species. Our findings add to growing evidence of phenotypic divergence with gene flow. However, to our knowledge, this is the first study to relate direct measures of the strength and targets of sexual selection to phenotypic divergence among closely related wild populations.  相似文献   

9.
    
Sexual size dimorphism (SSD) arises when the net effects of natural and sexual selection on body size differ between the sexes. Quantitative SSD variation between taxa is common, but directional intraspecific SSD reversals are rare. We combined micro‐ and macroevolutionary approaches to study geographic SSD variation in closely related black scavenger flies. Common garden experiments revealed stark intra‐ and interspecific variation: Sepsis biflexuosa is monomorphic across the Holarctic, while S. cynipsea (only in Europe) consistently exhibits female‐biased SSD. Interestingly, S. neocynipsea displays contrasting SSD in Europe (females larger) and North America (males larger), a pattern opposite to the geographic reversal in SSD of S. punctum documented in a previous study. In accordance with the differential equilibrium model for the evolution of SSD, the intensity of sexual selection on male size varied between continents (weaker in Europe), whereas fecundity selection on female body size did not. Subsequent comparative analyses of 49 taxa documented at least six independent origins of male‐biased SSD in Sepsidae, which is likely caused by sexual selection on male size and mediated by bimaturism. Therefore, reversals in SSD and the associated changes in larval development might be much more common and rapid and less constrained than currently assumed.  相似文献   

10.
11.
    
We integrate field data and phylogenetic comparative analyses to investigate causes of body size evolution and stasis in an old insect order: odonates (“dragonflies and damselflies”). Fossil evidence for “Cope's Rule” in odonates is weak or nonexistent since the last major extinction event 65 million years ago, yet selection studies show consistent positive selection for increased body size among adults. In particular, we find that large males in natural populations of the banded demoiselle (Calopteryx splendens) over several generations have consistent fitness benefits both in terms of survival and mating success. Additionally, there was no evidence for stabilizing or conflicting selection between fitness components within the adult life‐stage. This lack of stabilizing selection during the adult life‐stage was independently supported by a literature survey on different male and female fitness components from several odonate species. We did detect several significant body size shifts among extant taxa using comparative methods and a large new molecular phylogeny for odonates. We suggest that the lack of Cope's rule in odonates results from conflicting selection between fitness advantages of large adult size and costs of long larval development. We also discuss competing explanations for body size stasis in this insect group.  相似文献   

12.
    
Disruptive selection is a process that can result in multiple subgroups within a population, which is referred to as diversification. Foraging‐related diversification has been described in many taxa, but many questions remain about the contribution of such diversification to reproductive isolation and potentially sympatric speciation. Here, we use stable isotope analysis of diet and morphological analysis of body shape to examine phenotypic divergence between littoral and pelagic foraging ecomorphs in a population of pumpkinseed sunfish (Lepomis gibbosus). We then examine reproductive isolation between ecomorphs by comparing the isotopic compositions of nesting males to eggs from their nests (a proxy for maternal diet) and use nine microsatellite loci to examine genetic divergence between ecomorphs. Our data support the presence of distinct foraging ecomorphs in this population and indicate that there is significant positive assortative mating based on diet. We did not find evidence of genetic divergence between ecomorphs, however, indicating that isolation is either relatively recent or is not strong enough to result in genetic divergence at the microsatellite loci. Based on our findings, pumpkinseed sunfish represent a system in which to further explore the mechanisms by which natural and sexual selection contribute to diversification, prior to the occurrence of sympatric speciation.  相似文献   

13.
    
Upon advances in sequencing techniques, more and more morphologically identical organisms are identified as cryptic species. Often, mutualistic interactions are proposed as drivers of diversification. Species of the neotropical parabiotic ant association between Crematogaster levior and Camponotus femoratus are known for highly diverse cuticular hydrocarbon (CHC) profiles, which in insects serve as desiccation barrier but also as communication cues. In the present study, we investigated the association of the ants’ CHC profiles with genotypes and morphological traits, and discovered cryptic species pairs in both genera. To assess putative niche differentiation between the cryptic species, we conducted an environmental association study that included various climate variables, canopy cover, and mutualistic plant species. Although mostly sympatric, the two Camponotus species seem to prefer different climate niches. However in the two Crematogaster species, we could not detect any differences in niche preference. The strong differentiation in the CHC profiles may thus suggest a possible role during speciation itself either by inducing assortative mating or by reinforcing sexual selection after the speciation event. We did not detect any further niche differences in the environmental parameters tested. Thus, it remains open how the cryptic species avoid competitive exclusion, with scope for further investigations.  相似文献   

14.
  总被引:5,自引:0,他引:5  
Cope's rule, the tendency for species within a lineage to evolve towards larger body size, has been widely reported in the fossil record, but the mechanisms leading to such phyletic size increase remain unclear. Here we show that selection acting on individual organisms generally favors larger body size. We performed an analysis of the strength of directional selection on size compared with other quantitative traits by evaluating 854 selection estimates from 42 studies of contemporaneous natural populations. For size, more than 79% of selection estimates exceed zero, whereas for other morphological traits positive and negative values are similar in frequency. The selective advantage of increased size occurs for traits implicated in both natural selection (e.g., differences in survival) and sexual selection (e.g., differences in mating success). The predominance of positive directional selection on size within populations could translate into a macroevolutionary trend toward increased size and thereby explain Cope's rule.  相似文献   

15.
    
We investigate extensive quantitative trait variation (dewlap hue, colour pattern, dorsum hue, body proportions and scalation) in the Martinique anole across eight transects representing nascent parapatric ecological speciation, nascent allopatric speciation and allopatric divergence without sufficient genetic structure to suggest speciation. Quantitative trait divergence can be extremely large between adjacent sets of populations, but with one exception that this is associated with difference in habitat rather than past allopatry. Nascent ecological speciation shows the greatest level of quantitative trait divergence across all character sets including those implicated in natural, as well as sexual selection. The sole example of nascent allopatric speciation is associated with fairly strong quantitative trait divergence among most character sets, but not the set most implicated in natural (rather than sexual) selection. The role of sexual selection in ecological speciation is discussed, both in terms of female choice with assortative mating and male–male competition with condition‐dependant sexual signals.  相似文献   

16.
    
Genetic divergence for characters pertaining to reproductive isolation is of considerable interest in evolutionary biology. Since most studies concentrate on sibling species (for recent reviews, see Wu et al. 1996), we would like to know how much genetic variation exists between populations that are at an incipient stage of speciation. To answer this question, we have begun measuring variations in mating preference among natural isolates of Drosophila melanogaster, represented by the cosmopolitan and Zimbabwe sexual races. We quantify the variation in mating preference and success in both sexes by using a multiple-choice design and an index that is suited to cases of strong asymmetry in mate choice. Different designs and indices for measuring sexual isolation are also discussed. These sexual traits are entirely genetically determined. Surveying four populations in southern Africa and additional cosmopolitan lines, we observe extensive genetic variation in sexual characters as well as strong correlation between sexes. The populations are highly differentiated and represent various stages of evolution between the African and the cosmopolitan type of sexual behaviors. The genetic variation and correlation for these sexual characters coupled with their geographical pattern have interesting implications for models of speciation by sexual selection.  相似文献   

17.
18.
Anopheles gambiae, the primary mosquito vector of malaria in sub-Saharan Africa, is divided into 2 sympatric incipient species known as M form and S form. Recent genomic analysis of each form revealed that differentiation between forms is clustered into 3 unlinked regions of the genome. Here, we expand the investigation of these "genomic islands of speciation" to multiple populations, including all of the genes across one of the islands. Differentiation between the M and S forms in 2 of the islands is complete across all individuals in all populations, confirming that the M and S forms are reproductively isolated taxa. Differentiation at the third island (on chromosome 2R) is limited to Cameroon populations. There is reduced variation in the M form in Cameroon at this location and increased divergence to the outgroup Anopheles arabiensis, supporting an association of adaptation with reproductive isolation.  相似文献   

19.
Genetic differentiation arises due to the interaction between natural and sexual selection, migration and genetic drift. A potential role of sexual selection in speciation has received much interest, although comparative studies are inconsistent in finding supporting evidence. A poorly tested prediction is that species subject to a higher intensity of sexual selection should show greater genetic differentiation amongst populations because females from these populations should be more choosy in mate choice. The Goodeinae is a group of endemic Mexican fishes in which female choice has driven some species to be morphologically sexually dimorphic, whereas others are relatively monomorphic. Here, we measured population divergence, using microsatellite loci, within four goodeid species which show contrasting levels of sexual dimorphism. We found higher levels of differentiation between populations of the more dimorphic species, implying less gene flow between populations. We also found evidence of higher levels of genetic differences between the sexes within populations of the dimorphic species, consistent with greater dispersal in males. Adjusted for geographic distance, the mean F(ST) for the dimorphic species is 0.25 compared with 0.16 for the less dimorphic species. We conclude that population differentiation is accelerated in more sexually dimorphic species, and that comparative phylogeography may provide a more powerful approach to detecting processes, such as an influence of sexual selection on differentiation, than broad-scale comparative studies.  相似文献   

20.
    
I herein revise the genus Toxopoda Macquart of the Oriental and Australasian regions. A total of 16 species is discussed. Six new species are described: T. cavata sp. nov., T. angulata sp. nov., T. elephantina sp. nov., T. zuskai sp. nov., T. malayana sp. nov., and T. ozerovi sp. nov. The species T. contracta (Walker), T. viduata (Thomson) and T. simplex Iwasa, which can be easily confused with other species, are correctly redescribed and illustrated. Distributional notes and a key to the species of the Oriental and Australasian regions are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号