首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The study of plasticity in the central nervous system is a major and very dynamic neuroscience research field with enormous clinical potential. Considerable advances in this field have been made during the past 10 years. It now appears that most circuits in the brain and spinal cord show plasticity and that they can be modified by experience. Knowledge of the mechanisms of plasticity in the nervous system is therefore essential for the understanding of how the nervous system is wired during development and how it adapts in response to changes in the body and environment. Recent findings indicate that functional sensorimotor modules probe the sensory signals from the body that are generated as a consequence of module specific activity and use this sensory feedback to calibrate the strength in its input-output connections. This experience-dependent signal adapts the circuitry in the sensorimotor module to the body anatomy and biomechanics.  相似文献   

2.
We performed a functional near-infrared spectroscopy (fNIRS) study of the evoked hemodynamic responses seen in hand and face sensorimotor cortical representations during (1) active motor tasks and (2) pulsed pneumotactile stimulation. Contralateral fNIRS measurements were performed on 22 healthy adult participants using a block paradigm that consisted of repetitive right hand and right oral angle somatosensory stimulation using a pulsed pneumotactile array stimulator, and repetitive right-hand grip compression and bilabial compressions on strain gages. Results revealed significant oxyhemoglobin (HbO) modulation across stimulus conditions in corresponding somatotopic cortical regions. Of the 22 participants, 86% exhibited a decreased HbO response during at least one of the stimulus conditions, which may be indicative of cortical steal, or hypo-oxygenation occurring in channels adjacent to the primary areas of activation. Across all conditions, 56% of participants’ HbO responses were positive and 44% were negative. Hemodynamic responses most likely differed across hand and face motor and somatosensory cortical regions due to differences in regional arterial/venous anatomy, cortical vascular beds, extent and orientation of somatotopy, task dynamics, and mechanoreceptor typing in hand and face. The combination of optical imaging and task conditions allowed for non-invasive examination of hemodynamic changes in somatosensory and motor cortices using natural, pneumatic stimulation of glabrous hand and hairy skin of the lower face and functionally relevant and measurable motor tasks involving the same structures.  相似文献   

3.
For many years, it has been postulated that interactions between motor commands and somatic perception in the sensorimotor cortices exist, but they have been difficult to demonstrate. Recent studies have made demonstration of this interaction easier and suggest that cortical activity related to somatic sensation and perception is modified by movement-generating mechanism. Corollary discharge and efference copy may also play a role in motor behavior.  相似文献   

4.
Learning in simple systems   总被引:6,自引:0,他引:6  
Cellular processes that mediate learning and memory show a remarkable level of conservation between vertebrates and invertebrates. Recent studies have shown that learning and memory formation in invertebrates, so-called 'simple systems', involves a highly complex arrangement of cellular pathways. Some pathways contribute to a single stage of memory formation, whereas others impact on multiple stages of memory development. Distinct cellular pathways may also act in series or in parallel during various stages of memory formation.  相似文献   

5.
Motor chunking facilitates movement production by combining motor elements into integrated units of behavior. Previous research suggests that chunking involves two processes: concatenation, aimed at the formation of motor-motor associations between elements or sets of elements, and segmentation, aimed at the parsing of multiple contiguous elements into shorter action sets. We used fMRI to measure the trial-wise recruitment of brain regions associated with these chunking processes as healthy subjects performed a cued-sequence production task. A dynamic network analysis identified chunking structure for a set of motor sequences acquired during fMRI and collected over 3?days of training. Activity in the bilateral sensorimotor putamen positively correlated with chunk concatenation, whereas?a left-hemisphere frontoparietal network was correlated with chunk segmentation. Across subjects, there was an aggregate increase in chunk strength (concatenation) with training, suggesting that subcortical circuits play a direct role in the creation of fluid transitions across chunks.  相似文献   

6.
This review provides an overview of some of the growing body of research on the effects of spinal manipulation on sensory processing, motor output, functional performance and sensorimotor integration. It describes a body of work using somatosensory evoked potentials (SEPs), transcranial magnetic nerve stimulation, and electromyographic techniques to demonstrate neurophysiological changes following spinal manipulation. This work contributes to the understanding of how an initial episode(s) of back or neck pain may lead to ongoing changes in input from the spine which over time lead to altered sensorimotor integration of input from the spine and limbs.  相似文献   

7.
Humans and other animals are able to adjust their speed–accuracy trade-off (SAT) at will depending on the urge to act, favoring either cautious or hasty decision policies in different contexts. An emerging view is that SAT regulation relies on influences exerting broad changes on the motor system, tuning its activity up globally when hastiness is at premium. The present study aimed to test this hypothesis. A total of 50 participants performed a task involving choices between left and right index fingers, in which incorrect choices led either to a high or to a low penalty in 2 contexts, inciting them to emphasize either cautious or hasty policies. We applied transcranial magnetic stimulation (TMS) on multiple motor representations, eliciting motor-evoked potentials (MEPs) in 9 finger and leg muscles. MEP amplitudes allowed us to probe activity changes in the corresponding finger and leg representations, while participants were deliberating about which index to choose. Our data indicate that hastiness entails a broad amplification of motor activity, although this amplification was limited to the chosen side. On top of this effect, we identified a local suppression of motor activity, surrounding the chosen index representation. Hence, a decision policy favoring speed over accuracy appears to rely on overlapping processes producing a broad (but not global) amplification and a surround suppression of motor activity. The latter effect may help to increase the signal-to-noise ratio of the chosen representation, as supported by single-trial correlation analyses indicating a stronger differentiation of activity changes in finger representations in the hasty context.

Many have argued that the regulation of the speed-accuracy tradeoff relies on an urgency signal, which implements "collapsing decision thresholds" by tuning neural activity in a global manner in decision-related structures. This study indicates that the reality is more subtle, with several aspects of "urgency" being specifically targeted to particular corticospinal populations within the motor system.  相似文献   

8.
Previous studies support the notion that sensorimotor learning involves multiple processes. We investigated the neuronal basis of these processes by recording single-unit activity in motor cortex of non-human primates (Macaca fascicularis), during adaptation to force-field perturbations. Perturbed trials (reaching to one direction) were practiced along with unperturbed trials (to other directions). The number of perturbed trials relative to the unperturbed ones was either low or high, in two separate practice schedules. Unsurprisingly, practice under high-rate resulted in faster learning with more pronounced generalization, as compared to the low-rate practice. However, generalization and retention of behavioral and neuronal effects following practice in high-rate were less stable; namely, the faster learning was forgotten faster. We examined two subgroups of cells and showed that, during learning, the changes in firing-rate in one subgroup depended on the number of practiced trials, but not on time. In contrast, changes in the second subgroup depended on time and practice; the changes in firing-rate, following the same number of perturbed trials, were larger under high-rate than low-rate learning. After learning, the neuronal changes gradually decayed. In the first subgroup, the decay pace did not depend on the practice rate, whereas in the second subgroup, the decay pace was greater following high-rate practice. This group shows neuronal representation that mirrors the behavioral performance, evolving faster but also decaying faster at learning under high-rate, as compared to low-rate. The results suggest that the stability of a new learned skill and its neuronal representation are affected by the acquisition schedule.  相似文献   

9.
Investigation into the influence of motor training on the functional activity of the rat sensorimotor cortex in ontogenesis has shown that three to four-month training, starting at the age of four weeks, leads to a statistically significant enhancement of sensorimotor cortex activity both by latencies and recovery cycles durations. A similar six to seven-month locomotor training produces the same statistically significant results. The differences in the shifts of functional activity after motor training observed between two age groups are not statistically significant. The probability of changes in the average definitive electrophysiological parameters of functional activity after motor training observed between two age groups are not statistically significant. The probability of changes in the average definitive electrophysiological parameters of functional activity of the sensorimotor cortex is suggested in rats aged more than a month, as a result of individual experience.  相似文献   

10.
11.

Masking in motor systems was defined as the omission of one act in a sequence due to an earlier or later act in the sequence. A study of phoneme omission in natural speech showed that:

  1. 1.

    Masked phonemes were usually preceded or followed by an identical phoneme (referred to as the masking phoneme).

  2. 2.

    Backward masking, where the masked phoneme preceded the masking phoneme was as frequent as forward masking.

  3. 3.

    The phonemes immediately adjacent to the masked and masking phonemes were usually similar in distinctive features, but rarely identical.

  4. 4.

    The masking phoneme usually occurred in a stressed syllable and the masked phoneme in an unstressed one, suggesting that motor intensity may be a factor in masking.

  5. 5.

    The components for an adequate model of motor masking were shown to be similar to those in models of other types of errors in speech.

  相似文献   

12.
Voltage-sensitive ion channels in rhythmic motor systems   总被引:3,自引:0,他引:3  
Voltage-sensitive ionic currents shape both the firing properties of neurons and their synaptic integration within neural networks that drive rhythmic motor patterns. Persistent sodium currents underlie rhythmic bursting in respiratory neurons. H-type pacemaker currents can act as leak conductances in spinal motoneurons, and also control long-term modulation of synaptic release at the crayfish neuromuscular junction. Calcium currents travel in rostro-caudal waves with motoneuron activity in the spinal cord. Potassium currents control spike width and burst duration in many rhythmic motor systems. We are beginning to identify the genes that underlie these currents.  相似文献   

13.
Padoa-Schioppa C  Li CS  Bizzi E 《Neuron》2002,36(4):751-765
It is widely acknowledged that movements are planned at the level of the kinematics. However, the central nervous system must ultimately transform kinematic plans into dynamics-related commands. How, when, and where the kinematics-to-dynamics (KD) transformation is processed represent fundamental and unanswered questions. We recorded from the supplementary motor area (SMA) of two monkeys as they executed visually instructed reaching movements. We specifically analyzed a delay period following the instruction but prior to the go signal (motor planning). During the delay, a group of neurons in the SMA progressively came to reflect the dynamics rather than the desired kinematics of the upcoming movement. This finding suggests that some neurons in the SMA participate in the KD transformation.  相似文献   

14.
Human studies show that the learning of a new sensorimotor mapping that requires adaptation to directional errors is local and generalizes poorly to untrained directions. We trained monkeys to learn new visuomotor rotations for only one target in space and recorded neuronal activity in the primary motor cortex before, during and after learning. Similar to humans, the monkeys showed poor transfer of learning to other directions, as observed by behavioral aftereffects for untrained directions. To test for internal representations underlying these changes, we compared two features of neuronal activity before and after learning: changes in firing rates and changes in information content. Specific elevations of firing rate were only observed in a subpopulation of cells in the motor cortex with directional properties corresponding to the locally learned rotation; namely cells only showed plasticity if their preferred direction was near the training one. We applied measures from information theory to probe for learning-related changes in the neuronal code. Single cells conveyed more information about the direction of movement and this specific improvement in encoding was correlated with an increase in the slope of the neurons' tuning curve. Further, the improved information after learning enabled a more accurate reconstruction of movement direction from neuronal populations. Our findings suggest a neural mechanism for the confined generalization of a newly acquired internal model by showing a tight relationship between the locality of learning and the properties of neurons. They also provide direct evidence for improvement in the neural code as a result of learning.  相似文献   

15.
A model of sequential actions implying learning is proposed, starting from the concept of acybernetical action introduced in a previous paper (Teodorescu, 1977). Sequential actions of this kind (e.g. defence actions occurring repeatedly in a biological population, some motor subroutines such as walking, swimming etc.) are always goal-oriented ones. Furthermore, in performing them, some constraints must be observed. Finally, each action must be optimal with respect to a given criterion, otherwise it becomes highly expensive (or, perhaps, inefficient) for the living organism(s). To take into account these rather natural features of any cybernetical action, a specific tool is used, namely, themessage operator defined in (Teodorescu, 1976b). The procedure of deriving an action model with the aid of message operators is illustrated by means of an experimental paradigm concerning the visually induced behaviour in insects (Reichardt and Poggio, 1976). Next, by taking into account certain recovery processes, the concept of alearning sequence (i.e. model of sequential action involving learning) is defined, and some examples are given to illustrate learning in biological systems. The related concepts offull subsequence, node andmemory cycle are also defined, and some theorems concerning memory cycles are stated and proved. Furthermore,a measure of the learning effort is suggested. It is used to show that, under certain conditions, learning occurs even in the case of many different active messages. Finally, by using the proposed models, the relationship between learning and optimization is investigated, proving thatoptimization is deeply implicated in any learning process. More exctly, as far as sequential actions with recovery are concerned, optimization is a necessary (but not sufficient) condition for learning. Thus, the proposed model of action may be regarded as a useful tool, which enables to investigate some unknown aspects related to learning in living organisms, in a general, computeroriented way.  相似文献   

16.
Puskás LG  Zvara A  Hackler L  Van Hummelen P 《BioTechniques》2002,32(6):1330-4, 1336, 1338, 1340
  相似文献   

17.
Classification is a data mining task the goal of which is to learn a model, from a training dataset, that can predict the class of a new data instance, while clustering aims to discover natural instance-groupings within a given dataset. Learning cluster-based classification systems involves partitioning a training set into data subsets (clusters) and building a local classification model for each data cluster. The class of a new instance is predicted by first assigning the instance to its nearest cluster and then using that cluster’s local classification model to predict the instance’s class. In this paper, we present an ant colony optimization (ACO) approach to building cluster-based classification systems. Our ACO approach optimizes the number of clusters, the positioning of the clusters, and the choice of classification algorithm to use as the local classifier for each cluster. We also present an ensemble approach that allows the system to decide on the class of a given instance by considering the predictions of all local classifiers, employing a weighted voting mechanism based on the fuzzy degree of membership in each cluster. Our experimental evaluation employs five widely used classification algorithms: naïve Bayes, nearest neighbour, Ripper, C4.5, and support vector machines, and results are reported on a suite of 54 popular UCI benchmark datasets.  相似文献   

18.
The rate and pattern of rectal distension affect rectal distensibility, perception, and anal relaxation in health. Because rectal urgency is a prominent symptom in fecal incontinence (FI), we assessed rectal distensibility, contractions, perception, and anal pressures during rectal distention in 21 healthy, asymptomatic women (age 61 +/- 2 yr, mean +/- SE) and 51 women with FI (60 +/- 2 yr). Rectal staircases (0-32 mmHg, 4-mm steps) and ramp distensions [0-200 ml at 25, 50, and 100 ml/min with a phase of sustained distension (SD), lasting 1 min, between inflation and deflation]. The rectum was stiffer during rapid than slow ramp distention. This effect was more prominent at a lower volume (50 ml) and was also more pronounced in older subjects and in FI. A rectal contractile response was observed not only during inflation but also during SD and during deflation. During inflation, this contractile response was rate dependent in controls but not in FI. During staircase but not ramp distentions, the threshold for the desire to defecate was lower in FI. During ramp distentions, the duration of perception was significantly longer in FI. The rate of distention did not affect rectal perception (i.e., sensory thresholds or duration of perception) during ramp distentions. Baseline anal pressures and the magnitude of anal relaxation during rectal distention were also reduced in FI. In addition to reduced rectal capacity and compliance, women with FI had an exaggerated rate-dependent reduction in rectal distensibility, lower sensory thresholds, and more prolonged perception, indicative of rectoanal dysfunctions.  相似文献   

19.
We investigated the role of the cerebral cortex, particularly the face/tongue area of the primary sensorimotor (SMI) cortex (face/tongue) and supplementary motor area (SMA), in volitional swallowing by recording movement-related cortical potentials (MRCPs). MRCPs with swallowing and tongue protrusion were recorded from scalp electrodes in eight normal right-handed subjects and from implanted subdural electrodes in six epilepsy patients. The experiment by scalp EEG in normal subjects revealed that premovement Bereitschaftspotentials (BP) activity for swallowing was largest at the vertex and lateralized to either hemisphere in the central area. The experiment by epicortical EEG in patients confirmed that face/tongue SMI and SMA were commonly involved in swallowing and tongue protrusion with overlapping distribution and interindividual variability. BP amplitude showed no difference between swallowing and tongue movements, either at face/tongue SMI or at SMA, whereas postmovement potential (PMP) was significantly larger in tongue protrusion than in swallowing only at face/tongue SMI. BP occurred earlier in swallowing than in tongue protrusion. Comparison between face/tongue SMI and SMA did not show any difference with regard to BP and PMP amplitude or BP onset time in either task. The preparatory role of the cerebral cortex in swallowing was similar to that in tongue movement, except for earlier activation in swallowing. Postmovement processing of swallowing was lesser than that of tongue movement in face/tongue SMI; probably suggesting that the cerebral cortex does not play a significant role in postmovement processing of swallowing. SMA plays a supplementary role to face/tongue SMI both in swallowing and tongue movements.  相似文献   

20.
Fee, Lawrence L., Richard M. Smith, and Michael B. English.Enhanced ventilatory and exercise performance in athletes withslight expiratory resistive loading. J. Appl.Physiol. 83(2): 503-510, 1997.We determined thecardiorespiratory and performance effects of slight (1.5-3.0cmH2O) expiratory resistiveloading (ERL). Twenty-eight highly fit [peakO2 uptake(O2 peak) = 63.6 ± 1.3 ml · kg1 · min1]athletes (age = 33.5 ± 1.3 yr) performed pairedO2 peak cycle ergometer tests (control vs. ERL). End-expiratory lung volume wasseparately determined in a subset of subjects(n = 12) at steady-state 75% maximumpower output (POmax) and wasfound to increase (0.67 ± 0.29 liter) with ERL. In theO2 peaktests, peak expiratory pressure at the mouth, mean inspiratory flow, minute ventilation, and O2 pulsewere greater with ERL at every intensity level (i.e., 75, 80, 85, and90% POmax). Increased minute ventilation was largely due to a trend toward increased tidal volume(P < 0.05 at 80%POmax).O2 uptake was greater at 90%POmax with ERL. IncreasedO2 pulse with ERL at comparativeworkloads suggests that stroke volume was augmented with ERL. Also,with ERL, athletes attained higherO2 peak (63.0 ± 1.4 vs. 60.1 ± 1.3 ml · kg1 · min1)and greater POmax (352.0 ± 9.9 vs. 345.7 ± 9.5 W). We conclude that elevated end-expiratory lungvolume in response to slight ERL during strenuous exercise served toattenuate both airflow and blood flow limitations, which enhancedexercise capacity.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号