首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Campylobacter jejuni pgl gene cluster encodes a complete N-linked protein glycosylation pathway that can be functionally transferred into Escherichia coli. In this system, we analyzed the interplay between N-linked glycosylation, membrane translocation and folding of acceptor proteins in bacteria. We developed a recombinant N-glycan acceptor peptide tag that permits N-linked glycosylation of diverse recombinant proteins expressed in the periplasm of glycosylation-competent E. coli cells. With this "glycosylation tag," a clear difference was observed in the glycosylation patterns found on periplasmic proteins depending on their mode of inner membrane translocation (i.e., Sec, signal recognition particle [SRP], or twin-arginine translocation [Tat] export), indicating that the mode of protein export can influence N-glycosylation efficiency. We also established that engineered substrate proteins targeted to environments beyond the periplasm, such as the outer membrane, the membrane vesicles, and the extracellular medium, could serve as substrates for N-linked glycosylation. Taken together, our results demonstrate that the C. jejuni N-glycosylation machinery is compatible with distinct secretory mechanisms in E. coli, effectively expanding the N-linked glycome of recombinant E. coli. Moreover, this simple glycosylation tag strategy expands the glycoengineering toolbox and opens the door to bacterial synthesis of a wide array of recombinant glycoprotein conjugates.  相似文献   

2.
The Campylobacter jejuni pgl locus encodes an N-linked protein glycosylation machinery that can be functionally transferred into Escherichia coli. In this system, we analyzed the elements in the C. jejuni N-glycoprotein AcrA required for accepting an N-glycan. We found that the eukaryotic primary consensus sequence for N-glycosylation is N terminally extended to D/E-Y-N-X-S/T (Y, X not equalP) for recognition by the bacterial oligosaccharyltransferase (OST) PglB. However, not all consensus sequences were N-glycosylated when they were either artificially introduced or when they were present in non-C. jejuni proteins. We were able to produce recombinant glycoproteins with engineered N-glycosylation sites and confirmed the requirement for a negatively charged side chain at position -2 in C. jejuni N-glycoproteins. N-glycosylation of AcrA by the eukaryotic OST in Saccharomyces cerevisiae occurred independent of the acidic residue at the -2 position. Thus, bacterial N-glycosylation site selection is more specific than the eukaryotic equivalent with respect to the polypeptide acceptor sequence.  相似文献   

3.
An increasing number of bacterial pathogens produce an array of glycoproteins of unknown function. Here we report that Campylobacter jejuni proteins that are modified by the N -linked glycosylation machinery encoded by the pgl locus bind the human Macrophage Galactose-type lectin (MGL). MGL receptor binding was abrogated by EDTA and N -acetylgalactosamine (GalNAc) and was successfully transferred to Escherichia coli by introducing the C. jejuni pgl locus together with a glycan acceptor protein. In addition to glycoproteins, C. jejuni lipooligosaccharide with a terminal GalNAc residue was recognized by MGL. Recombinant E. coli expressing the C. jejuni pgl locus in the absence of a suitable glycan acceptor protein produced altered lipopolysaccharide glycoforms that gained MGL reactivity. Infection assays demonstrated high levels of GalNAc-dependent interaction of the recombinant E. coli with MGL-transfected mammalian cells. In addition, interleukin-6 production by human dendritic cells was enhanced by C. jejuni lacking N -linked glycans compared with wild-type bacteria. Collectively, our results provide evidence that both N -linked glycoproteins and distinct lipooligosaccharide glycoforms of C. jejuni are ligands for the human C-type lectin MGL and that the C. jejuni N -glycosylation machinery can be exploited to target recombinant bacteria to MGL-expressing eukaryotic cells.  相似文献   

4.
In the Gram-negative bacterium Campylobacter jejuni there is a pgl (protein glycosylation) locus-dependent general N-glycosylation system of proteins. One of the proteins encoded by pgl locus, PglB, a homolog of the eukaryotic oligosaccharyltransferase component Stt3p, is proposed to function as an oligosaccharyltransferase in this prokaryotic system. The sequence requirements of the acceptor polypeptide for N-glycosylation were analyzed by reverse genetics using the reconstituted glycosylation of the model protein AcrA in Escherichia coli. As in eukaryotes, the N-X-S/T sequon is an essential but not a sufficient determinant for N-linked protein glycosylation. This conclusion was supported by the analysis of a novel C. jejuni glycoprotein, HisJ. Export of the polypeptide to the periplasm was required for glycosylation. Our data support the hypothesis that eukaryotic and bacterial N-linked protein glycosylation are homologous processes.  相似文献   

5.
Glycosylation of the conserved asparagine residue in each heavy chain of IgG in the CH2 domain is known as N-glycosylation. It is one of the most common post-translational modifications and important critical quality attributes of monoclonal antibody (mAb) therapeutics. Various studies have demonstrated the effects of the Fc N-glycosylation on safety, Fc effector functions, and pharmacokinetics, both dependent and independent of neonatal Fc receptor (FcRn) pathway. However, separation of various glycoforms to investigate the biological and functional relevance of glycosylation is a major challenge, and existing studies often discuss the overall impact of N-glycans, without considering the individual contributions of each glycoform when evaluating mAbs with highly heterogeneous distributions. In this study, chemoenzymatic glycoengineering incorporating an endo-β-N-acetylglucosaminidase (ENGase) EndoS2 and its mutant with transglycosylation activity was used to generate mAb glycoforms with highly homogeneous and well-defined N-glycans to better understand and precisely evaluate the effect of each N-glycan structure on Fc effector functions and protein stability. We demonstrated that the core fucosylation, non-reducing terminal galactosylation, sialylation, and mannosylation of IgG1 mAb N-glycans impact not only on FcγRIIIa binding, antibody-dependent cell-mediated cytotoxicity, and C1q binding, but also FcRn binding, thermal stability and propensity for protein aggregation.  相似文献   

6.
O-Fucosylation is a post-translational glycosylation in which an O-fucose is covalently attached to the hydroxyl group of a specific serine or threonine residue. This modification occurs within the consensus sequence C2X(4-5)(S/T)C3 present on epidermal growth factor-like repeats of several proteins, including the Notch receptors and their ligands. The enzyme responsible for the addition of O-fucose to epidermal growth factor-like repeats is protein O-fucosyltransferase 1. Protein O-fucosyltransferase 1-mediated O-fucosylation is essential in Notch signaling, folding and targeting to the cell surface. Here, we studied the expression pattern of protein O-fucosyltransferase 1 in cattle and showed that the active enzyme is present in all tissues examined from embryo and adult as a glycoprotein with two N-glycans. By comparing protein O-fucosyltransferase 1 sequences available in databases, we observed that mammalian protein O-fucosyltransferase 1 enzymes possess two putative N-glycosylation sites, and that only the first is conserved among bilaterians. To gain more insight regarding the significance of N-glycans on protein O-fucosyltransferase 1, we substituted, by site-directed mutagenesis, bovine protein O-fucosyltransferase 1 N65, N163 or both, with L or Q. We demonstrated that the loss of N-glycan on N163 caused a slight decrease in protein O-fucosyltransferase 1 activity. In contrast, glycosylation of N65 was crucial for protein O-fucosyltransferase 1 functionality. Loss of glycosylation at N65 resulted in aggregation of protein O-fucosyltransferase 1, suggesting that N-glycosylation at this site is essential for proper folding of the enzyme.  相似文献   

7.
The addition of N-glycans to clinically used proteins enhances their therapeutic features. Here we report the design of a novel peptide tag with an unnatural N-glycosylation site, which may increase the N-glycan content of generally any protein. The designed GlycoTags were attached to A1AT, EPO and AGP and constructs were expressed in HEK293 or CHO cells. Hereby we could prove that the attached unnatural N-glycosylation site is decorated with complex-type N-glycans and that the spacer as well as the C-terminal "tail" sequence are critical for the usage of the novel N-glycosylation site. This demonstrates that the novel GlycoTag is a convenient tool to provide proteins with extra N-glycan moieties by simply adding a peptide tag sequence as small as 22 amino acids.  相似文献   

8.
Analysis of plant purple acid phosphatases (PAPs) showed high conservation and different distribution of N-glycosylation sites. Oligosaccharide structures of Lupinus luteus acid phosphatase (Lu_AP) produced in insect cells were determined. Mutant Lu_AP and Phaseolus vulgaris (Ph_AP) phosphatases lacking possibility of N-glycosylation at highly conserved sites were generated and expressed in insect cells. A role for N-glycosylation in the stability of PAPs was indicated by unsuccessful attempts to secrete Ph_AP and Lu_AP mutants generated by replacing Asn residues of conserved glycosylation sequons by Ser residues either singly or in combination. We showed that Ph_AP belongs to the group of glycoproteins that require occupancy of all highly conserved glycosylation sites for secretion, whereas replacing of the third position of the glycosylation sequon indicated that Lu_AP may tolerate the absence of some N-glycans. However, the N-glycan located at the polypeptide C-terminus was crucial for secretion of both enzymes. PAP specific activity of glycosylation mutants successfully secreted was similar to the wild-type recombinant proteins.  相似文献   

9.
Campylobacter is an asaccharolytic microorganism which uses amino acids as a source of carbon and energy. CjaC/HisJ is a ligand-binding protein, a component of the ABC transport system. Campylobacter CjaC/HisJ is post-translationally modified by glycosylation. The number of glycosylation motifs present in the CjaC protein is species-specific. C. coli CjaC has two and C. jejuni one motif (E/DXNYS/T) which serves as a glycan acceptor. Although the two C. coli CjaC motifs have identical amino-acid sequences they are not glycosylated with the same efficiency. The efficacy of CjaC glycosylation in Escherichia coli containing the Campylobacter pgl locus is also rather low compared to that observed in the native host. The CjaC localization is host-dependent. Despite being a lipoprotein, CjaC is recovered in E. coli from the periplasmic space whereas in Campylobacter it is anchored to the inner membrane.  相似文献   

10.
In eukaryotes, N-linked protein glycosylation is a universal modification involving addition of preformed oligosaccharides to select Asn-Xaa-Ser/Thr motifs and influencing multiple biological events. We recently demonstrated that Campylobacter jejuni is the first member of the Bacteria to possess an N-linked glycan pathway. In this study, high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to probe and quantitate C. jejuni N-glycan biosynthesis in vivo. To confirm HR-MAS NMR findings, glycosylation mutants were screened for chicken colonization potential, and glycoproteins were examined by mass spectrometry and lectin blotting. Consistent with the mechanism in eukaryotes, the combined data indicate that bacterial glycans are assembled en bloc, emphasizing the evolutionary conservation of protein N glycosylation. We also show that under the conditions examined, PglG plays no role in glycan biosynthesis, PglI is the glucosyltransferase and the putative ABC transporter, and WlaB (renamed PglK) is required for glycan assembly. These studies underpin the mechanism of N-linked protein glycosylation in Bacteria and provide a simple model system for investigating protein glycosylation and for exploitation in glycoengineering.  相似文献   

11.
Global proteome analysis of protein glycosylation is a major challenge due to the inherent heterogeneous and diverse nature of this post-translational modification. It is therefore common to enzymatically remove glycans attached to protein or peptide chains prior to mass spectrometric analysis, thereby reducing the complexity and facilitating glycosylation site determinations. Here, we have used two different enzymatic deglycosylation strategies for N-glycosylation site analysis. (1) Removal of entire N-glycan chains by peptide-N-glycosidase (PNGase) digestion, with concomitant deamidation of the released asparagine residue. The reaction is carried out in H218O to facilitate identification of the formerly glycosylated peptide by incorporatation of 18O into the formed aspartic acid residue. (2) Digestion with two endo-beta-N-acetylglucosaminidases (Endo D and Endo H) that cleave the glycosidic bond between the two N-acetylglucosamine (GlcNAc) residues in the conserved N-glycan core structure, leaving single GlcNAc residues with putative fucosyl side chains attached to the peptide. To enable digestion of complex and hybrid type N-glycans, a number of exoglycosidases (beta-galactosidase, neuraminidase and N-acetyl-beta-glucosaminidase) are also included. The two strategies were here applied to identify 103 N-glycosylation sites in the Cohn IV fraction of human plasma. In addition, Endo D/H digestion uniquely enabled identification of 23 fucosylated N-glycosylation sites. Several O-glycosylated peptides were also identified with a single N-acetylhexosamine attached, arguably due to partial deglycosylation of O-glycan structures by the exoglycosidases used together with Endo D/H.  相似文献   

12.
In the past decades, a large number of studies in mammalian cells have revealed that processing of glycoproteins is compartmentalized into several subcellular organelles that process N-glycans to generate complex-type oligosaccharides with terminal N -acetlyneuraminic acid. Recent studies also suggested that processing of N-glycans in insect cells appear to follow a similar initial pathway but diverge at subsequent processing steps. N-glycans from insect cell lines are not usually processed to terminally sialylated complex-type structures but are instead modified to paucimannosidic or oligomannose structures. These differences in processing between insect cells and mammalian cells are due to insufficient expression of multiple processing enzymes including glycosyltransferases responsible for generating complex-type structures and metabolic enzymes involved in generating appropriate sugar nucleotides. Recent genomics studies suggest that insects themselves may include many of these complex transferases and metabolic enzymes at certain developmental stages but expression is lost or limited in most lines derived for cell culture. In addition, insect cells include an N -acetylglucosaminidase that removes a terminal N -acetylglucosamine from the N-glycan. The innermost N -acetylglucosamine residue attached to asparagine residue is also modified with alpha(1,3)-linked fucose, a potential allergenic epitope, in some insect cells. In spite of these limitations in N-glycosylation, insect cells have been widely used to express various recombinant proteins with the baculovirus expression vector system, taking advantage of their safety, ease of use, and high productivity. Recently, genetic engineering techniques have been applied successfully to insect cells in order to enable them to produce glycoproteins which include complex-type N-glycans. Modifications to insect N-glycan processing include the expression of missing glycosyltransferases and inclusion of the metabolic enzymes responsible for generating the essential donor sugar nucleotide, CMP- N -acetylneuraminic acid, required for sialylation. Inhibition of N -acetylglucosaminidase has also been applied to alter N-glycan processing in insect cells. This review summarizes current knowledge on N-glycan processing in lepidopteran insect cell lines, and recent progress in glycoengineering lepidopteran insect cells to produce glycoproteins containing complex N-glycans.  相似文献   

13.
The Gram-negative bacterium Campylobacter jejuni encodes an extensively characterized N-linked protein glycosylation system that modifies many surface proteins with a heptasaccharide glycan. In C. jejuni, the genes that encode the enzymes required for glycan biosynthesis and transfer to protein are located at a single pgl gene locus. Similar loci are also present in the genome sequences of all other Campylobacter species, although variations in gene content and organization are evident. In this study, we have demonstrated that only Campylobacter species closely related to C. jejuni produce glycoproteins that interact with both a C. jejuni N-linked-glycan-specific antiserum and a lectin known to bind to the C. jejuni N-linked glycan. In order to further investigate the structure of Campylobacter N-linked glycans, we employed an in vitro peptide glycosylation assay combined with mass spectrometry to demonstrate that Campylobacter species produce a range of structurally distinct N-linked glycans with variations in the number of sugar residues (penta-, hexa-, and heptasaccharides), the presence of branching sugars, and monosaccharide content. These data considerably expand our knowledge of bacterial N-linked glycan structure and provide a framework for investigating the role of glycosyltransferases and sugar biosynthesis enzymes in glycoprotein biosynthesis with practical implications for synthetic biology and glycoengineering.  相似文献   

14.
Qian Y  Zhang X  Zhou L  Yun X  Xie J  Xu J  Ruan Y  Ren S 《Glycoconjugate journal》2012,29(5-6):399-409
Human LOX-1/OLR 1 plays a key role in atherogenesis and endothelial dysfunction. The N-glycosylation of LOX-1 has been shown to affect its biological functions in vivo and modulate the pathogenesis of atherosclerosis. However, the N-glycosylation pattern of LOX-1 has not been described yet. The present study was aimed at elucidating the N-glycosylation of recombinant human LOX-1 with regard to N-glycan profile and N-glycosylation sites. Here, an approach using nonspecific protease (Pronase E) digestion followed by MALDI-QIT-TOF MS and multistage MS (MS(3)) analysis is explored to obtain site-specific N-glycosylation information of recombinant human LOX-1, in combination with glycan structure confirmation through characterizing released glycans using tandem MS. The results reveal that N-glycans structures as well as their corresponding attached site of LOX-1 can be identified simultaneously by direct MS analysis of glycopeptides from non-specific protease digestion. With this approach, one potential glycosylation site of recombinant human LOX-1 on Asn(139) is readily identified and found to carry heterogeneous complex type N-glycans. In addition, manual annotation of multistage MS data utilizing diagnostic ions, which were found to be particularly useful in defining the structure of glycopeptides and glycans was addressed for proper spectra interpretation. The findings described herein will shed new light on further research of the structure-function relationships of LOX-1?N-glycan.  相似文献   

15.
Recently, the prospect of using Escherichia coli as a host for human glycoprotein production has increased due to detailed characterization of the prokaryotic N-glycosylation process and the ability to transfer the system into this bacterium. Although functionality of the native Campylobacter jejuni N-glycosylation system in E. coli has been demonstrated, the efficiency of the process using the well-characterized C. jejuni glycoprotein AcrA, was found to be low at 13.4±0.9% of total extracted protein. A combined approach using isobaric labeling of peptides and probability-based network analysis of metabolic changes was applied to forward engineer E. coli to improve glycosylation efficiency of AcrA. Enhancing flux through the glyoxylate cycle was identified as a potential metabolic manipulation to improve modification efficiency and was achieved by increasing the expression of isocitrate lyase. While the overall recombinant protein titre did not change significantly, the amount of glycosylated protein increased by approximately 300%.  相似文献   

16.
Horseradish peroxidase (HRP) is widely used in biomedical research as a reporter enzyme in diagnostic assays. In addition, it is of considerable interest as a model glycoprotein with core-xylosylated and -(alpha1-3)-fucosylated N-glycans that form antigenic elements of plant allergens and parasitic helminths. Using a combination of techniques comprising (1) nano-liquid chromatography (LC)-mass spectrometry (MS)/MS with multiple selection/fragmentation cycles of HRP tryptic (glyco-)peptides, (2) nano-electrospray MS of intact HRP, and (3) carbohydrate linkage analysis, it was revealed that most of the HRP N-glycosylation sites can be occupied with an alternative Fuc(1-3)GlcNAc-disaccharide. Two main variants of HRP occur: The major population (approximately 60%) has eight glycosylation sites carrying core(1-3)fucosylated, xylosylated, trimannosyl N-glycans, with the ninth potential N-glycosylation site Asn316 not occupied. Another group of HRP carries seven of the above-mentioned N-glycans, with an eighth N-glycosylation site carrying the alternative Fuc(1-3)GlcNAc-unit (approximately 35%). In addition, minor subsets of HRP were found to contain a xylosylated, trimannosyl N-glycan lacking core-fucosylation as a ninth N-glycan attached to Asn316, which has hitherto been assumed to be unoccupied. The finding of these new features of glycosylation of an already exceptionally well-studied glycoprotein underscores the potential of the nano-LC-MS(n) based analytical approach followed.  相似文献   

17.
Glycosylation, a critical product quality attribute, may affect the efficacy and safety of therapeutic proteins in vivo. Chinese hamster ovary fed-batch cell culture batches yielded consistent glycoprofiles of a Fc-fusion antibody comprizing three different N-glycosylation sites. By adding media supplements at specific concentrations in cell culture and applying enzymatic glycoengineering, a diverse N-glycan variant population was generated, including high mannose, afucosylated, fucosylated, agalactosylated, galactosylated, asialylated, and sialylated forms. Site-specific glycosylation profiles were elucidated by glycopeptide mapping and the effect of the glycosylation variants on the FcγRIIIa receptor binding affinity and the biological activity (cell-based and surface plasmon resonance) was assessed. The two fusion body glycosylation sites were characterized by a high degree of sialic acid, more complex N-glycan structures, a higher degree of antennarity, and a site-specific behavior in the presence of a media supplement. On the other hand, the media supplements affected the Fc-site glycosylation heterogeneity similarly to the various studies described in the literature with classical monoclonal antibodies. Enzymatic glycoengineering solely managed to generate high levels of galactosylation at the fusion body sites. Variants with low core fucosylation, and to a lower extent, high mannose glycans exhibited increased FcγRIIIa receptor binding affinity. All N-glycan variants exhibited weak effects on the biological activity of the fusion body. Both media supplementation and enzymatic glycoengineering are suitable to generate sufficient diversity to assess the effect of glycostructures on the biological activity.  相似文献   

18.
We have shown previously that purified chondroitin 6-sulfotransferase-1 (C6ST-1) was a glycoprotein abundant in N-linked oligosaccharides and could sulfate both chondroitin (C6ST activity) and keratan sulfate (KSST activity); however, functional roles of the N-glycans have remained unclear. In the present study, we show essential roles of N-glycans attached to C6ST-1 in the generation of the active enzyme and in its KSST activity. Treatment with tunicamycin of COS-7 cells transfected with C6ST-1 cDNA totally abolished production of the active C6ST-1. A nearly complete removal of N-glycans of the recombinant C6ST-1 by peptide N-glycosidase F increased the C6ST activity but decreased the KSST activity. Among six potential N-glycosylation sites, deletion of the fourth or sixth site from the amino terminus inhibited production of the active C6ST-1, whereas deletion of the fifth site resulted in a marked loss of the KSST activity. Wild-type recombinant C6ST-1 showed a typical Golgi localization, whereas M-4 recombinant C6ST-1, in which the fourth N-glycosylation site was deleted, colocalized with calnexin, an endoplasmic reticulum-resident protein. Unlike wildtype recombinant C6ST-1, M-4 recombinant C6ST-1 showed a weak affinity toward wheat germ agglutinin and was converted completely to the nonglycosylated form by endoglycosidase H. These observations suggest that N-glycan attached to the fourth N-glycosylation site may function in the proper processing of N-glycans required for the Golgi localization, thereby causing the production of the active C6ST-1, and that N-glycan attached to the fifth N-glycosylation site may contribute to the KSST activity of C6ST-1.  相似文献   

19.
Chen  Tianshu  Zhang  Huchen  Niu  Guanting  Zhang  Shuo  Hong  Zhi 《Plant molecular biology》2020,103(4-5):581-596
Key message

N-glycans play a protective or monitoring role according to the folding state of associated protein or the distance from structural defects.

Abstract

Asparagine-linked (Asn/N-) glycosylation is one of the most prevalent and complex protein modifications and the associated N-glycans play crucial roles on protein folding and secretion. The studies have shown that many glycoproteins hold multiple N-glycans, yet little is known about the redundancy of N-glycans on a protein. In this study, we used BRI1 to decipher the roles of N-glycans on protein secretion and function. We found that all 14 potential N-glycosylation sites on BRI1 were occupied with oligosaccharides. The elimination of single N-glycan had no obvious effect on BRI1 secretion or function except N154-glycan, which resulted in the retention of BRI1 in the endoplasmic reticulum (ER), similar to the loss of multiple highly conserved N-glycans. To misfolded bri1, the absence of N-glycans next to local structural defects enhanced the ER retention and the artificial addition of N-glycan could help the misfolded bri1-GFPs exiting from the ER, indicating that the N-glycans might serve as steric hindrance to protect the structure defects from ER recognition. We also found that the retention of misfolded bri1-9 by lectins and chaperones in the ER relied on the presence of multiple N-glycans distal to the local defects. Our findings revealed that the N-glycans might play a protective or monitoring role according to the folding state of associated protein or the distance from structural defects.

  相似文献   

20.
Junctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed by endothelial and epithelial cells. JAM-A serves many roles and contributes to barrier function and cell migration and motility, and it also acts as a ligand for the leukocyte receptor LFA-1. JAM-A is reported to contain N-glycans, but the extent of this modification and its contribution to the protein’s functions are unknown. We show that human JAM-A contains a single N-glycan at N185 and that this residue is conserved across multiple mammalian species. A glycomutant lacking all N-glycans, N185Q, is able to reach the cell surface but exhibits decreased protein half-life compared with the wild- type protein. N-glycosylation of JAM-A is required for the protein’s ability to reinforce barrier function and contributes to Rap1 activity. We further show that glycosylation of N185 is required for JAM-A–mediated reduction of cell migration. Finally, we show that N-glycosylation of JAM-A regulates leukocyte adhesion and LFA-1 binding. These findings identify N-glycosylation as critical for JAM-A’s many functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号