首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Lewy bodies (LBs) are the pathologic hallmark of Parkinson's disease. Recent studies revealed that LBs exhibit several morphologic and molecular similarities to aggresomes. Aggresomes are perinuclear aggregates representing intracellular deposits of misfolded proteins. Recently, valosin-containing protein (VCP) was one of the components of LBs, suggesting its involvement in LB formation. Here, we showed the localization of VCP in aggresomes induced by a proteasome inhibitor in cultured cells. Cells overexpressing mutant VCP (K524M: D2) showed reduced aggresome formation relative to those overexpressing wild-type and mutant (K251M: D1) VCPs. Our findings suggest that the D2 domain is involved in aggresome formation.  相似文献   

2.
Sequestration of misfolded proteins into pericentriolar inclusions called aggresomes is a means that cells use to minimize misfolded protein-induced cytotoxicity. However, the molecular mechanism by which misfolded proteins are recruited to aggresomes remains unclear. Mutations in the E3 ligase parkin cause autosomal recessive Parkinson's disease that is devoid of Lewy bodies, which are similar to aggresomes. Here, we report that parkin cooperates with heterodimeric E2 enzyme UbcH13/Uev1a to mediate K63-linked polyubiquitination of misfolded DJ-1. K63-linked polyubiquitination of misfolded DJ-1 serves as a signal for interaction with histone deacetylase 6, an adaptor protein that binds the dynein-dynactin complex. Through this interaction, misfolded DJ-1 is linked to the dynein motor and transported to aggresomes. Furthermore, fibroblasts lacking parkin display deficits in targeting misfolded DJ-1 to aggresomes. Our findings reveal a signaling role for K63-linked polyubiquitination in dynein-mediated transport, identify parkin as a key regulator in the recruitment of misfolded DJ-1 to aggresomes, and have important implications regarding the biogenesis of Lewy bodies.  相似文献   

3.
Olzmann JA  Chin LS 《Autophagy》2008,4(1):85-87
Pathological inclusions containing misfolded proteins are a prominent feature common to many age-related neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. In cultured cells, when the production of misfolded proteins exceeds the capacity of the chaperone refolding system and the ubiquitin-proteasome degradation pathway, misfolded proteins are actively transported along microtubules to pericentriolar inclusions called aggresomes. The aggresomes sequester potentially toxic misfolded proteins and facilitate their clearance by autophagy. The molecular mechanism(s) that targets misfolded proteins to the aggresome-autophagy pathway is mostly unknown. Our recent work identifies parkin-mediated K63-linked polyubiquitination as a signal that couples misfolded proteins to the dynein motor complex via the adaptor protein histone deacetylase 6 and thereby promotes sequestration of misfolded proteins into aggresomes and subsequent clearance by autophagy. Our findings provide insight into the mechanisms underlying aggresome formation and suggest that parkin and K63-linked polyubiquitination may play a role in the autophagic clearance of misfolded proteins.  相似文献   

4.
Yeonkyoung Park  Joori Park 《Autophagy》2018,14(6):1079-1081
Many neurodegenerative disorders feature the presence of misfolded polypeptide-containing intracellular inclusion bodies biochemically and morphologically analogous to cellular aggresomes. However, it is largely unknown how misfolded polypeptides form aggresomes and are eventually cleared by the aggresome-macroautophagy/autophagy pathway, so-called aggrephagy. Our recent study revealed that when the ubiquitin-proteasome system is impaired, the accumulated misfolded polypeptides are selectively recognized and transported to the aggresome by a CED complex. This complex is composed of CTIF, originally identified as a specific factor for nuclear cap-binding protein complex (a heterodimer of NCBP1/CBP80 and NCBP2/CBP20)-dependent translation (CT), and its associated factors EEF1A1 and DCTN1. Aggresomal targeting of a misfolded polypeptide via the CED complex is accompanied by CTIF release from the CT complex and thereby inhibits CT efficiency. Therefore, our study provides new mechanistic insights into the crosstalk between translational inhibition and aggresome formation under the influence of a misfolded polypeptide.  相似文献   

5.
Results reported here indicate that adenovirus 5 exploits the cellular aggresome response to accelerate inactivation of MRE11-RAD50-NBS1 (MRN) complexes that otherwise inhibit viral DNA replication and packaging. Aggresomes are cytoplasmic inclusion bodies, observed in many degenerative diseases, that are formed from aggregated proteins by dynein-dependent retrograde transport on microtubules to the microtubule organizing center. Viral E1B-55K protein forms aggresomes that sequester p53 and MRN in transformed cells and in cells transfected with an E1B-55K expression vector. During adenovirus infection, the viral protein E4orf3 associates with MRN in promyelocytic leukemia protein nuclear bodies before MRN is bound by E1B-55K. Either E4orf3 or E4orf6 is required in addition to E1B-55K for E1B-55K aggresome formation and MRE11 export to aggresomes in adenovirus-infected cells. Aggresome formation contributes to the protection of viral DNA from MRN activity by sequestering MRN in the cytoplasm and greatly accelerating its degradation by proteosomes following its ubiquitination by the E1B-55K/E4orf6/elongin BC/Cullin5/Rbx1 ubiquitin ligase. Our results show that aggresomes significantly accelerate protein degradation by the ubiquitin-proteosome system. The observation that a normal cellular protein is inactivated when sequestered into an aggresome through association with an aggresome-inducing protein has implications for the potential cytotoxicity of aggresome-like inclusion bodies in degenerative diseases.  相似文献   

6.
7.
Efficient elimination of misfolded proteins by the proteasome system is critical for proteostasis. Inadequate proteasome capacity can lead to aberrant aggregation of misfolded proteins and inclusion body formation, a hallmark of neurodegenerative disease. The proteasome system cannot degrade aggregated proteins; however, it stimulates autophagy-dependent aggregate clearance by producing unanchored lysine (K)63-linked ubiquitin chains via the proteasomal deubiquitinating enzyme Poh1. The canonical function of Poh1, which removes ubiquitin chains en bloc from proteasomal substrates prior to their degradation, requires intact 26S proteasomes. Here we present evidence that during aggresome clearance, 20S proteasomes dissociate from protein aggregates, while Poh1 and selective subunits of 19S proteasomes are retained. The dissociation of 20S proteasome components requires the molecular chaperone Hsp90. Hsp90 inhibition suppresses 26S proteasome remodeling, unanchored ubiquitin chain production, and aggresome clearance. Our results suggest that 26S proteasomes undergo active remodeling to generate a Poh1-dependent K63-deubiquitinating enzyme to facilitate protein aggregate clearance.  相似文献   

8.
Parkinson's disease (PD) is one of the most common movement disorders with loss of dopaminergic neurons and the presence of Lewy bodies in certain brain areas. However, it is not clear how Lewy body (inclusion with protein aggregation) formation occurs. Mutations in leucine-rich repeat kinase 2 (LRRK2) can cause a genetic form of PD and contribute to sporadic PD with the typical Lewy body pathology. Here, we used our recently identified LRRK2 GTP-binding inhibitors as pharmacological probes to study the LRRK2-linked ubiquitination and protein aggregation. Pharmacological inhibition of GTP-binding by GTP-binding inhibitors (68 and Fx2149) increased LRRK2-linked ubiquitination predominantly via K27 linkage. Compound 68- or Fx2149 increased G2019S-LRRK2-linked ubiquitinated aggregates, which occurred through the atypical linkage types K27 and K63. Coexpression of K27R and K63R, which prevented ubiquitination via K27 and K63 linkages, reversed the effects of 68 and Fx2149. Moreover, 68 and Fx2149 also promoted G2019S-LRRK2-linked aggresome (Lewy body-like inclusion) formation via K27 and K63 linkages. These findings demonstrate that LRRK2 GTP-binding activity is critical in LRRK2-linked ubiquitination and aggregation formation. These studies provide novel insight into the LRRK2-linked Lewy body-like inclusion formation underlying PD pathogenesis.  相似文献   

9.
Kawaguchi Y  Kovacs JJ  McLaurin A  Vance JM  Ito A  Yao TP 《Cell》2003,115(6):727-738
The efficient clearance of cytotoxic misfolded protein aggregates is critical for cell survival. Misfolded protein aggregates are transported and removed from the cytoplasm by dynein motors via the microtubule network to a novel organelle termed the aggresome where they are processed. However, the means by which dynein motors recognize misfolded protein cargo, and the cellular factors that regulate aggresome formation, remain unknown. We have discovered that HDAC6, a microtubule-associated deacetylase, is a component of the aggresome. We demonstrate that HDAC6 has the capacity to bind both polyubiquitinated misfolded proteins and dynein motors, thereby acting to recruit misfolded protein cargo to dynein motors for transport to aggresomes. Indeed, cells deficient in HDAC6 fail to clear misfolded protein aggregates from the cytoplasm, cannot form aggresomes properly, and are hypersensitive to the accumulation of misfolded proteins. These findings identify HDAC6 as a crucial player in the cellular management of misfolded protein-induced stress.  相似文献   

10.
Protein misfolding is a common event in living cells. Molecular chaperones not only assist protein folding; they also facilitate the degradation of misfolded polypeptides. When the intracellular degradative capacity is exceeded, juxtanuclear aggresomes are formed to sequester misfolded proteins. Despite the well-established role of chaperones in both protein folding and degradation, how chaperones regulate the aggregation process remains controversial. Here we investigate the molecular mechanisms underlying aggresome formation in mammalian cells. Analysis of the chaperone requirements for the fate of misfolded proteins reveals an unexpected role of heat shock protein 70 (Hsp70) in promoting aggresome formation. This proaggregation function of Hsp70 relies on the interaction with the cochaperone ubiquitin ligase carboxyl terminal of Hsp70/Hsp90 interacting protein (CHIP). Disrupting Hsp70-CHIP interaction prevents the aggresome formation, whereas a dominant-negative CHIP mutant sensitizes the aggregation of misfolded protein. This accelerated aggresome formation also relies on the stress-induced cochaperone Bcl2-associated athanogene 3. Our results indicate that a hierarchy of cochaperone interaction controls different aspects of the intracellular protein triage decision, extending the function of Hsp70 from folding and degradation to aggregation.  相似文献   

11.
The aggresome pathway is activated when proteasomal clearance of misfolded proteins is hindered. Misfolded polyubiquitinated protein aggregates are recruited and transported to the aggresome via the microtubule network by a protein complex consisting of histone deacetylase 6 (HDAC6) and the dynein motor complex. The current model suggests that HDAC6 recognizes protein aggregates by binding directly to polyubiquitinated proteins. Here, we show that there are substantial amounts of unanchored ubiquitin in protein aggregates with solvent-accessible C termini. The ubiquitin-binding domain (ZnF-UBP) of HDAC6 binds exclusively to the unanchored C-terminal diglycine motif of ubiquitin instead of conjugated polyubiquitin. The unanchored ubiquitin C termini in the aggregates are generated in situ by aggregate-associated deubiquitinase ataxin-3. These results provide structural and mechanistic bases for the role of HDAC6 in aggresome formation and further suggest a novel ubiquitin-mediated signaling pathway, where the exposure of ubiquitin C termini within protein aggregates enables HDAC6 recognition and transport to the aggresome.  相似文献   

12.
In conditions of proteasomal impairment, the damaged or misfolded proteins, collectively known as aggresome, can accumulate in the perinuclear space and be subsequently eliminated by autophagy. Abnormal aggregation of microtubule-associated protein tau in the cytoplasm is a common neuropathological feature of tauopathies. The deficiency in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), a proteasomal deubiquitinating enzyme, is closely related to tau aggregation; however, the associated mechanisms remain unclear. Here, we showed that UCH-L1 inhibition interrupts proteasomal impairment-induced tau aggresome formation. By reducing the production of lysine (K63)-linked ubiquitin chains, UCH-L1 inhibition decreases HDAC6 deacetylase activity and attenuates the interaction of HDAC6 and tau protein, finally leading to tau aggresome formation impairment. All these results indicated that UCH-L1 plays a key role in the process of tau aggresome formation by regulating HDAC6 deacetylase activity and implied that UCH-L1 may act as a signaling molecule to coordinate the effects of the ubiquitin-proteasome system and the autophagy-lysosome pathway, which mediate protein aggregates degradation in the cytoplasm.  相似文献   

13.
Schwannomin (Sch) is the product of the NF2 tumor suppressor gene. The NF2 gene is mutated in patients affected by neurofibromatosis type 2, a syndrome associated with multiple tumors of the nervous system. Here we found that Sch, when its N-terminal FERM domain was misfolded by the pathogenetic mutation Delta F118, formed aggresomes, i.e. aggregates that cluster at the centrosome as a result of microtubule-dependent transport. Strikingly the related protein ezrin affected by the same mutation did not form aggresomes even though its FERM domain was similarly misfolded. By studying ezrin/Sch chimeras, we delineated a sequence of 61 amino acids in the C terminus of Sch that determined the formation of aggresomes. Aggresome formation by these chimeras was independent from their rate of degradation. Sch(535-595) was sufficient to induce aggresomes of a green fluorescent fusion protein in vivo and aggregates of a glutathione S-transferase fusion protein in vitro. Taken together, these results suggest that aggresome formation is controlled primarily by aggresome determinants, which are distinct from degradation determinants, or from misfolding, through which aggresome determinants might be exposed.  相似文献   

14.

Background

Aggresomes are juxtanuclear inclusion bodies that have been proposed to represent a general cellular response to misfolded proteins in mammalian cells. Yet, why aggresomes are not a pathological characteristic of protein misfolding diseases is unclear. Here, we investigate if a misfolded protein inevitably forms aggresomes in mammalian cells.

Results

We show that a cytoplasmic form of the prion protein may form aggresomes or dispersed aggregates in different cell lines. In contrast to aggresomes, the formation of dispersed aggregates is insensitive to histone deacetylase 6 inhibitors and does not result in cytoskeleton rearrangements. Modulation of expression levels or proteasome inhibitors does not alter the formation of dispersed aggregates.

Conclusion

Our results establish that aggresomes are not obligatory products of protein misfolding in vivo.  相似文献   

15.
Formation of a novel structure, the aggresome, has been proposed to represent a general cellular response to the presence of misfolded proteins (Johnston, J.A., C.L. Ward, and R.R. Kopito. 1998. J. Cell Biol. 143:1883-1898; Wigley, W.C., R.P. Fabunmi, M.G. Lee, C.R. Marino, S. Muallem, G.N. DeMartino, and P.J. Thomas. 1999. J. Cell Biol. 145:481-490). To test the generality of this finding and characterize aspects of aggresome composition and its formation, we investigated the effects of overexpressing a cytosolic protein chimera (GFP-250) in cells. Overexpression of GFP-250 caused formation of aggresomes and was paralleled by the redistribution of the intermediate filament protein vimentin as well as by the recruitment of the proteasome, and the Hsp70 and the chaperonin systems of chaperones. Interestingly, GFP-250 within the aggresome appeared not to be ubiquitinated. In vivo time-lapse analysis of aggresome dynamics showed that small aggregates form within the periphery of the cell and travel on microtubules to the MTOC region where they remain as distinct but closely apposed particulate structures. Overexpression of p50/dynamitin, which causes the dissociation of the dynactin complex, significantly inhibited the formation of aggresomes, suggesting that the minus-end-directed motor activities of cytoplasmic dynein are required for aggresome formation. Perinuclear aggresomes interfered with correct Golgi localization and disrupted the normal astral distribution of microtubules. However, ER-to-Golgi protein transport occurred normally in aggresome containing cells. Our results suggest that aggresomes can be formed by soluble, nonubiquitinated proteins as well as by integral transmembrane ubiquitinated ones, supporting the hypothesis that aggresome formation might be a general cellular response to the presence of misfolded proteins.  相似文献   

16.
Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule-organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic α- and β-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy to cope with misfolded proteins.  相似文献   

17.
Nuclear aggresomes induced by proteins containing an expanded polyglutamine (polyQ) tract are pathologic hallmarks of certain neurodegenerative diseases. Some GFP fusion proteins lacking a polyQ tract may also induce nuclear aggresomes in cultured cells. Here we identify single missense mutations within the basic DNA recognition region of Bam HI Z E B virus replication activator (ZEBRA), an Epstein-Barr virus (EBV)-encoded basic zipper protein without a polyQ tract, that efficiently induced the formation of nuclear aggresomes. Wild-type (WT) ZEBRA was diffusely distributed within the nucleus. Four non-DNA-binding mutants, Z(R179E), Z(R183E), Z(R190E), and Z(K178D) localized to the periphery of large intranuclear spheres, to discrete nuclear aggregates, and to the cytoplasm. Other non-DNA-binding mutants, Z(N182K), Z(N182E), and Z(S186E), did not exhibit this phenotype. The interior of the spheres contained promyelocytic leukemia and HSP70 proteins. ZEBRA mutants directly induced the nuclear aggresome pathway in cells with and without EBV. Specific cellular proteins (SC35 and HDAC6) and viral proteins (WT ZEBRA, Rta, and BMLF1) but not other cellular or viral proteins were recruited to nuclear aggresomes. Co-transfection of WT ZEBRA with aggresome-inducing mutants Z(R183E) and Z(R179E) inhibited late lytic viral protein expression and lytic viral DNA amplification. This is the first reported instance in which nuclear aggresomes are induced by single missense mutations in a viral or cellular protein. We discuss conformational changes in the mutant viral AP-1 proteins that may lead to formation of nuclear aggresomes.  相似文献   

18.
Aggregate formation in Cu,Zn superoxide dismutase-related proteins   总被引:2,自引:0,他引:2  
Aggregation of Cu,Zn superoxide dismutase (SOD1) protein is a pathologic hallmark of familial amyotrophic lateral sclerosis linked to mutations in the SOD1 gene, although the structural motifs within mutant SOD1 that are responsible for its aggregation are unknown. Copper chaperone for SOD1 (CCS) and extracellular Cu,Zn superoxide dismutase (SOD3) have some sequence identity with SOD1, particularly in the regions of metal binding, but play no significant role in mutant SOD1-induced disease. We hypothesized that it would be possible to form CCS- or SOD3-positive aggregates by making these molecules resemble mutant SOD1 via the introduction of point mutations in codons homologous to a disease causing G85R SOD1 mutation. Using an in vitro assay system, we found that expression of wild type human CCS or a modified intracellular wild type SOD3 does not result in significant aggregate formation. In contrast, expression of G168R CCS or G146R SOD3 produced aggregates as evidenced by the presence of high molecular weight protein complexes on Western gels or inclusion bodies on immunofluorescence. CCS- and SOD3-positive inclusions appear to be ubiquitinated and localized to aggresomes. These results suggest that proteins sharing structural similarities to mutant SOD1 are also at risk for aggregate formation.  相似文献   

19.
Aggresomes are pericentrosomal cytoplasmic structures into which aggregated, ubiquitinated, misfolded proteins are sequestered. Misfolded proteins accumulate in aggresomes when the capacity of the intracellular protein degradation machinery is exceeded. Previously, we demonstrated that an intact microtubule cytoskeleton is required for the aggresome formation [Johnston et al., 1998: J. Cell Biol. 143:1883-1898]. In this study, we have investigated the involvement of microtubules (MT) and MT motors in this process. Induction of aggresomes containing misfolded DeltaF508 CFTR is accompanied by a redistribution of the retrograde motor cytoplasmic dynein that colocalizes with aggresomal markers. Coexpression of the p50 (dynamitin) subunit of the dynein/dynactin complex prevents the formation of aggresomes, even in the presence of proteasome inhibitors. Using in vitro microtubule binding assays in conjunction with immunogold electron microscopy, our data demonstrate that misfolded DeltaF508 CFTR associate with microtubules. We conclude that cytoplasmic dynein/dynactin is responsible for the directed transport of misfolded protein into aggresomes. The implications of these findings with respect to the pathogenesis of neurodegenerative disease are discussed.  相似文献   

20.
Intracellular deposition of misfolded protein aggregates into ubiquitin-rich cytoplasmic inclusions is linked to the pathogenesis of many diseases. Why these aggregates form despite the existence of cellular machinery to recognize and degrade misfolded protein and how they are delivered to cytoplasmic inclusions are not known. We have investigated the intracellular fate of cystic fibrosis transmembrane conductance regulator (CFTR), an inefficiently folded integral membrane protein which is degraded by the cytoplasmic ubiquitin-proteasome pathway. Overexpression or inhibition of proteasome activity in transfected human embryonic kidney or Chinese hamster ovary cells led to the accumulation of stable, high molecular weight, detergent-insoluble, multiubiquitinated forms of CFTR. Using immunofluorescence and transmission electron microscopy with immunogold labeling, we demonstrate that undegraded CFTR molecules accumulate at a distinct pericentriolar structure which we have termed the aggresome. Aggresome formation is accompanied by redistribution of the intermediate filament protein vimentin to form a cage surrounding a pericentriolar core of aggregated, ubiquitinated protein. Disruption of microtubules blocks the formation of aggresomes. Similarly, inhibition of proteasome function also prevented the degradation of unassembled presenilin-1 molecules leading to their aggregation and deposition in aggresomes. These data lead us to propose that aggresome formation is a general response of cells which occurs when the capacity of the proteasome is exceeded by the production of aggregation-prone misfolded proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号