首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Matocq MD 《Molecular ecology》2004,13(6):1635-1642
Discrepancies between the census size and the genetically effective size of populations (N(e)) can be caused by a number of behavioural and demographic factors operating within populations. Specifically, strong skew in male reproductive success, as would be expected in a polygynous mating system, could cause a substantial decrease in N(e) relative to census size. Because the mating system of Neotoma macrotis had previously been described as one nearing harem polygyny, I examined the distribution of reproductive success and genetic variation within a population of this species. Combining genetic data and three years of field observations, I show that variance in reproductive success does not deviate from poisson expectations within either sex and variance in success is similar between the sexes. Furthermore, both males and females had multiple partners across litters in addition to some evidence of multiple paternity within litters. Despite a lack of strong skew in reproductive success, an estimate of N(e) based on a number of demographic parameters suggests that the ratio of N(e)/N in this population is 0.48. Although the ratio of N(e)/N suggests that the population is experiencing higher rates of genetic drift than would be expected based on census size alone, the population maintains high levels of genetic diversity. Estimates of neighbourhood size and patterns of recruitment to the study site suggest that immigration plays an important role in this population and may contribute to the maintenance of high levels of genetic diversity.  相似文献   

2.
    
The evolutionary transition from outcrossing to selfing can have important genomic consequences. Decreased effective population size and the reduced efficacy of selection are predicted to play an important role in the molecular evolution of the genomes of selfing species. We investigated evidence for molecular signatures of the genomic selfing syndrome using 66 species of Primula including distylous (outcrossing) and derived homostylous (selfing) taxa. We complemented our comparative analysis with a microevolutionary study of P. chungensis, which is polymorphic for mating system and consists of both distylous and homostylous populations. We generated chloroplast and nuclear genomic data sets for distylous, homostylous, and distylous–homostylous species and identified patterns of nonsynonymous to synonymous divergence (dN/dS) and polymorphism (πN/πS) in species or lineages with contrasting mating systems. Our analysis of coding sequence divergence and polymorphism detected strongly reduced genetic diversity and heterozygosity, decreased efficacy of purifying selection, purging of large-effect deleterious mutations, and lower rates of adaptive evolution in samples from homostylous compared with distylous populations, consistent with theoretical expectations of the genomic selfing syndrome. Our results demonstrate that self-fertilization is a major driver of molecular evolutionary processes with genomic signatures of selfing evident in both old and relatively young homostylous populations.  相似文献   

3.
The Haute Island mouflon (Ovis aries) population is isolated on one small (6.5 km2) island of the remote Kerguelen archipelago. Given a promiscuous mating system, a cyclic demography and a strong female-biased sex ratio after population crashes, we expected a low effective population size (Ne). We estimated Ne using demographic and temporal genetic approaches based on genetic information at 25 microsatellite loci from 62 and 58 mouflons sampled in 1988 and 2003, respectively. Genetic Ne estimates were higher than expected, varying between 104 and 250 depending on the methods used. Both demographic and genetic approaches show the Haute Island Ne is buffered against population crashes. The unexpectedly high Ne likely results from the cyclic winter crashes that allow young males to reproduce, limiting the variance of male reproductive success. Based on individual-based simulations, we suggest that despite a strongly female-biased sex ratio, the effects of the mating system on the effective population size more closely resemble random mating or weak polygyny.  相似文献   

4.
Sexual size dimorphism and phylogeny in North American minnows   总被引:11,自引:0,他引:11  
Sexual size dimorphism (SSD) is predicted to vary across mating systems. A previous study examined a model of SSD in fishes as it relates to three mating system variables: probability of sperm competition, male territorial guarding, and male-male contest. I tested the ability of these variables to predict SSD in North American freshwater minnows, after controlling for phylogenetic effects by an independent contrasts method. Across 58 species only male territorial guarding was significandy related to SSD in a stepwise multiple regression. When tested for 26 genera and subgenera, both male territorial guarding and male-male contest were significant in the model. The concentrated-changes test revealed that character changes in SSD (from males the same size or smaller than females, to males larger than females) were more concentrated on branches with presence of male guarding (similar results were found for changes in SSD and presence of sperm competition), at the species and genus levels. Both comparative approaches demonstrated that male guarding and male-male contest variables are linked to SSD in minnows.  相似文献   

5.
    
I present analytical predictions for the equilibrium inbreeding load expected in a population under mutation, selection, and a regular mating system for any population size and for any magnitude and recessivity of the deleterious effects. Using this prediction, I deduce the relative fitness of mutant alleles with small effect on selfing to explore the situations where selfing or outcrossing are expected to evolve. The results obtained are in agreement with previous literature, showing that natural selection is expected to lead to stable equilibria where populations show either complete outcrossing or complete selfing, and that selfing is promoted by large deleterious mutation rates. I find that the evolution of selfing is favored by a large recessivity of deleterious effects, while the magnitude of homozygous deleterious effects only becomes relevant in relatively small populations. This result contradicts the standard assumption that purging in large populations will only promote selfing when homozygous deleterious effects are large, and implies that previously published results obtained assuming lethal mutations in large populations can be extrapolated to nonlethal alleles of similar recessivity. This conclusion and the general approach used in this analysis can be useful in the study of the evolution of mating systems.  相似文献   

6.
    
A variety of behavioural traits have substantial effects on the gene dynamics and genetic structure of local populations. The mating system is a plastic trait that varies with environmental conditions in the domestic cat (Felis catus) allowing an intraspecific comparison of the impact of this feature on genetic characteristics of the population. To assess the potential effect of the heterogenity of males' contribution to the next generation on variance effective size, we applied the ecological approach of Nunney & Elam (1994) based upon a demographic and behavioural study, and the genetic 'temporal methods' of Waples (1989) and Berthier et al. (2002) using microsatellite markers. The two cat populations studied were nearly closed, similar in size and survival parameters, but differed in their mating system. Immigration appeared extremely restricted in both cases due to environmental and social constraints. As expected, the ratio of effective size to census number (Ne/N) was higher in the promiscuous cat population (harmonic mean = 42%) than in the polygynous one (33%), when Ne was calculated from the ecological method. Only the genetic results based on Waples' estimator were consistent with the ecological results, but failed to evidence an effect of the mating system. Results based on the estimation of Berthier et al. (2002) were extremely variable, with Ne sometimes exceeding census size. Such low reliability in the genetic results should retain attention for conservation purposes.  相似文献   

7.
    
Theories predict that the evolutionary rates of X-linked regions can differ from those of autosomal regions. The male-biased mutation theory predicts a slower rate of neutral substitution on the X chromosome (slow-X evolution), as the X spends less time in male germlines, where more mutations originate per generation than in female germlines. The fast-X theory, however, predicts a faster rate of adaptive substitution on the X chromosome when newly arising beneficial mutations are, on average, partially recessive (fast-X evolution), as the X enjoys a greater efficacy of positive selection. The slow- and fast-X processes are expected to interact as the degree of male-biased mutation can in turn influence the relative rate of adaptive evolution on the X. Here, we investigate lineage-specific variation in, and the interaction of, slow- and fast-X processes using genomic data from four primates. We find consistent evidence for slow-X evolution in all lineages. In contrast, evidence for fast-X evolution exists in only a subset of lineages. In particular, the marmoset lineage, which shows the strongest evidence of fast-X, exhibits the lowest male mutation bias. We discuss the possible interaction between slow- and fast-X evolution and other factors that influence the degrees of slow- and fast-X evolution.  相似文献   

8.
    
BackgroundGaining extrapair copulations (EPCs) is a complicated behavior process. The interaction between males and females to procure EPCs may be involved in brain function evolution and lead to a larger brain. Thus, we hypothesized that extrapair paternity (EPP) rate can be predicted by relative brain size in birds. Past work has implied that the EPP rate is associated with brain size, but empirical evidence is rare.MethodsWe collated data from published references on EPP levels and brain size of 215 bird species to examine whether the evolution of EPP rate can be predicted by brain size using phylogenetically generalized least square (PGLS) models and phylogenetic path analyses.ResultsWe found that EPP rates (both the percentage EP offspring and percentage of broods with EP offspring) are negatively associated with relative brain size. We applied phylogenetic path analysis to test the causal relationship between relative brain size and EPP rate. Best‐supported models (ΔCICc < 2) suggested that large brain lead to reduced EPP rate, which failed to support the hypothesis that high rates of EPP cause the evolution of larger brains.ConclusionThis study indicates that pursuing EPCs may be a natural instinct in birds and the interaction between males and females for EPCs may lead to large brains, which in turn may restrict their EPC level for both sexes across bird species.  相似文献   

9.
    
Reproductive competition may lead to a large skew in reproductive success among individuals. Very few studies have analysed the paternity contribution of individual males in spawning aggregations of fish species with huge census population sizes. We quantified the variance in male reproductive success in spawning aggregations of cod under experimental conditions over an entire spawning season. Male reproductive success was estimated by microsatellite-based parentage analysis of offspring produced in six separate groups of spawning cod. In total, 1340 offspring and 102 spawnings distributed across a spawning season were analysed. Our results show that multiple males contributed sperm to most spawnings but that paternity frequencies were highly skewed among males, with larger males on average siring higher proportions of offspring. It was further indicated that male reproductive success was dependent on the magnitude of the size difference between a female and a male. We discuss our results in relation to the cod mating system. Finally, we suggest that the highly skewed distribution of paternity success observed in cod may be a factor contributing to the low effective population size/census population size ratios observed in many marine organisms.  相似文献   

10.
    
Outcrossing rate, the rates of ovule and seed abortion, and levels of correlated paternity were estimated in a small population of Pinus sylvestris, a predominantly outcrossing conifer, and were compared with estimates from two widely dispersed woodlands of the same species, showing a range of densities. On average, seed trees of the small population showed an eight-fold higher selfing rate (25 vs. 3%) and a 100-fold greater incidence of correlated paternity (19.6 vs. 0.2%) than did trees from the large populations. No evidence was found of pollen limitation within the remnant stand, as suggested by ovule abortion rates. Investigation of the mating patterns in the small population, based on the unambiguous genealogy of 778 open-pollinated seeds, showed a large departure from random mating. Only 8% of the possible mating pairs within the stand were observed. Correlated paternity rate within a maternal sibship was negatively associated (rs = -0.398, P < 0.050) with the distance to the nearest neighbour, and shared paternity among maternal sibships was negatively correlated (rs = -0.704, P < 0.001) with the distance between seed trees. Numerical simulations, based on the estimated individual pollen dispersal kernel, suggest that restricted dispersal might have been the key factor affecting mating patterns in the small population and, together with low population density, may account for the observed mating system variation between the small and the large populations. The results of this study show that a severe size reduction may substantially affect the mating system of a wind-pollinated, typically outcrossed plant species.  相似文献   

11.
    
The ratio between the effective and the census population size, , is an important measure of the long‐term viability and sustainability of a population. Understanding which demographic processes that affect most will improve our understanding of how genetic drift and the probability of fixation of alleles is affected by demography. This knowledge may also be of vital importance in management of endangered populations and species. Here, we use data from 13 natural populations of house sparrow (Passer domesticus) in Norway to calculate the demographic parameters that determine . Using the global variance‐based Sobol’ method for the sensitivity analyses, we found that was most sensitive to demographic variance, especially among older individuals. Furthermore, the individual reproductive values (that determine the demographic variance) were most sensitive to variation in fecundity. Our results draw attention to the applicability of sensitivity analyses in population management and conservation. For population management aiming to reduce the loss of genetic variation, a sensitivity analysis may indicate the demographic parameters towards which resources should be focused. The result of such an analysis may depend on the life history and mating system of the population or species under consideration, because the vital rates and sex–age classes that is most sensitive to may change accordingly.  相似文献   

12.
    
Polygynous mating results in nonrandom sampling of the adult male gamete pool in each generation, thereby increasing the rate of genetic drift. In principle, genetic paternity analysis can be used to infer the effective number of breeding males (Nebm). However, this requires genetic data from an exhaustive sample of candidate males. Here we describe a new approach to estimate Nebm using a rejection algorithm in association with three statistics: Euclidean distance between the frequency distributions of maternally and paternally inherited alleles, average number of paternally inherited alleles and average gene diversity of paternally inherited alleles. We quantify the relationship between these statistics and Nebm using an individual-based simulation model in which the male mating system varied continuously between random mating and extreme polygyny. We evaluate this method using genetic data from a natural population of highly polygynous fruit bats (Cynopterous sphinx). Using data in the form of mother-offspring genotypes, we demonstrate that estimates of Nebm are very similar to independent estimates based on a direct paternity analysis that included data on candidate males. Our method also permits an evaluation of uncertainty in estimates of Nebm and thus facilitates inferences about the mating system from genetic data. Finally, we investigate the sensitivity of our method to sample size, model assumptions, adult population size and the mating system. These analyses demonstrate that the rejection algorithm provides accurate estimates of Nebm across a broad range of demographic scenarios, except when the true Nebm is high.  相似文献   

13.
Self‐fertilization is hypothesized to be an evolutionary dead end because reversion to outcrossing can rarely happen, and selfing lineages are thought to rapidly become extinct because of limited potential for adaptation and/or accumulation of deleterious mutations. We tested these two assumptions by combining morphological characters and molecular‐evolution analyses in a tribe of hermaphroditic grasses (Triticeae). First, we determined the mating system of the 19 studied species. Then, we sequenced 27 protein‐coding loci and compared base composition and substitution patterns between selfers and outcrossers. We found that the evolution of the mating system is best described by a model including outcrossing‐to‐selfing transitions only. At the molecular level, we showed that regions of low recombination exhibit signatures of relaxed selection. However, we did not detect any evidence of accumulation of nonsynonymous substitutions in selfers compared to outcrossers. Additionally, we tested for the potential deleterious effects of GC‐biased gene conversion in outcrossing species. We found that recombination and not the mating system affected substitution patterns and base composition. We suggest that, in Triticeae, although recombination patterns have remained stable, selfing lineages are of recent origin and inbreeding may have persisted for insufficient time for differences between the two mating systems to evolve.  相似文献   

14.
    
Theoretical and empirical comparisons of molecular diversity in selfing and outcrossing plants have primarily focused on long‐term consequences of differences in mating system (between species). However, improving our understanding of the causes of mating system evolution requires ecological and genetic studies of the early stages of mating system transition. Here, we examine nuclear and chloroplast DNA sequences and microsatellite variation in a large sample of populations of Arabidopsis lyrata from the Great Lakes region of Eastern North American that show intra‐ and interpopulation variation in the degree of self‐incompatibility and realized outcrossing rates. Populations show strong geographic clustering irrespective of mating system, suggesting that selfing either evolved multiple times or has spread to multiple genetic backgrounds. Diversity is reduced in selfing populations, but not to the extent of the severe loss of variation expected if selfing evolved due to selection for reproductive assurance in connection with strong founder events. The spread of self‐compatibility in this region may have been favored as colonization bottlenecks following glaciation or migration from Europe reduced standing levels of inbreeding depression. However, our results do not suggest a single transition to selfing in this system, as has been suggested for some other species in the Brassicaceae.  相似文献   

15.
Summary It is well known that truncation selection is the most efficient form of directional selection in terms of changing gene frequency. In this paper we show circumstances where truncation selection followed by a balanced mating generates inbreeding effective population size smaller than that generated by a selection that assigns mating frequencies to individuals according to their breeding values, where both selection schemes give the same expected performance of selected individuals (selection differential). Breeding values of selected individuals and the weight used to determine mating frequencies are assumed to be linearly distributed on a performance scales, x. To assign mating frequencies to the individuals in the weighting system, the selected individuals are grouped using a constant , and ith group in the interval xi, xi + . With small number of groups, say 2 or 3, the weighting system in general generates inbreeding effective population size that is larger than that generated by a truncation selection. As the number of the groups increases, truncation selection generates larger effective numbers.  相似文献   

16.
The transition from outcrossing to selfing is predicted to reduce the genome-wide efficacy of selection because of the lower effective population size (Ne) that accompanies this change in mating system. However, strongly recessive deleterious mutations exposed in the homozygous backgrounds of selfers should be under strong purifying selection. Here, we examine estimates of the distribution of fitness effects (DFE) and changes in the magnitude of effective selection coefficients (Nes) acting on mutations during the transition from outcrossing to selfing. Using forward simulations, we investigated the ability of a DFE inference approach to detect the joint influence of mating system and the dominance of deleterious mutations on selection efficacy. We investigated predictions from our simulations in the annual plant Eichhornia paniculata, in which selfing has evolved from outcrossing on multiple occasions. We used range-wide sampling to generate population genomic datasets and identified nonsynonymous and synonymous polymorphisms segregating in outcrossing and selfing populations. We found that the transition to selfing was accompanied by a change in the DFE, with a larger fraction of effectively neutral sites (Nes < 1), a result consistent with the effects of reduced Ne in selfers. Moreover, an increased proportion of sites in selfers were under strong purifying selection (Nes > 100), and simulations suggest that this is due to the exposure of recessive deleterious mutations. We conclude that the transition to selfing has been accompanied by the genome-wide influences of reduced Ne and strong purifying selection against deleterious recessive mutations, an example of purging at the molecular level.  相似文献   

17.
The reproductive assurance hypothesis emphasizes that self-fertilization should evolve in species with reduced dispersal capability, low population size or experiencing recurrent bottlenecks. Our work investigates the ecological components of the habitats colonized by the snail, Galba truncatula, that may influence the evolution of selfing. Galba truncatula is a preferential selfer inhabiting freshwater habitats, which vary with respect to the degree of permanence. We considered with a population genetic approach the spatial and the temporal degree of isolation of populations of G. truncatula. We showed that patches at distances of only a few meters are highly structured. The effective population sizes appear quite low, in the order of 10 individuals or less. This study indicates that individuals of the species G. truncatula are likely to be alone in a site and have a low probability of finding a partner from a nearby site to reproduce. These results emphasize the advantage of selfing in this species.  相似文献   

18.
  总被引:1,自引:0,他引:1  
Sperm competition is widely recognized as a pervasive force of sexual selection. Theory predicts that across species increased risk of sperm competition should favor an increased expenditure on the ejaculate, a prediction for which there is much evidence. Sperm competition games have also been developed specifically for systems in which males adopt the alternative male mating tactics of sneaking copulations or guarding females. These models have not yet been tested in a comparative context, but predict that: across species male expenditure on the ejaculate should increase with increasing probability of a sneak mating; within species, sneaks should have the greater expenditure on the ejaculate; and the disparity in expenditure between sneaks and guards should be greatest in species with moderate risk of a sneak mating, and decline toward parity in species with low or high risk. Beetles in the genus Onthophagus are often characterized by dimorphic male morphologies that reflect the alternative mating tactics of sneak (minor males) and guard (major males). We conducted a comparative analysis across 16 species of male dimorphic onthophagines, finding that testes size increased across species with increasing frequency of the minor male phenotype. Minor males generally had the greater testes size, but across species the disparity between morphs was independent of the frequency of minor males. We present data on testes allometry from two populations of O. taurus that have undergone genetic divergence in the frequency of minor males. Consistent with the comparative analysis, these data support the notion that the relative frequency of sneaks in the population influences male expenditure on the ejaculate.  相似文献   

19.
The utility of microsatellite markers for inferring population size and trend has not been rigorously examined, even though these markers are commonly used to monitor the demography of natural populations. We assessed the ability of a linkage disequilibrium estimator of effective population size (Ne) and a simple capture-recapture estimator of abundance (N) to quantify the size and trend of stable or declining populations (true N = 100–10,000), using simulated Wright–Fisher populations. Neither method accurately or precisely estimated abundance at sample sizes of S = 30 individuals, regardless of true N. However, if larger samples of S = 60 or 120 individuals were collected, these methods provided useful insights into abundance and trends for populations of N = 100–500. At small population sizes (N = 100 or 250), precision of the Ne estimates was improved slightly more by a doubling of loci sampled than by a doubling of individuals sampled. In general, monitoring Ne proved a more robust means of identifying stable and declining populations than monitoring N over most of the parameter space we explored, and performance of the Ne estimator is further enhanced if the Ne/N ratio is low. However, at the largest population size (N = 10,000), N estimation outperformed Ne. Both methods generally required ≥ 5 generations to pass between sampling events to correctly identify population trend.  相似文献   

20.
    
Cooperative breeding is rare in shorebirds, and when found it is thought to be due to polygamous mating (cooperative polygamy). Here we describe the social structure of cooperatively breeding groups in Southern Lapwing Vanellus chilensis and test the prediction that offspring sex ratio is skewed towards the sex that helps. The social groups consisted of a breeding pair with one or two young (mostly males, 68%) from the previous breeding season, and offspring sex ratio was not skewed. Cooperative breeding in the Southern Lapwing is not the consequence of cooperative polygamy, but rather groups were formed by a mated pair and some of their offspring from previous nests as helpers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号