共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study investigated the effects of fasting and refeeding on the expression of proteasome-related genes and their
downstream targets in the skeletal muscles of chicks. Seven-day-old chicks were fasted for 24 or 48 h and then refed for 4
h. The expression levels of MAFbx and MuRF1, which function as E3 ligases in the ubiquitin-proteasome system, were investigated
at the mRNA and protein levels. MAFbx and MuRF1 expression were increased by fasting and these increases were downregulated
by refeeding. The expression of the target proteins of these E3 ligases, MyoD and M-CK, was also analyzed. The levels of these
proteins were downregulated by fasting, and these decreases were rescued by refeeding. The results of this study indicate
that fasting stimulates MAFbx and MuRF1 expression in chicks, possibly leading to increased degradation of their corresponding
target proteins. 相似文献
2.
Acute Kidney Injury (AKI) is frequently encountered in hospitalized patients where it is associated with increased mortality and morbidity notably affecting muscle wasting. Increased protein degradation has been shown to be the main actor of AKI-induced muscle atrophy, but the proteolytic pathways involved are poorly known. The Ubiquitin Proteasome System (UPS) is almost systematically activated in various catabolic situations, and the E3 ligases MuRF1 and MAFbx are generally up regulated in atrophying muscles. We hypothesized that the UPS may be one of the main actors in catabolic skeletal muscles from AKI animals. We used gentamicin-induced acute kidney disease (G-AKI) in rats fed a high protein diet to promote acidosis. We first addressed the impact of G-AKI in the development of mild catabolic conditions. We found that both muscle atrophy and UPS activation were induced with the development of G-AKI. In addition, the phasic muscles were more sensitive to 7-days G-AKI (−11 to −17%, P < 0.05) than the antigravity soleus muscle (−11%, NS), indicating a differential impact of AKI in the musculature. We observed an increased expression of the muscle-specific E3 ligases MuRF1 and MAFbx in phasic muscles that was highly correlated to the G-AKI severity (R2 = 0.64, P < 0.01 and R2 = 0.71, P < 0.005 respectively). Conversely, we observed no variation in the expression of three other E3 ligases (Nedd4, Trim32 and Fbxo30/MUSA1). Altogether, our data indicate that MuRF1 and MAFbx are sensitive markers and potential targets to prevent muscle atrophy during G-AKI. 相似文献
3.
Ratchford SM Bailey AN Senesac HA Hocker AD Smolkowski K Lantz BA Jewett BA Gilbert JS Dreyer HC 《American journal of physiology. Regulatory, integrative and comparative physiology》2012,302(6):R702-R711
Total knee arthroplasty (TKA) utilizes a tourniquet to reduce blood loss, maintain a clear surgical "bloodless" field, and to ensure proper bone-implant cementing. In 2007, over 600,000 TKAs were performed in the United States, and this number is projected to increase to 3.48 million procedures performed annually by 2030. The acute effects of tourniquet-induced ischemia-reperfusion (I/R) on human skeletal muscle cells are poorly understood and require critical investigation, as muscle atrophy following this surgery is rapid and represents the most significant clinical barrier to long-term normalization of physical function. To determine the acute effects of I/R on skeletal muscle cells, biopsies were obtained at baseline, maximal ischemia (prior to tourniquet release), and reperfusion (following tourniquet release). Quadriceps volume was determined before and 2 wk post-TKA by MRI. We measured a 36% decrease in phosphorylation of Akt Ser(473) during ischemia and 37% during reperfusion (P < 0.05). 4E-BP1 Thr(37/46) phosphorylation decreased 29% during ischemia and 22% during reperfusion (P < 0.05). eEF2 Thr(56) phosphorylation increased 25% during ischemia and 43% during reperfusion (P < 0.05). Quadriceps volume decreased 12% in the TKA leg (P < 0.05) and tended to decrease (6%) in the contralateral leg (P = 0.1). These data suggest cap-dependent translation initiation, and elongation may be inhibited during and after TKA surgery. We propose that cap-dependent translational events occurring during surgery may precipitate postoperative changes in muscle cells that contribute to the etiology of muscle atrophy following TKA. 相似文献
4.
5.
S Calve J Isaac JP Gumucio CL Mendias 《American journal of physiology. Cell physiology》2012,303(5):C577-C588
Hyaluronic acid (HA) is a component of the extracellular matrix (ECM) in most vertebrate tissues and is thought to play a significant role during development, wound healing, and regeneration. In vitro studies have shown that HA enhances muscle progenitor cell recruitment and inhibits premature myotube fusion, implicating a role for this glycosaminoglycan in functional repair. However, the spatiotemporal distribution of HA during muscle growth and repair was unknown. We hypothesized that inducing hypertrophy via synergist ablation would increase the expression of HA and the HA synthases (HAS1-HAS3). We found that HA and HAS1-HAS3 were significantly upregulated within the plantaris muscle in response to Achilles tenectomy. HA concentration significantly increased 2.8-fold after 2 days but decreased towards levels comparable to age-matched controls by 14 days. Using immunohistochemistry, we found the colocalization of HAS1-HAS3 with macrophages, blood vessel epithelia, and fibroblasts varied in response to time and/or tenectomy. At the level of gene expression, only HAS1 and HAS2 significantly increased with respect to both time and tenectomy. The profiles of additional genes that influence ECM composition during muscle repair, tenascin-C, type I collagen, the HA-degrading hyaluronidases (Hyal) and matrix metalloproteinases (MMP) were also investigated. Hyal1 and Hyal2 were highly expressed in skeletal muscle but did not change after tenectomy; however, indicators of hypertrophy, MMP-2 and MMP-14, were significantly upregulated from 2 to 14 days. These results indicate that HA levels dynamically change in response to a hypertrophic stimulus and various cells may participate in this mechanism of skeletal muscle adaptation. 相似文献
6.
Watanabe T Akishita M Nakaoka T He H Miyahara Y Yamashita N Wada Y Aburatani H Yoshizumi M Kozaki K Ouchi Y 《Life sciences》2004,75(10):1219-1229
Estrogen has diverse effects on the vasculature, such as vasodilation, endothelial growth and inhibition of vascular smooth muscle cell (VSMC) proliferation and migration. However, little is known about the genes that are regulated by estrogen in the vascular wall. Wistar rats were ovariectomized or sham-operated (Sham group), and 2 weeks after the operation, were subjected to subcutaneous implantation of placebo pellets (OVX + V group) or estradiol pellets (OVX + E group). Endothelium-denuded aortic tissue was examined 2 weeks after implantation. By applying high-density oligonucleotide microarray analysis, the expression of approximately 7000 genes was analyzed. Among the genes with different expression levels between the OVX + E group and the OVX + V group, those that have been reported to be expressed in the vasculature or muscle tissue, were chosen. Finally, four genes, caveolin-1, two LIM proteins (enigma and SmLIM) and Id3a, were identified. Microarray as well as real-time polymerase chain reaction showed that the expression levels of these genes were significantly higher in the OVX + E group than in the OVX + V group. To clarify whether estrogen directly upregulates these genes in the vascular wall, Northern blot analysis was performed using cultured rat VSMC. Addition of 100 nmol/L estradiol for 24 hours increased the mRNA levels of all four genes. Although the precise mechanism remains unclear, regulation of these genes by estrogen might contribute to its effect on VSMC. 相似文献
7.
Fareed MU Evenson AR Wei W Menconi M Poylin V Petkova V Pignol B Hasselgren PO 《American journal of physiology. Regulatory, integrative and comparative physiology》2006,290(6):R1589-R1597
Muscle wasting in sepsis is a significant clinical problem because it results in muscle weakness and fatigue that may delay ambulation and increase the risk for thromboembolic and pulmonary complications. Treatments aimed at preventing or reducing muscle wasting in sepsis, therefore, may have important clinical implications. Recent studies suggest that sepsis-induced muscle proteolysis may be initiated by calpain-dependent release of myofilaments from the sarcomere, followed by ubiquitination and degradation of the myofilaments by the 26S proteasome. In the present experiments, treatment of rats with one of the calpain inhibitors calpeptin or BN82270 inhibited protein breakdown in muscles from rats made septic by cecal ligation and puncture. The inhibition of protein breakdown was not accompanied by reduced expression of the ubiquitin ligases atrogin-1/MAFbx and MuRF1, suggesting that the ubiquitin-proteasome system is regulated independent of the calpain system in septic muscle. When incubated muscles were treated in vitro with calpain inhibitor, protein breakdown rates and calpain activity were reduced, consistent with a direct effect in skeletal muscle. Additional experiments suggested that the effects of BN82270 on muscle protein breakdown may, in part, reflect inhibited cathepsin L activity, in addition to inhibited calpain activity. When cultured myoblasts were transfected with a plasmid expressing the endogenous calpain inhibitor calpastatin, the increased protein breakdown rates in dexamethasone-treated myoblasts were reduced, supporting a role of calpain activity in atrophying muscle. The present results suggest that treatment with calpain inhibitors may prevent sepsis-induced muscle wasting. 相似文献
8.
Schröder NW Pfeil D Opitz B Michelsen KS Amberger J Zähringer U Göbel UB Schumann RR 《The Journal of biological chemistry》2001,276(13):9713-9719
We have shown previously that phenol/water extracts derived from two novel Treponema species, Treponema maltophilum, and Treponema brennaborense, resembling lipoteichoic acid (LTA), induce cytokines in mononuclear cells. This response was lipopolysaccharide binding-protein (LBP)-dependent and involved Toll-like receptors (TLRs). Here we show that secretion of tumor necrosis factor-alpha induced by Treponema culture supernatants and extracted LTA was paralleled by an LBP-dependent phosphorylation of mitogen-activated protein kinases (MAPKs) p42 and p44, and p38, as well as the stress-activated protein kinases c-Jun N-terminal kinases 1 and 2. Phosphorylation of p42/44 correlated with an increase of activity, and tumor necrosis factor-alpha levels were significantly reduced by addition of inhibitors of p42/44 and p38, PD 98059 and SB 203580, respectively. Treponeme LTA differed from bacterial lipopolysaccharide regarding time course of p42/44 phosphorylation, exhibiting a prolonged activation of MAPKs. Furthermore, MAPK activation and cytokine induction failed to be strictly correlated. Involvement of TLR-4 for phosphorylation of p42/44 was shown employing the neutralizing anti-murine TLR-4 antibody MTS 510. In TLR-2-negative U373 cells, the compounds studied differed regarding MAPK activation with T. maltophilum leading to a stronger activation. In summary, the data presented here show that treponeme LTA are able to activate the MAPK and stress-activated protein kinase pathway involving LBP and TLR-4. 相似文献
9.
《Journal of electromyography and kinesiology》2014,24(2):285-291
The aim of this exploratory study was to verify whether the evaluation of quadriceps muscle weakness is influenced by the testing modality (isometric vs. isokinetic vs. isoinertial) and by the calculation method (within-subject vs. between-subject comparisons) in patients 4–8 months after total knee arthroplasty (TKA, n = 29) and total hip arthroplasty (THA, n = 30), and in healthy controls (n = 19). Maximal quadriceps strength was evaluated as (1) the maximal voluntary contraction (MVC) torque during an isometric contraction, (2) the peak torque during an isokinetic contraction, and (3) the one repetition maximum (1-RM) load during an isoinertial contraction. Muscle weakness was calculated as the difference between the involved and the uninvolved side (within-subject comparison) and as the difference between the involved side of patients and controls (between-subject comparison). Muscle weakness estimates were not significantly affected by the calculation method (within-subject vs. between-subject; P > 0.05), whereas a significant main effect of testing modality (P < 0.05) was observed. Isometric MVC torque provided smaller weakness estimates than isokinetic peak torque (P = 0.06) and isoinertial 1-RM load (P = 0.008), and the clinical occurrence of weakness (proportion of patients with large strength deficits) was also lower for MVC torque. These results have important implications for the evaluation of quadriceps muscle weakness in TKA and THA patients 4–8 months after surgery. 相似文献
10.
Granado M Priego T Martín AI Villanúa MA López-Calderón A 《American journal of physiology. Endocrinology and metabolism》2005,289(6):E1007-E1014
Chronic arthritis is a catabolic state associated with an inhibition of the IGF system and a decrease in body weight. Cachexia and muscular wasting is secondary to protein degradation by the ubiquitin-proteasome pathway. The aim of this work was to analyze the effect of adjuvant-induced arthritis on the muscle-specific ubiquitin ligases muscle ring finger 1 (MuRF1) and muscle atrophy F-box (MAFbx) as well as on IGF-I and IGF-binding protein-5 (IGFBP-5) gene expression in the skeletal muscle. We also studied whether the synthetic ghrelin receptor agonist, growth hormone releasing peptide-2 (GHRP-2), was able to prevent arthritis-induced changes in the skeletal muscle. Arthritis induced an increase in MuRF1, MAFbx (P < 0.01), and tumor necrosis factor (TNF)-alpha mRNA (P < 0.05) in the skeletal muscle. Arthritis decreased the serum IGF-I and its gene expression in the liver (P < 0.01), whereas it increased IGF-I and IGFBP-5 gene expression in the skeletal muscle (P < 0.01). Administration of GHRP-2 for 8 days prevented the arthritis-induced increase in muscular MuRF1, MAFbx, and TNF-alpha gene expression. GHRP-2 treatment increased the serum concentrations of IGF-I and the IGF-I mRNA in the liver and in the cardiac muscle and decreased muscular IGFBP-5 mRNA both in control and in arthritic rats (P < 0.05). GHRP-2 treatment increased muscular IGF-I mRNA in control rats (P < 0.01), but it did not modify the muscular IGF-I gene expression in arthritic rats. These data indicate that arthritis induces an increase in the activity of the ubiquitin-proteasome proteolytic pathway that is prevented by GHRP-2 administration. The parallel changes in muscular IGFBP-5 and TNF-alpha gene expression with the ubiquitin ligases suggest that they can participate in skeletal muscle alterations during chronic arthritis. 相似文献
11.
Borgenvik M Apró W Blomstrand E 《American journal of physiology. Endocrinology and metabolism》2012,302(5):E510-E521
Resistance exercise and amino acids are two major factors that influence muscle protein turnover. Here, we examined the effects of resistance exercise and branched-chain amino acids (BCAA), individually and in combination, on the expression of anabolic and catabolic genes in human skeletal muscle. Seven subjects performed two sessions of unilateral leg press exercise with randomized supplementation with BCAA or flavored water. Biopsies were collected from the vastus lateralis muscle of both the resting and exercising legs before and repeatedly after exercise to determine levels of mRNA, protein phosphorylation, and amino acid concentrations. Intake of BCAA reduced (P < 0.05) MAFbx mRNA by 30 and 50% in the resting and exercising legs, respectively. The level of MuRF-1 mRNA was elevated (P < 0.05) in the exercising leg two- and threefold under the placebo and BCAA conditions, respectively, whereas MuRF-1 total protein increased by 20% (P < 0.05) only in the placebo condition. Phosphorylation of p70(S6k) increased to a larger extent (~2-fold; P < 0.05) in the early recovery period with BCAA supplementation, whereas the expression of genes regulating mTOR activity was not influenced by BCAA. Muscle levels of phenylalanine and tyrosine were reduced (13-17%) throughout recovery (P < 0.05) in the placebo condition and to a greater extent (32-43%; P < 0.05) following BCAA supplementation in both resting and exercising muscle. In conclusion, BCAA ingestion reduced MAFbx mRNA and prevented the exercise-induced increase in MuRF-1 total protein in both resting and exercising leg. Further-more, resistance exercise differently influenced MAFbx and MuRF-1 mRNA expression, suggesting both common and divergent regulation of these two ubiquitin ligases. 相似文献
12.
13.
Zhao W Pan J Zhao Z Wu Y Bauman WA Cardozo CP 《The Journal of steroid biochemistry and molecular biology》2008,110(1-2):125-129
Administration of glucocorticoids in pharmacological amounts results in muscle atrophy due, in part, to accelerated degradation of muscle proteins by the ubiquitin-proteasome pathway. The ubiquitin ligase MAFbx is upregulated during muscle loss including that caused by glucocorticoids and has been implicated in accelerated muscle protein catabolism during such loss. Testosterone has been found to reverse glucocorticoid-induced muscle loss due to prolonged glucocorticoid administration. Here, we tested the possibility that testosterone would block muscle loss, upregulation of MAFbx, and protein catabolism when begun at the time of glucocorticoid administration. Coadministration of testosterone to male rats blocked dexamethasone-induced reduction in gastrocnemius muscle mass and upregulation of MAFbx mRNA levels. Administration of testosterone together with dexamethasone also prevented glucocorticoid-induced upregulation of MAFbx mRNA levels and protein catabolism in C2C12 myotube expressing the androgen receptor. Half-life of MAFbx was not altered by testosterone, dexamethasone or the combination. Testosterone blocked dexamethasone-induced increases in activity of the human MAFbx promotor. The findings indicate that administration testosterone prevents glucocorticoid-induced muscle atrophy and suggest that this results, in part at least, from reductions in muscle protein catabolism and expression of MAFbx. 相似文献
14.
15.
Niisato N Post M Van Driessche W Marunaka Y 《Biochemical and biophysical research communications》1999,266(2):547-550
Osmotic shock is well recognized as one of the factors activating stress-activated protein kinases (SAPKs), p38 MAP kinase and c-Jun N-terminal kinases (JNKs). In renal epithelial A6 cells, hypo-osmotic shock transiently activated SAPKs with maximal activation at 5 min. A6 cells showed a regulatory volume decrease (RVD) after swelling when the cells were exposed to a hypo-osmotic solution. In contrast, activation of SAPKs was maintained over 90 min after hypo-osmotic shock in the presence of 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, a Cl(-) channel blocker), which completely blocked the RVD and kept the cells continuously swelling. Exposure of the cells to a high K(+) iso-osmotic solution containing nystatin, which induces continuous cell swelling, also continuously activated SAPKs. Furthermore, membrane deformation induced by chlorpromazine activated SAPKs. These results suggest that changes in membrane tension by cell swelling or chlorpromazine, but not osmolality, are important steps for activation of SAPKs in A6 cells. 相似文献
16.
Anticancer therapy is frequently efficient in early stages of the disease, whereas advanced tumors are usually resistant to the same treatments. The molecular basis for this change is not entirely understood. Many anticancer agents are DNA- or cytoskeleton-damaging drugs that show some specificity towards dividing cells. However, recent studies show that these agents also activate stress-signaling cascades that may play a role in eliciting the observed therapeutic effects. We discuss recent findings that suggest that induction of stress signaling in oncogenically transformed cells is integrated into apoptotic pathways. Reactive oxygen species (ROS) and stress-activated protein kinases (SAPKs), which are potentiated in recently transformed cells, emerge as key effectors of cell death. In advanced tumors, however, these agents are downregulated and, consequently, death signaling is suppressed. Such changes in ROS and SAPK activity levels during the course of tumor development may underlie the changes in responsiveness to anticancer therapy. 相似文献
17.
Petersen AM Magkos F Atherton P Selby A Smith K Rennie MJ Pedersen BK Mittendorfer B 《American journal of physiology. Endocrinology and metabolism》2007,293(3):E843-E848
Smoking causes multiple organ dysfunction. The effect of smoking on skeletal muscle protein metabolism is unknown. We hypothesized that the rate of skeletal muscle protein synthesis is depressed in smokers compared with non-smokers. We studied eight smokers (> or =20 cigarettes/day for > or =20 years) and eight non-smokers matched for sex (4 men and 4 women per group), age (65 +/- 3 and 63 +/- 3 yr, respectively; means +/- SEM) and body mass index (25.9 +/- 0.9 and 25.1 +/- 1.2 kg/m(2), respectively). Each subject underwent an intravenous infusion of stable isotope-labeled leucine in conjunction with blood and muscle tissue sampling to measure the mixed muscle protein fractional synthesis rate (FSR) and whole body leucine rate of appearance (Ra) in plasma (an index of whole body proteolysis), the expression of genes involved in the regulation of muscle mass (myostatin, a muscle growth inhibitor, and MAFBx and MuRF-1, which encode E3 ubiquitin ligases in the proteasome proteolytic pathway) and that for the inflammatory cytokine TNF-alpha in muscle, and the concentration of inflammatory markers in plasma (C-reactive protein, TNF-alpha, interleukin-6) which are associated with muscle wasting in other conditions. There were no differences between nonsmokers and smokers in plasma leucine concentration, leucine rate of appearance, and plasma concentrations of inflammatory markers, or TNF-alpha mRNA in muscle, but muscle protein FSR was much less (0.037 +/- 0.005 vs. 0.059 +/- 0.005%/h, respectively, P = 0.004), and myostatin and MAFBx (but not MuRF-1) expression were much greater (by approximately 33 and 45%, respectivley, P < 0.05) in the muscle of smokers than of nonsmokers. We conclude that smoking impairs the muscle protein synthesis process and increases the expression of genes associated with impaired muscle maintenance; smoking therefore likely increases the risk of sarcopenia. 相似文献
18.
S M Keyse 《Free radical research》1999,31(4):341-349
It is now established that a family of dual-specificity protein phosphatases are able to interact with mitogen and stress-activated protein kinases in a highly specific manner to differentially regulate these enzymes in mammalian cells. A role for these proteins in negative feedback regulation of MAP kinase activity is also supported by genetic and biochemical studies in yeasts and Drosophila. More recently it has become clear that other classes of protein phosphatase also play key roles in the regulated dephosphorylation of MAP kinases, including tyrosine-specific protein phosphatases and serine/threonine protein phosphatases. It is likely that a complex balance between upstream activators and these different classes of MAP kinase specific phosphatase are responsible for determining, at least in part, the magnitude and duration of MAP kinase activation and hence the physiological outcome of signalling. 相似文献
19.
The aim of this study was to investigate the prevalence of abnormal knee biomechanical patterns in 40 patients with a modern TKA prosthesis, compared to 40 matched control participants when ascending and descending stairs. Fewer patients were able to ascend (65%) or descend stairs (53%) unassisted than controls (83%). Of the participants who could ascend and descend, cluster analysis classified most patients (up to 77%) as demonstrating a similar knee moment pattern as all controls. A small subgroup of patients who completed the tasks did so with distinctly abnormal biomechanics compared to other patients and controls. These findings suggest that recovery of normal stair climbing is possible. However, rehabilitation might be more effective if it were tailored to account for these differences between patients. 相似文献
20.
Shenhav Cohen Jeffrey J. Brault Steven P. Gygi David J. Glass David M. Valenzuela Carlos Gartner Esther Latres Alfred L. Goldberg 《The Journal of cell biology》2009,185(6):1083-1095
Loss of myofibrillar proteins is a hallmark of atrophying muscle. Expression of muscle RING-finger 1 (MuRF1), a ubiquitin ligase, is markedly induced during atrophy, and MuRF1 deletion attenuates muscle wasting. We generated mice expressing a Ring-deletion mutant MuRF1, which binds but cannot ubiquitylate substrates. Mass spectrometry of the bound proteins in denervated muscle identified many myofibrillar components. Upon denervation or fasting, atrophying muscles show a loss of myosin-binding protein C (MyBP-C) and myosin light chains 1 and 2 (MyLC1 and MyLC2) from the myofibril, before any measurable decrease in myosin heavy chain (MyHC). Their selective loss requires MuRF1. MyHC is protected from ubiquitylation in myofibrils by associated proteins, but eventually undergoes MuRF1-dependent degradation. In contrast, MuRF1 ubiquitylates MyBP-C, MyLC1, and MyLC2, even in myofibrils. Because these proteins stabilize the thick filament, their selective ubiquitylation may facilitate thick filament disassembly. However, the thin filament components decreased by a mechanism not requiring MuRF1. 相似文献