共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryptic sex has been argued to explain the exceptional longevity of certain parthenogenetic vertebrate lineages, yet direct measurements of genetic exchange between sexual and apparently parthenogenetic forms are rare. Female unisexual mole salamanders (Ambystoma sp.) are the oldest known unisexual vertebrate lineage (~5 million years), and one hypothesis for their persistence is that allopolyploid female unisexuals periodically exchange haploid genomes ‘genome exchange’ during gynogenetic reproduction with males from sympatric sexual species. We test this hypothesis by using genome‐specific microsatellite DNA markers to estimate the rates of genome exchange between sexual males and unisexual females in two ponds in NE Ohio. We also test the prediction that levels of gene flow should be higher for ‘sympatric’ (sexual males present) genomes in unisexuals compared to ‘allopatric’ (sexual males absent) unisexual genomes. We used a model testing framework in the coalescent‐based program MIGRATE‐N to compare models where unidirectional gene flow is present and absent between sexual species and unisexuals. As predicted, our results show higher levels of gene flow between sexuals and sympatric unisexual genomes compared to lower (likely artefactual) levels of gene flow between sexuals and allopatric unisexual genomes. Our results provide direct evidence that genome exchange between sexual and unisexual Ambystoma occurs and demonstrate that the magnitude depends on which sexual species are present. The relatively high levels of gene flow suggest that unisexuals must be at a selective advantage over sexual forms so as to avoid extinction due to genetic swamping through genome exchange. 相似文献
2.
Although most vertebrates reproduce sexually, a small number of fishes, amphibians and reptiles are known in which reproduction is asexual, i.e. without meiotic recombination. In fishes, these so-called unisexual lineages usually comprise only females and utilize co-occurring males of a related sexual species to reproduce via gynogenesis or hybridogenesis. Here, we examine patterns of microsatellite and mitochondrial DNA (mtDNA) variation in a widespread group of freshwater fishes (carp gudgeons; Hypseleotris spp.) to investigate a long-standing proposal that this group includes unisexual forms. We show that the mtDNA genome of most carp gudgeons in tributaries of the Goulburn River belongs to one of two deeply divided clades (~10% cyt b divergence) and that nuclear variation divides the same individuals into four distinct groups. Group 1 exhibits the genotypic proportions of a random mating population and has a 1:1 sex ratio. Two other groups are extremely sex-biased (98% male, 96% female), exhibit excess heterozygosity at most loci and share at least one allele per locus with group 1. We propose that these two groups represent 'unisexual' hybridogenetic lineages and that both utilize co-occurring group 1 as sexual host. Interestingly, the fourth distinct group appears to represent hybrid offspring of the two putative hybridogenetic lineages. The propagation of clonal haploid genomes by both males and females and the ability of these clones to unite and form sexually mature diploid hybrid offspring may represent a novel mechanism that contributes to the dynamics of coexistence between hybridogenetic lineages and their sexual hosts. 相似文献
3.
Doeringsfeld MR Schlosser IJ Elder JF Evenson DP 《Evolution; international journal of organic evolution》2004,58(6):1261-1273
We examined the genetic composition, habitat use, and morphological variation of a Phoxinus eos-neogaeus unisexual hybrid complex and its sexually reproducing progenitor species inhabiting beaver-modified drainages of Voyageurs National Park, Minnesota. In addition to the single diploid P. eos-neogaeus gynogenetic clone, triploid and diploid-triploid mosaic biotypes were present at our study sites. Both P. eos and P. neogaeus, and all three hybrid biotypes were ubiquitous throughout one intensively surveyed drainage, but abundances and relative frequencies of the parental species and hybrids varied considerably within and among successional environments. Data from a large number of additional sites indicated that the proportion of polyploid hybrids within an environment was negatively related to hybrid relative frequency, implying that the genomic constitution of hybrids is an important determinant of clonal fitness among successional environments. Statistical comparisons of variation along size-free multivariate body shape axes indicated that despite its genetic uniformity, the P. eos-neogaeus clone is no less variable than its sexual progenitors, suggesting that a single genotype may actually respond to environmental variation with as much phenotypic variation as a genetically variable sexual population. The incorporation and expression of a third genome in triploid and diploid-triploid mosaic biotypes derived from the gynogenetic clone significantly expanded phenotypic variation of the clone. This additional variation results in greater similarities in habitat use and morphological overlap with the parental species, primarily P. eos, the predominant sperm donor for gynogenetic hybrid females in this complex. Polyploid augmentation of a diploid gynogenetic clone appears to be typical in the P. eos-neogaeus complex, and the additional genetic and phenotypic variation that it generates has potentially significant ecological and evolutionary consequences for the success and persistence of a single genotype in highly variable environments. 相似文献
4.
Christina Spolsky Christopher A. Phillips Thomas Uzzell 《Evolution; international journal of organic evolution》1992,46(6):1935-1944
Ambystoma platineum, a unisexual clonal triploid taxon of mole salamander, originated by hybridization between the Mendelian species A. jeffersonianum and A. laterale. Studies of lampbrush chromosomes indicated that A. platineum reproduces gynogenetically, that is, sperm from a sexual host species is required to activate egg development but makes no genetic contribution to the developing embryo. Nevertheless, electrophoretic diversity in populations of some hybrid Ambystoma suggested continual in situ recreation of unisexual hybrids and bidirectional gene exchange between the parental species and the hybrids. A. platineum usually lives with, and is sexually dependent on, one of its parental species, A. jeffersonianum. In central Indiana, however, A. platineum populations have shifted their host dependency to A. texanum. Such A. texanum-dependent populations of A. platineum provide an almost ideal system for studying reproductive mode in A. platineum, because both replacement of a jeffersonianum or laterale genome of A. platineum by a texanum genome, and movement of genes from A. platineum to the host species, A. texanum, would be readily detected by electrophoretic markers. Our samples of A. texanum provided no evidence for the transfer of jeffersonianum or laterale genes into A. texanum. Similarly, among 32 A. platineum sampled from six localities in east-central Illinois and central Indiana, we find no texanum alleles, and thus no evidence for genome replacement. The one diploid hybrid individual contained only a jeffersonianum and a laterale genome; because of the absence of either parental species from these populations, this hybrid could only have come from a diploid ovum produced by A. platineum. Both morphometric and electrophoretic results for the two tetraploid individuals indicate that they resulted from fertilization of triploid oocytes of A. platineum by sperm of A. texanum. Because genome replacement in A. texanum-dependent populations of A. platineum is irreversible, the persistence of A. platineum in A. texanum-dependent populations demonstrates conclusively that the major mode of reproduction in A. platineum populations is clonal: A. platineum produces mainly triploid eggs that develop gynogenetically. 相似文献
5.
Cytological changes and subsequent mitotic processes were studied in gynogenetically activated eggs of olive flounder subjected
to cold-shock treatment using indirect immunofluorescence staining of isolated blastodisks. Obvious differences between controls
and treated eggs were detected during early cell division. The developmental process of haploid control was similar to that
of the diploid control except several minutes delayed. Spindles disassembled by the cold-shock treatment regenerated soon
after treatment, resulting in the occurrence of the first mitosis. The immature daughter centriole was easily depolymerized
by cold-shock treatment, leading to the formation of the bipolar spindle in the first cell cycle and the formation of the
monopolar spindle in the second cell cycle, resulting in chromosome set doubling. Some two-cell stage eggs had a monopolar
spindle in one blastomere and a bipolar spindle in another during the second mitosis. These eggs had a high potency developing
into haploid-diploid mosaics. To the best of our knowledge, this study is the first to clarify the mechanism of chromosome
set doubling in marine fishes and provides a preliminary cytological basis for developing a reliable and efficient protocol
for mitotic gynogenesis induction by cold-shock treatment in olive flounder. 相似文献
6.
Robert C. Vrijenhoek Edward Pfeiler 《Evolution; international journal of organic evolution》1997,51(5):1593-1600
According to the Frozen Niche-Variation model, coexisting clones of an asexual species can freeze and faithfully replicate ecologically relevant genetic variability that segregates in the sexual ancestors. The present experiments with fish of the genus Poeciliopsis provide further evidence in support of this model. Sexual and clonal forms of Poeciliopsis live in the desert streams of Sonora, Mexico, and are exposed to environmental extremes ranging from flash floods to hot, desiccating, residual pools. We examined coexisting members of the monacha complex to see whether the fish types differed with respect to survival during stress and swimming endurance in an artificial flume. The two coexisting clones of the triploid gynogenetic fish P. 2 monacha–lucida differed dramatically: clone MML/II had the best survival during heat and cold stress and the worst survival during hypoxic stress, whereas clone MML/I had the best survival during hypoxic stress and the worst during heat stress. Poeciliopsis monacha, the sexual species with which these clones coexist, had intermediate survival during heat and hypoxic stress and very poor swimming endurance in the flume. The physiological differences seen in this study are consistent with the Frozen Niche-Variation model and provide some insights into environmental factors that affect the distribution and abundance of these fish. 相似文献
7.
8.
禾本科植物无融合生殖(综述) 总被引:7,自引:2,他引:5
禾本科植物包含了世界上最重要的农作物,也包含了最多的无融合生殖的种类,通过无融合生殖可将农作物的F1代杂种优势固定下来,这在固定农作物杂种优势的利用上具有巨大的潜力,然而禾本科植物无融合生殖作为其繁殖多样性的一种形式,在系统进化过程中的作用是非常复杂的,本文统计了禾本科无融合生殖的分布,概述了其无融合生殖的细胞学,遗传学和分子生物学研究进展。 相似文献
9.
Anna I. Grabowska Alicja Boroń Lech Kirtiklis Aneta Spóz Dorota Juchno Jan Kotusz 《Journal of fish biology》2020,96(1):261-273
This study was conducted to describe the major and the minor rDNA chromosome distribution in the spined loach Cobitis taenia (2n = 48) and the Danubian loach Cobitis elongatoides (2n = 50), and their laboratory-produced diploid reciprocal F1 hybrid progeny. It was tested by fluorescence in situ hybridisation (FISH) whether the number of 28s and 5s rDNA sites in the karyotypes of diploid hybrids corresponds to the expectations resulting from Mendelian ratio and if nucleolar organiser regions (NOR)were inherited from both parents or nucleolar dominance can be observed in the induced F1 hybrid progeny. Ten (females) or twelve (males) 28s rDNA loci were located in nine uniarm chromosomes of C. taenia. Two of such loci terminally bounded on one acrocentric chromosome were unique and indicated as specific for this species. Large 5s rDNA clusters were located on two acrocentric chromosomes. In C. elongatoides of both sexes, six NOR sites in terminal regions on six meta-submetacentric chromosomes and two 5s rDNA sites on large submetacentrics were detected. The F1 hybrid progeny (2n = 49) was characterised by the intermediate karyotype with the sites of ribosome synthesis on chromosomes inherited from both parents without showing nucleolar dominance. 5s rDNA sites were detected on large submetacentric and two acrocentric chromosomes. The observed number of both 28s and 5s rDNAs signals in F1 diploid Cobitis hybrids was disproportionally inherited from the two parental species, showing inconsistency with the Mendelian ratios. The presented rDNA patterns indicate some marker chromosomes that allow the species of the parental male and female to be recognised in hybrid progeny. The 5s rDNA was found to be a particularly effective diagnostic marker of C. elongatoides to partially discern genomic composition of diploid Cobitis hybrids and presumably allopolyploids resulting from their backcrossing with one of the parental species. Thus, the current study provides insight into the extent of rDNA heredity in Cobitis chromosomes and their cytotaxonomic character. 相似文献
10.
Hybridization between recently diverged species, even if infrequent, can lead to the introgression of genes from one species into another. The rates of mitochondrial and nuclear introgression often differ, with some taxa showing biases for mitochondrial introgression and others for nuclear introgression. Several hypotheses exist to explain such biases, including adaptive introgression, sex differences in dispersal rates, sex‐specific prezygotic isolation and sex‐specific fitness of hybrids (e.g. Haldane's rule). We derive a simple population genetic model that permits an analysis of sex‐specific demographic and fitness parameters and measures the relative rates of mitochondrial and nuclear introgression between hybridizing pairs. We do this separately for diploid and haplodiploid species. For diploid taxa, we recover results consistent with previous hypotheses: an excess of one sex among the hybridizing migrants or sex‐specific prezygotic isolation causes a bias for one type of marker or the other; when Haldane's rule is obeyed, we find a mitochondrial bias in XY systems and a nuclear bias in ZW systems. For haplodiploid taxa, the model reveals that owing to their unique transmission genetics, they are seemingly assured of strong mitochondrial biases in introgression rates, unlike diploid taxa, where the relative fitness of male and female hybrids can tip the bias in either direction. This heretofore overlooked aspect of hybridization in haplodiploids provides what is perhaps the most likely explanation for differential introgression of mitochondrial and nuclear markers and raises concerns about the use of mitochondrial DNA barcodes for species delimitation in these taxa. 相似文献
11.
DNA damage response is required for male fertility. DNA damage repair mediates recombination between homologous chromosomes in meiotic prophase, which is essential for proper chromosome segregation during meiotic division. Interestingly, some DNA damage response proteins are also required for the survival of premeiotic germ cells, but their roles in these cells are still unclear. CHFR was recently shown to participate in DNA damage response, but it remains to be established if CHFR is required for male fertility. In this study, we characterized Chfr knockout male mice and found that around 30% of them were infertile. The onset of spermatogenesis was delayed and there was significant increase in apoptosis in premeiotic germ cells. This resulted in complete loss of germ cells in testes in 3 months and azoospermia in these mice. We further demonstrated that ATM activation was compromised in the testes of these mice. Therefore, CHFR is important for the survival of male premeiotic germ cells, which is likely through maintaining genomic stability in spermatogonial stem cells. 相似文献
12.
K. Janko † M. Flajhans ‡ L. Choleva § J. Bohlen V. lechtová M. Rábová Z. Lajbner § V. lechta P. Ivanova I. Dobrovolov M. Culling ¶ H. Persat # J. Kotusz P. Ráb ‡ 《Journal of fish biology》2007,71(SC):387-408
Although the unique features of asexual reproduction and hybridization among European spined loaches (genus Cobitis ) have recently attracted the attention of conservation biologists, faunists and evolutionary biologists, the research has suffered from uncertain identification of specimens and their genomes because of the extreme morphological similarity of all the species within the hybrid complex. In this article, a Europe-wide study is reported, which was performed on samples collected by several research teams. Several complementary methodologies, such as allozyme analysis, karyotyping, flow cytometry and DNA sequencing allowed us to confirm or reject the existence of all previously reported species and their hybrids as well as to uncover several new hybrid biotypes. The biogeography of all the known biotypes, that is, parental species and hybrid biotypes, has been summarized here and the taxonomic position of two undescribed putative species mentioned in previous publications has been established. New polymerase chain reaction restriction fragment length polymorphism markers for species determination have further been developed and applied, which would allow the unambiguous identification of parental species and their genomes in the known hybrid biotypes within the complex. 相似文献
13.
14.
Mutations do not always arise as single events. Many new mutations actually occur in the cell lineage before germ cell formation
or meiosis and are therefore replicated premeiotically. The increased likelihood of substitutions caused by these clusters
of new mutant alleles can change the fundamental theorem of neutral evolution. 相似文献
15.
开花植物具有多样性的生殖系统,其中单性花的形成是促进异交、避免自交衰退、保持遗传多样性的重要途径。单性花物种分布于被子植物不同进化分支上的事实表明,物种的雌雄异花性可能是通过不同的机制进化形成的。本文从花发育、性染色体、植物激素和环境因素四个方面,阐述了被子植物性别分化调控机制的研究进展。 相似文献
16.
17.
18.
TANJA PFEIFFER DAVID E.V. HARTER NOREEN FORMELLA MARTIN SCHNITTLER 《Plant Species Biology》2013,28(3):193-203
Mecklenburg‐Western Pomerania is the main range of two hybridogeneous Gagea taxa, G. megapolitana Henker and G. pomeranica Ruthe, which have the same two parental species, G. lutea (L.) Ker. Gawl. and G. pratensis (Pers.) Dumort. We assessed the degree of reproductive isolation vs. interbreeding between these taxa using data from field observations, crossing experiments and pollen characteristics for nine hybrid, four G. lutea and five G. pratensis populations. Pollen viability was highest in 6x G. lutea and lowest in G. pratensis (most probably 5x), with intermediate figures for the studied hybrids (5x–7x). Despite the assumed anorthoploid states, sexual reproduction (though sometimes very rare) was recorded for all populations in the field and/or in experiments. The crossing experiments revealed that all taxa are also able to hybridize. However, there were differences in the directions (i.e. role as maternal vs. paternal parent) as well as the success of the crossings: the primary hybridization G. lutea x G. pratensis resulted in more seeds than the reverse combination (17.5 vs. 3.3%), but the seed set was highest in backcrosses of the hybrids with G. lutea pollen (41.2%). These differences can be explained by overlap of flowering times, and reduced fertilities due to ploidy levels. The study showed that the taxa of the G. lutea‐pratensis hybrid complex are not yet reproductively isolated but can interbreed and will generate hybrids of higher ranks, forming a hybrid swarm, most probably leading to introgression via backcrosses with G. lutea. 相似文献
19.
Cryptococcus neoformans is a human fungal pathogen that undergoes a dimorphic transition from yeast to hyphae during a-α opposite-sex mating and α-α unisexual reproduction (same-sex mating). Infectious spores are generated during both processes. We previously identified a sex-induced silencing (SIS) pathway in the C. neoformans serotype A var. grubii lineage, in which tandem transgene arrays trigger RNAi-dependent gene silencing at a high frequency during a-α opposite-sex mating, but at an ∼250-fold lower frequency during asexual mitotic vegetative growth. Here we report that SIS also operates during α-α unisexual reproduction. A self-fertile strain containing either SXI2a-URA5 or NEO-URA5 transgene arrays exhibited an elevated silencing frequency during solo and unisexual mating compared with mitotic vegetative growth. We also found that SIS operates at a similar efficiency on transgene arrays of the same copy number during either α-α unisexual reproduction or a-α opposite-sex mating. URA5-derived small RNAs were detected in the silenced progeny of α-α unisexual reproduction and RNAi core components were required, providing evidence that SIS induced by same-sex mating is also mediated by RNAi via sequence-specific small RNAs. In addition, our data show that the SIS RNAi pathway also operates to defend the genome via squelching transposon activity during same-sex mating as it does during opposite-sex mating. Taken together, our results confirm that SIS is conserved between the divergent C. neoformans serotype A and serotype D cryptic sibling species. 相似文献
20.
J. Bohlen 《Journal of fish biology》1999,55(1):189-198
Spined loach Cobitis taenia developed successfully between 0·12 and 4·80‰ salinity. At 6·00‰, net production was strongly reduced, and development failed at or above 7·20‰. Below 0·12‰ S, net production became variable, indicating restrictive effects. In comparison with other primary freshwater fish species C. taenia has a low sensitivity to salinity. The upper limit for early development was equal to the highest salinity under which C. taenia adults are found along the Baltic coast. Therefore, salinity should not limit early development within the brackish habitats of spined loach. 相似文献