首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effect of facultative sex allocation by workerson queen fitness in a Furnish population of the ant Formicatruncorum. Workers rear female-biased broods in colonies headedby a singly mated queen and male-biased broods in colonies headedby a multiply mated queen. As a result, multiply mated queenshave a 37% fitness advantage over singly mated queens. Neitherreproductive output nor worker population of colonies variedwith queen mating frequency. We suggest that singly mated queenspersist in the population because fitness benefits to multiplymated queens via sex allocation are balanced by costs of additionalmatings. Alternatively, singly mated queens may persist simplybecause some queens lack opportunities to mate multiply or becausemale control sometimes prevents additional matings by queens.  相似文献   

2.
The significance of multiple mating in the social wasp Vespula maculifrons   总被引:1,自引:0,他引:1  
The evolution of the complex societies displayed by social insects depended partly on high relatedness among interacting group members. Therefore, behaviors that depress group relatedness, such as multiple mating by reproductive females (polyandry), are unexpected in social insects. Nevertheless, the queens of several social insect species mate multiply, suggesting that polyandry provides some benefits that counteract the costs. However, few studies have obtained evidence for links between rates of polyandry and fitness in naturally occurring social insect populations. We investigated if polyandry was beneficial in the social wasp Vespula maculifrons. We used genetic markers to estimate queen mate number in V. maculifrons colonies and assessed colony fitness by counting the number of cells that colonies produced. Our results indicated that queen mate number was directly, strongly, and significantly correlated with the number of queen cells produced by colonies. Because V. maculifrons queens are necessarily reared in queen cells, our results demonstrate that high levels of polyandry are associated with colonies capable of producing many new queens. These data are consistent with the explanation that polyandry is adaptive in V. maculifrons because it provides a fitness advantage to queens. Our research may provide a rare example of an association between polyandry and fitness in a natural social insect population and help explain why queens in this taxon mate multiply.  相似文献   

3.
Newly produced queens from monogyne (single-queen) coloniesof the ant Solenopsis invicta usually initiate reproductionindependently, that is, without worker assistance. However,some recently mated queens attempt to bypass this risky phaseof new colony foundation by entering established nests to reproduce,although it is unclear how often these queens are successfulin natural populations. We surveyed a mature monogyne populationof S. invicta in both 1995 and 1996 for colonies headed by queensincapable of independent colony founding (diploid-male-producingqueens) in order to estimate the frequency of colonies thatare headed by queens that initiated reproduction within establishednests (adopted queens). Using the frequency of diploid-male-producingqueens among the recently mated queens in this population, weestimated that the overall rate of queen replacement by adoptedqueens is about 0.7% per colony per year. Although theory suggeststhat a change to a novel queen reproductive tactic could beassociated with a fundamental change in social organization(queen number), this does not appear to be the case in monogyneS. invicta. However, the evolution of nest-infiltrating reproductivetactics by queens in a monogyne population and the evolutionof multiple-queen societies may result from similar ecologicalpressures facing newly mated queens. We therefore incorporatethis strategy into an existing theoretical framework that wasdeveloped to explain the evolution of alternative social organizationsin ants, providing testable predictions regarding the distributionand frequency of queen adoption in other single-queen ant societies.  相似文献   

4.
Although multiple mating most likely increases mortality risk for social insect queens and lowers the kin benefits for nonreproductive workers, a significant proportion of hymenopteran queens mate with several males. It has been suggested that queens may mate multiply as a means to manipulate sex ratios to their advantage. Multiple paternity reduces the extreme relatedness value of females for workers, selecting for workers to invest more in males. In populations with female-biased sex ratios, queens heading such male-producing colonies would achieve a higher fitness. We tested this hypothesis in a Swiss and a Swedish population of the ant Lasius niger. There was substantial and consistent variation in queen mating frequency and colony sex allocation within and among populations, but no evidence that workers regulated sex allocation in response to queen mating frequency; the investment in females did not differ among paternity classes. Moreover, population-mean sex ratios were consistently less female biased than expected under worker control and were close to the queen optimum. Queens therefore had no incentive to manipulate sex ratios because their fitness did not depend on the sex ratio of their colony. Thus, we found no evidence that the sex-ratio manipulation theory can explain the evolution and maintenance of multiple mating in L. niger.  相似文献   

5.
6.
Kin selection theory predicts potential conflict between queen and workers over male parentage in hymenopteran societies headed by one, singly mated queen, because each party is more closely related to its own male offspring. In ‘late-switching’ colonies of the bumblebee Bombus terrestris, i.e. colonies whose queens lay haploid eggs relatively late in the colony cycle, workers start to lay male eggs shortly after the queen lays the female eggs that will develop into new queens. It has been hypothesized that this occurs because workers recognize, via a signal given by the queen instructing female larvae to commence development as queens, that egg laying is now in their kin-selected interest. This hypothesis assumes that aggressive behaviour in egg-laying workers does not substantially reduce the production of new queens, which would decrease the workers' fitness payoff from producing males. We tested the hypothesis that reproductive activity inB. terrestris workers does not reduce the production of new queens. We used microsatellite genotyping to sex eggs and hence to select eight size-matched pairs of ‘late-switching’ colonies from a set of commercial colonies. From one colony of each pair we removed every egg-laying or aggressive worker observed. From the other colony, we simultaneously removed a nonegg-laying, nonaggressive worker. Removed workers were replaced with young workers from separate colonies at equal frequencies within the pair. There was no significant difference in queen productivity between colonies with reduced or normal levels of egg-laying or aggressive workers. Therefore, as predicted, reproductive B. terrestris workers did not significantly reduce the production of new queens.  相似文献   

7.
Relatedness is a central parameter in the evolution of sociality, because kin selection theory assumes that individuals involved in altruistic interactions are related. At least three reproductive characteristics are known to profoundly affect colony kin structure in social insects: the number of reproductive queens per colony, the relatedness among breeding queens and queen mating frequency. Both the occurrence of multiple queens (polygyny) and multiple mating (polyandry) decrease within-colony relatedness, while mating among sibs increases relatedness between the workers and the brood they rear. Using DNA microsatellites, we performed a detailed genetic analysis of the colony kin structure and breeding system in three ant species belonging to the genus Plagiolepis: P. schmitzii, P. taurica and P. maura. Our data show that queens of the three species mate multiply: queens of P. maura mate with 1-2 males, queens of P. taurica with 3-11 males and queens of P. schmitzii may have 1-14 different mates. Moreover, colonies are headed by multiple queens: P. taurica and P. maura are facultatively polygynous, while P. schmitzii is obligately polygynous. Despite polyandry and polygyny, relatedness within colonies remains high because all species are characterized by sib-mating, with a fixation index F(it) = 0.25 in P. taurica, 0.24 in P. schmitzii and 0.26 in P. maura, and because the male mates of a queen are on average closely related.  相似文献   

8.
Multiple mating by queens (polyandry) and the occurrence of multiple queens in the same colony (polygyny) alter patterns of relatedness within societies of eusocial insects. This is predicted to influence kin-selected conflicts over reproduction. We investigated the mating system of a facultatively polygynous UK population of the ant Leptothorax acervorum using up to six microsatellite loci. We estimated mating frequency by genotyping 79 dealate (colony) queens and the contents of their sperm receptacles and by detailed genetic analysis of 11 monogynous (single-queen) and nine polygynous colonies. Results indicated that 95% of queens were singly mated and 5% of queens were doubly mated. The corrected population mean mating frequency was 1.06. Parentage analysis of adults and brood in 17 colonies (10 monogynous, 7 polygynous) showed that female offspring attributable to each of 31 queens were full sisters, confirming that queens typically mate once. Inbreeding coefficients, queen-mate relatedness of zero and the low incidence of diploid males provided evidence that L. acervorum sexuals mate entirely or almost entirely at random. Males mated to queens in the same polygynous colony were not related to one another. Our data also confirmed that polygynous colonies contain queens that are related on average and that their workers had a mixed maternity. We conclude that the mating system of L. acervorum involves queens that mate near nests with unrelated males and then seek readoption by those nests, and queens that mate in mating aggregations away from nests, also with unrelated males.  相似文献   

9.
Mating frequency of Vespa analis queens and the genetic relatedness of their workers was analyzed by DNA microsatellite genotyping. Of 20 colonies studied, 18 had a queen inseminated by a single male and two had queens each inseminated by two males. The estimated effective number of matings was 1.05 ± 0.037 (mean ± SE), with 75–85% of the offspring of the two multiply mated queens sired by a single male. The pedigree relatedness between nestmate workers averaged over the 20 colonies was estimated to be 0.74 ± 0.008, almost identical to the predicted value of 0.75 for colonies headed by a singly mated queen. Multiple matrilines; that is, the presence of workers not related to the current queens, were detected in six colonies, suggesting that queen replacement occurred via usurpation of the founding queens in these six colonies. These results demonstrate that the kin structure of V. analis is similar to that reported in other vespid species.  相似文献   

10.
Sib matings increase homozygosity and, hence, the frequency of detrimental phenotypes caused by recessive deleterious alleles. However, many species have evolved adaptations that prevent the genetic costs associated with inbreeding. We discovered that the highly invasive longhorn crazy ant, Paratrechina longicornis, has evolved an unusual mode of reproduction whereby sib mating does not result in inbreeding. A population genetic study of P. longicornis revealed dramatic differences in allele frequencies between queens, males and workers. Mother-offspring analyses demonstrated that these allele frequency differences resulted from the fact that the three castes were all produced through different means. Workers developed through normal sexual reproduction between queens and males. However, queens were produced clonally and, thus, were genetically identical to their mothers. In contrast, males never inherited maternal alleles and were genetically identical to their fathers. The outcome of this system is that genetic inbreeding is impossible because queen and male genomes remain completely separate. Moreover, the sexually produced worker offspring retain the same genotype, combining alleles from both the maternal and paternal lineage over generations. Thus, queens may mate with their brothers in the parental nest, yet their offspring are no more homozygous than if the queen mated with a male randomly chosen from the population. The complete segregation of the male and female gene pools allows the queens to circumvent the costs associated with inbreeding and therefore may act as an important pre-adaptation for the crazy ant's tremendous invasive success.  相似文献   

11.
A model is constructed to study the effects of local mate competition and multiple mating on the optimum allocation of resources between the male and female reproductive brood in social hymenopteran colonies from the ‘points of view’ of the queen (parental manipulation theory) as well as the workers (kin selection theory). Competition between pairs of alleles specifying different sex investment ratios is investigated in a game theoretic frame work. All other things being equal, local mate competition shifts the sex allocation ratio in favour of females both under queen and worker control. While multiple mating has no effect on the queen’s optimum investment ratio, it leads to a relatively male biased investment ratio under worker control. Under queen control a true Evolutionarily Stable Strategy(ess) does not exist but the ‘best’ strategy is merely immune from extinction. A trueess exists under worker control in colonies with singly mated queens but there is an asymmetry between the dominant and recessive alleles so that for some values of sex ratio a recessive allele goes to fixation but a dominant allele with the same properties fails to do so. Under multiple mating, again, a trueess does not exist but a frequency dependent region emerges. The best strategy here is one that is guaranteed fixation against any competing allele with a lower relative frequency. Our results emphasize the need to determine levels of local mate competition and multiple mating before drawing any conclusions regarding the outcome of queen-worker conflict in social hymenoptera. Multiple mating followed by sperm mixing, both of which are known to occur in social hymenoptera, lower average genetic relatedness between workers and their reproductive sisters. This not only shifts the optimum sex ratio from the workers’ ‘point of view’ in favour of males but also poses problems for the kin selection theory. We show that kin recognition resulting in the ability to invest in full but not in half sisters reverts the sex ratio back to that in the case of single mating and thus completely overcomes the hurdles for the operation of kin selection.  相似文献   

12.
Variation in gene expression leads to phenotypic diversity and plays a central role in caste differentiation of eusocial insect species. In social Hymenoptera, females with the same genetic background can develop into queens or workers, which are characterized by divergent morphologies, behaviours and lifespan. Moreover, many social insects exhibit behaviourally distinct worker castes, such as brood‐tenders and foragers. Researchers have just started to explore which genes are differentially expressed to achieve this remarkable phenotypic plasticity. Although the queen is normally the only reproductive individual in the nest, following her removal, young brood‐tending workers often develop ovaries and start to reproduce. Here, we make use of this ability in the ant Temnothorax longispinosus and compare gene expression patterns in the queens and three worker castes along a reproductive gradient. We found the largest expression differences between the queen and the worker castes (~2500 genes) and the smallest differences between infertile brood‐tenders and foragers (~300 genes). The expression profile of fertile workers is more worker‐like, but to a certain extent intermediate between the queen and the infertile worker castes. In contrast to the queen, a high number of differentially expressed genes in the worker castes are of unknown function, pointing to the derived status of hymenopteran workers within insects.  相似文献   

13.
Specialized castes are considered a key reason for the evolutionary and ecological success of the social insect lifestyle. The most essential caste distinction is between the fertile queen and the sterile workers. Honeybee (Apis mellifera) workers and queens are not genetically distinct, rather these different phenotypes are the result of epigenetically regulated divergent developmental pathways. This is an important phenomenon in understanding the evolution of social insect societies. Here, we studied the genomic regulation of the worker and queen developmental pathways, and the robustness of the pathways by transplanting eggs or young larvae to queen cells. Queens could be successfully reared from worker larvae transplanted up to 3 days age, but queens reared from older worker larvae had decreased queen body size and weight compared with queens from transplanted eggs. Gene expression analysis showed that queens raised from worker larvae differed from queens raised from eggs in the expression of genes involved in the immune system, caste differentiation, body development and longevity. DNA methylation levels were also higher in 3‐day‐old queen larvae raised from worker larvae compared with that raised from transplanted eggs identifying a possible mechanism stabilizing the two developmental paths. We propose that environmental (nutrition and space) changes induced by the commercial rearing practice result in a suboptimal queen phenotype via epigenetic processes, which may potentially contribute to the evolution of queen–worker dimorphism. This also has potentially contributed to the global increase in honeybee colony failure rates.  相似文献   

14.
The struggle among social classes or castes is well known in humans. Here, we show that caste inequality similarly affects societies of ants, bees and wasps, where castes are morphologically distinct and workers have greatly reduced reproductive potential compared with queens. In social insects, an individual normally has no control over its own fate, whether queen or worker, as this is socially determined during rearing. Here, for the first time, we quantify a strategy for overcoming social control. In the stingless bee Schwarziana quadripunctata, some individuals reared in worker cells avoid a worker fate by developing into fully functional dwarf queens.  相似文献   

15.
Lasioglossum malachurum, a bee species common across much of Europe, is obligately eusocial across its range but exhibits clear geographic variation in demography and social behaviour. This variation suggests that social interactions between queens and workers, opportunities for worker oviposition, and patterns of relatedness among nest mates may vary considerably, both within and among regions. In this study, we used three microsatellite loci with 12-18 alleles each to examine the sociogenetic structure of colonies from a population at Agios Nikolaos Monemvasias in southern Greece. These analyses reveal that the majority of colonies exhibit classical eusocial colony structure in which a single queen mated to a single male monopolizes oviposition. Nevertheless, we also detect low rates of multiqueen nest founding, occasional caste switching by worker-destined females, and worker oviposition of both gyne and male-producing eggs in the final brood. Previous evidence that the majority of workers show some ovarian development and a minority (17%) have at least one large oocyte contrasts with the observation that only 2-3% of gynes and males (the so-called reproductive brood) are produced by workers. An evaluation of the parameters of Hamilton's Rule suggests that queens benefit greatly from the help provided by workers but that workers achieve greater fitness by provisioning and laying their own eggs rather than by tending to the queen's eggs. This conflict of interest between the queen and her workers suggests that the discrepancy between potential and achieved worker oviposition is due to queen interference. Comparison of relatedness and maternity patterns in the Agios Nikolaos Monemvasias population with those from a northern population near Tübingen, Germany, points to a north-south cline of increasingly effective queen control of worker behaviour.  相似文献   

16.
The reproductive division of labour is a key feature of eusociality in ants, where queen and worker castes show dramatic differences in the development of their reproductive organs. To understand the developmental and genetic basis underlying this division of labour, we performed a molecular analysis of ovary function and germ cell development in queens and workers. We show that the processes of ovarian development in queens have been highly conserved relative to the fruitfly Drosophila melanogaster. We also identify specific steps during oogenesis and embryogenesis in which ovarian and germ cell development have been evolutionarily modified in the workers. These modifications, which we call ‘reproductive constraints’, are often assumed to represent neutral degenerations that are a consequence of social evolutionary forces. Based on our developmental and functional analysis of these constraints, however, we propose and discuss the alternative hypothesis that reproductive constraints represent adaptive proximate mechanisms or traits for maintaining social harmony in ants. We apply a multi-level selection framework to help understand the role of these constraints in ant social evolution. A complete understanding of how cooperation, conflict and developmental systems evolve in social groups requires a ‘socio-evo-devo’ approach that integrates social evolutionary and developmental biology.  相似文献   

17.
The North American seed-harvester ant Pogonomyrmex (Ephebomyrmex) pima displays a dimorphism that consists of winged (alate) and wingless (intermorph) queens; both types of queens are fully reproductive. Microsatellite allele frequencies and a mitochondrial phylogeny demonstrate (1) alate and intermorph queens represent an intraspecific wing polymorphism, and (2) an absence of assortative mating and inbreeding by males. Surveys at our field site in southcentral Arizona, USA, demonstrated that only one type of queen (intermorph or dealate) occurred in each colony, including those excavated during the season in which reproductive sexuals were present. Colony structure appeared to vary by queen type as most intermorph colonies contained multiple mated queens. Alternatively, dealate queen colonies rarely contained a mated queen. Our inability to find mated dealate queens in these colonies probably resulted from difficulty in excavating the entire colony and reproductive queen, especially given that these colonies were only excavated over one day. A morphometric analysis demonstrated that intermorph queens are intermediate in size to that of workers and alate queens, but that intermorph queens retain all of the specialized anatomical features of alate queens (except for wings). Some colonies had queens that foraged and performed nest maintenance activities, and these queens sometimes accounted for a significant portion of colony foraging trips. Dissections revealed that these queens were uninseminated; some of these queens produced males in the laboratory. Received 24 October 2006; revised 1 December 2006; accepted 8 December 2006.  相似文献   

18.
Microsatellite genotyping of workers from 13 species (ten genera) of stingless bees shows that genetic relatedness is very high. Workers are usually daughters of a single, singly mated queen. This observation, coupled with the multiple mating of honeybee queens, permits kin selection theory to account for many differences in the social biology of the two taxa. First, in contrast to honeybees, where workers are predicted to and do police each other''s male production, stingless bee workers are predicted to compete directly with the queen for rights to produce males. This leads to behavioural and reproductive conflict during oviposition. Second, the risk that a daughter queen will attack the mother queen is higher in honeybees, as is the cost of such an attack to workers. This explains why stingless bees commonly have virgin queens in the nest, but honeybees do not. It also explains why in honeybees the mother queen leaves to found a new nest, while in stingless bees it is the daughter queen who leaves.  相似文献   

19.
The mandibular glands of queen honeybees produce a pheromone that modulates many aspects of worker honeybee physiology and behavior and is critical for colony social organization. The exact chemical blend produced by the queen differs between virgin and mated, laying queens. Here, we investigate the role of mating and reproductive state on queen pheromone production and worker responses. Virgin queens, naturally mated queens, and queens instrumentally inseminated with either semen or saline were collected 2 days after mating or insemination. Naturally mated queens had the most activated ovaries and the most distinct chemical profile in their mandibular glands. Instrumentally inseminated queens were intermediate between virgins and naturally mated queens for both ovary activation and chemical profiles. There were no significant differences between semen- and saline-inseminated queens. Workers were preferentially attracted to the mandibular gland extracts from queens with significantly more activated ovaries. These studies suggest that the queen pheromone blend is modulated by the reproductive status of the queens, and workers can detect these subtle differences and are more responsive to queens with higher reproductive potential. Furthermore, it appears as if insemination substance does not strongly affect physiological characteristics of honeybee queens 2 days after insemination, suggesting that the insemination process or volume is responsible for stimulating these early postmating changes in honeybee queens.  相似文献   

20.
Hybridogenesis is a sexual reproductive system, whereby parents from different genetic origin hybridize. Both the maternal and paternal genomes are expressed in somatic tissues, but the paternal genome is systematically excluded from the germ line, which is therefore purely maternal. Recently, a unique case of hybridogenesis at a social level was reported in the desert ant Cataglyphis hispanica. All workers are sexually produced hybridogens, whereas sexual forms (new queens and males) are produced by queens through parthenogenesis. Thus, only maternal genes are perpetuated across generations. Here, we show that such an unusual reproductive strategy also evolved in two other species of Cataglyphis belonging to the same phylogenetic group, Cataglyphis velox and Cataglyphis mauritanica. In both species, queens mate exclusively with males originating from a different genetic lineage than their own to produce hybrid workers, while they use parthenogenesis to produce the male and female reproductive castes. In contrast to single‐queen colonies of C. hispanica, colonies of C. velox and C. mauritanica are headed by several queens. Most queens within colonies share the same multilocus genotype and never transmit their mates' alleles to the reproductive castes. Social hybridogenesis in the desert ants has direct consequences on the genetic variability of populations and on caste determination. We also discuss the maintenance of this reproductive strategy within the genus Cataglyphis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号