首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tait J 《EMBO reports》2012,13(7):579-579
As resistance to synthetic biology slowly coalesces, governments and scientists need to be proactive to avoid a repetition of the near moratorium on genetically modified crops in Europe.Synthetic biology has the potential to revolutionize the development of drugs, vaccines, biofuels and food crops, and to clean up environmental pollution, but the field is relatively young. It is too early to tell how it will deliver new fundamental understandings in the life sciences, how this understanding will create opportunities for innovation to satisfy human needs and the extent to which its applications might generate hazards to people or the environment.Synthetic biology is now being linked by NGOs to genetically modified (GM)crop development with potentially similar results for its future development [1]. An NGO advocacy coalition has published a report on synthetic biology that echoes the arguments made against GM crops in the late 1990s [2] with the intention to “… reign [sic] in these new technologies”, with an ideologically based framing of the technology as inherently hazardous, based on negative conjectures with little relationship to actual evidence.The prospect of another polarized public debate had already convinced policy-makers and scientists to pay early attention to the governance of synthetic biology.Reports from the US Presidential Commission for the Study of Bioethical Issues (PCSBI) and from the International Risk Governance Council (IRGC) [3,4] have attempted to develop principles of good governance that could be applied to synthetic biology, given the uncertainty about the nature of future developments. The reports recommend that policy-makers should aim for a governance approach that can adapt to changing innovation opportunities emerging from new scientific discoveries; encourage and promote innovation; minimize risk to humans and the environment; and balance the interests and values of all relevant stakeholders. The reports reject calls for a moratorium on synthetic biology until all risks are identified and mitigated, but also reject unfettered freedom for scientific investigation. The governance of synthetic biology should achieve an equitable balance between promoting innovation and imposing constraints to ensure safety. Dialogue with stakeholders should be conducted in a manner that welcomes the respectful exchange of opposing views and encourages mutual accommodation of differing opinions. Dialogues should contribute to decisions being taken on the basis of the best available evidence. Considering potential dual-use risks of synthetic biology, both reports note that undue restriction might be counterproductive to safety and security, by preventing the development of effective safeguards against, for example, terrorist threats.These principles of good governance are part of a long-term political and policy experiment that claims to use a lighter touch and be less top-down [5], but in effect has extended the regulatory process into areas that used to be left to market forces. It claims to be more democratic by involving a wider range of stakeholders in the decision-making process, but in effect has merely led to a shift in power away from industry and commerce towards advocacy groups with equally limited claims to represent ‘society''. The impact of implementing this governance agenda on innovation has so far been more marked and damaging in Europe than in the USA, but the recent criticism by Friends of the Earth and other advocacy groups might signal a change of emphasis and put the balanced approach to the governance of synthetic biology, that has so far been achieved, at risk.Indeed, the availability and quality of the scientific evidence used to support policy advice and decision-making, has been a major casualty of the new governance approach as applied in the EU to GM crops—as evidenced by the destruction of GM crop trials designed to evaluate the safety and efficacy of these crops. The role of neutral, impartial evidence in political decision-making has been diminished in favour of evidence that suits the agendas of particular advocacy groups. Politicians themselves helped to create this situation by shying away from making difficult, unpopular decisions on the basis of hard evidence, in favour of trying to accommodate all opinions, including ideologically driven agendas. Arthur Miller describes the sense of liberation experienced when eschewing the role of evidence in decision-making: “It was as though the absence of real evidence was a release from the burdens of this world; [….] Evidence, in contrast, is effort; leaping to conclusions is a wonderful pleasure…” [6].There is a need to reappraise both the role of scientific evidence in informing policy and political decision-making on new biotechnologies, and the legitimate context in which to accomodate value-based opinions as represented by NGOs.  相似文献   

3.
Zhang JY 《EMBO reports》2011,12(4):302-306
How can grass-roots movements evolve into a national research strategy? The bottom-up emergence of synthetic biology in China could give some pointers.Given its potential to aid developments in renewable energy, biosensors, sustainable chemical industries, microbial drug factories and biomedical devices, synthetic biology has enormous implications for economic development. Many countries are therefore implementing strategies to promote progress in this field. Most notably, the USA is considered to be the leader in exploring the industrial potential of synthetic biology (Rodemeyer, 2009). Synthetic biology in Europe has benefited from several cross-border studies, such as the ‘New and Emerging Science and Technology'' programme (NEST, 2005) and the ‘Towards a European Strategy for Synthetic Biology'' project (TESSY; Gaisser et al, 2008). Yet, little is known in the West about Asia''s role in this ‘new industrial revolution'' (Kitney, 2009). In particular, China is investing heavily in scientific research for future developments, and is therefore likely to have an important role in the development of synthetic biology.Initial findings seem to indicate that the emergence of synthetic biology in China has been a bottom-up construction of a new scientific framework…In 2010, as part of a study of the international governance of synthetic biology, the author visited four leading research teams in three Chinese cities (Beijing, Tianjin and Hefei). The main aims of the visits were to understand perspectives in China on synthetic biology, to identify core themes among its scientific community, and to address questions such as ‘how did synthetic biology emerge in China?'', ‘what are the current funding conditions?'', ‘how is synthetic biology generally perceived?'' and ‘how is it regulated?''. Initial findings seem to indicate that the emergence of synthetic biology in China has been a bottom-up construction of a new scientific framework; one that is more dynamic and comprises more options than existing national or international research and development (R&D) strategies. Such findings might contribute to Western knowledge of Chinese R&D, but could also expose European and US policy-makers to alternative forms and patterns of research governance that have emerged from a grass-roots level.…the process of developing a framework is at least as important to research governance as the big question it might eventually addressA dominant narrative among the scientists interviewed is the prospect of a ‘big-question'' strategy to promote synthetic-biology research in China. This framework is at a consultation stage and key questions are still being discussed. Yet, fieldwork indicates that the process of developing a framework is at least as important to research governance as the big question it might eventually address. According to several interviewees, this approach aims to organize dispersed national R&D resources into one grand project that is essential to the technical development of the field, preferably focusing on an industry-related theme that is economically appealling to the Chinese public.Chinese scientists have a pragmatic vision for research; thinking of science in terms of its ‘instrumentality'' has long been regarded as characteristic of modern China (Schneider, 2003). However, for a country in which the scientific community is sometimes described as an “uncoordinated ‘bunch of loose ends''” (Cyranoski, 2001) “with limited synergies between them” (OECD, 2007), the envisaged big-question approach implies profound structural and organizational changes. Structurally, the approach proposes that the foundational (industry-related) research questions branch out into various streams of supporting research and more specific short-term research topics. Within such a framework, a variety of Chinese universities and research institutions can be recruited and coordinated at different levels towards solving the big question.It is important to note that although this big-question strategy is at a consultation stage and supervised by the Ministry of Science and Technology (MOST), the idea itself has emerged in a bottom-up manner. One academic who is involved in the ongoing ministerial consultation recounted that, “It [the big-question approach] was initially conversations among we scientists over the past couple of years. We saw this as an alternative way to keep up with international development and possibly lead to some scientific breakthrough. But we are happy to see that the Ministry is excited and wants to support such an idea as well.” As many technicalities remain to be addressed, there is no clear time-frame yet for when the project will be launched. Yet, this nationwide cooperation among scientists with an emerging commitment from MOST seems to be largely welcomed by researchers. Some interviewees described the excitement it generated among the Chinese scientific community as comparable with the establishment of “a new ‘moon-landing'' project”.Of greater significance than the time-frame is the development process that led to this proposition. On the one hand, the emergence of synthetic biology in China has a cosmopolitan feel: cross-border initiatives such as international student competitions, transnational funding opportunities and social debates in Western countries—for instance, about biosafety—all have an important role. On the other hand, the development of synthetic biology in China has some national particularities. Factors including geographical proximity, language, collegial familiarity and shared interests in economic development have all attracted Chinese scientists to the national strategy, to keep up with their international peers. Thus, to some extent, the development of synthetic biology in China is an advance not only in the material synthesis of the ‘cosmos''—the physical world—but also in the social synthesis of aligning national R&D resources and actors with the global scientific community.To comprehend how Chinese scientists have used national particularities and global research trends as mutually constructive influences, and to identify the implications of this for governance, this essay examines the emergence of synthetic biology in China from three perspectives: its initial activities, the evolution of funding opportunities, and the ongoing debates about research governance.China''s involvement in synthetic biology was largely promoted by the participation of students in the International Genetically Engineered Machine (iGEM) competition, an international contest for undergraduates initiated by the Massachusetts Institute of Technology (MIT) in the USA. Before the iGEM training workshop that was hosted by Tianjin University in the Spring of 2007, there were no research records and only two literature reviews on synthetic biology in Chinese scientific databases (Zhao & Wang, 2007). According to Chunting Zhang of Tianjin University—a leading figure in the promotion of synthetic biology in China—it was during these workshops that Chinese research institutions joined their efforts for the first time (Zhang, 2008). From the outset, the organization of the workshop had a national focus, while it engaged with international networks. Synthetic biologists, including Drew Endy from MIT and Christina Smolke from Stanford University, USA, were invited. Later that year, another training camp designed for iGEM tutors was organized in Tianjin and included delegates from Australia and Japan (Zhang, 2008).Through years of organizing iGEM-related conferences and workshops, Chinese universities have strengthened their presence at this international competition; in 2007, four teams from China participated. During the 2010 competition, 11 teams from nine universities in six provinces/municipalities took part. Meanwhile, recruiting, training and supervising iGEM teams has become an important institutional programme at an increasing number of universities.…training for iGEM has grown beyond winning the student awards and become a key component of exchanges between Chinese researchers and the international communityIt might be easy to interpret the enthusiasm for the iGEM as a passion for winning gold medals, as is conventionally the case with other international scientific competitions. This could be one motive for participating. Yet, training for iGEM has grown beyond winning the student awards and has become a key component of exchanges between Chinese researchers and the international community (Ding, 2010). Many of the Chinese scientists interviewed recounted the way in which their initial involvement in synthetic biology overlapped with their tutoring of iGEM teams. One associate professor at Tianjin University, who wrote the first undergraduate textbook on synthetic biology in China, half-jokingly said, “I mainly learnt [synthetic biology] through tutoring new iGEM teams every year.”Participation in such contests has not only helped to popularize synthetic biology in China, but has also influenced local research culture. One example of this is that the iGEM competition uses standard biological parts (BioBricks), and new BioBricks are submitted to an open registry for future sharing. A corresponding celebration of open-source can also be traced to within the Chinese synthetic-biology community. In contrast to the conventional perception that the Chinese scientific sector consists of a “very large number of ‘innovative islands''” (OECD, 2007; Zhang, 2010), communication between domestic teams is quite active. In addition to the formally organized national training camps and conferences, students themselves organize a nationwide, student-only workshop at which to informally test their ideas.More interestingly, when the author asked one team whether there are any plans to set up a ‘national bank'' for hosting designs from Chinese iGEM teams, in order to benefit domestic teams, both the tutor and team members thought this proposal a bit “strange”. The team leader responded, “But why? There is no need. With BioBricks, we can get any parts we want quite easily. Plus, it directly connects us with all the data produced by iGEM teams around the world, let alone in China. A national bank would just be a small-scale duplicate.”From the beginning, interest in the development of synthetic biology in China has been focused on collective efforts within and across national borders. In contrast to conventional critiques on the Chinese scientific community''s “inclination toward competition and secrecy, rather than openness” (Solo & Pressberg, 2007; OECD, 2007; Zhang, 2010), there seems to be a new outlook emerging from the participation of Chinese universities in the iGEM contest. Of course, that is not to say that the BioBricks model is without problems (Rai & Boyle, 2007), or to exclude inputs from other institutional channels. Yet, continuous grass-roots exchanges, such as the undergraduate-level competition, might be as instrumental as formal protocols in shaping research culture. The indifference of Chinese scientists to a ‘national bank'' seems to suggest that the distinction between the ‘national'' and ‘international'' scientific communities has become blurred, if not insignificant.However, frequent cross-institutional exchanges and the domestic organization of iGEM workshops seem to have nurtured the development of a national synthetic-biology community in China, in which grass-roots scientists are comfortable relying on institutions with a cosmopolitan character—such as the BioBricks Foundation—to facilitate local research. To some extent, one could argue that in the eyes of Chinese scientists, national and international resources are one accessible global pool. This grass-roots interest in incorporating local and global advantages is not limited to student training and education, but also exhibited in evolving funding and regulatory debates.In the development of research funding for synthetic biology, a similar bottom-up consolidation of national and global resources can also be observed. As noted earlier, synthetic-biology research in China is in its infancy. A popular view is that China has the potential to lead this field, as it has strong support from related disciplines. In terms of genome sequencing, DNA synthesis, genetic engineering, systems biology and bioinformatics, China is “almost at the same level as developed countries” (Pan, 2008), but synthetic-biology research has only been carried out “sporadically” (Pan, 2008; Huang, 2009). There are few nationally funded projects and there is no discernible industrial involvement (Yang, 2010). Most existing synthetic-biology research is led by universities or institutions that are affiliated with the Chinese Academy of Science (CAS). As one CAS academic commented, “there are many Chinese scientists who are keen on conducting synthetic-biology research. But no substantial research has been launched nor has long-term investment been committed.”The initial undertaking of academic research on synthetic biology in China has therefore benefited from transnational initiatives. The first synthetic-biology project in China, launched in October 2006, was part of the ‘Programmable Bacteria Catalyzing Research'' (PROBACTYS) project, funded by the Sixth Framework Programme of the European Union (Yang, 2010). A year later, another cross-border collaborative effort led to the establishment of the first synthetic-biology centre in China: the Edinburgh University–Tianjing University Joint Research Centre for Systems Biology and Synthetic Biology (Zhang, 2008).There is also a comparable commitment to national research coordination. A year after China''s first participation in iGEM, the 2008 Xiangshan conference focused on domestic progress. From 2007 to 2009, only five projects in China received national funding, all of which came from the National Natural Science Foundation of China (NSFC). This funding totalled ¥1,330,000 (approximately £133,000; www.nsfc.org), which is low in comparison to the £891,000 funding that was given in the UK for seven Networks in Synthetic Biology in 2007 alone (www.bbsrc.ac.uk).One of the primary challenges in obtaining funding identified by the interviewees is that, as an emerging science, synthetic biology is not yet appreciated by Chinese funding agencies. After the Xiangshan conference, the CAS invited scientists to a series of conferences in late 2009. According to the interviewees, one of the main outcomes was the founding of a ‘China Synthetic Biology Coordination Group''; an informal association of around 30 conference delegates from various research institutions. This group formulated a ‘regulatory suggestion'' that they submitted to MOST, which stated the necessity and implications of supporting synthetic-biology research. In addition, leading scientists such as Chunting Zhang and Huanming Yang—President of the Beijing Genomic Institute (BGI), who co-chaired the Beijing Institutes of Life Science (BILS) conferences—have been active in communicating with government institutions. The initial results of this can be seen in the MOST 2010 Application Guidelines for the National Basic Research Program, in which synthetic biology was included for the first time, among ‘key supporting areas'' (MOST, 2010). Meanwhile, in 2010, NSFC allocated ¥1,500,000 (approximately £150,000) to synthetic-biology research, which is more than the total funding the area had received in the past three years.The search for funding further demonstrates the dynamics between national and transnational resources. Chinese R&D initiatives have to deal with the fact that scientific venture-capital and non-governmental research charities are underdeveloped in China. In contrast to the EU or the USA, government institutions in China, such as the NSFC and MOST, are the main and sometimes only domestic sources of funding. Yet, transnational funding opportunities facilitate the development of synthetic biology by alleviating local structural and financial constraints, and further integrate the Chinese scientific community into international research.This is not a linear ‘going-global'' process; it is important for Chinese scientists to secure and promote national and regional support. In addition, this alignment of national funding schemes with global research progress is similar to the iGEM experience, as it is being initiated through informal bottom-up associations between scientists, rather than by top-down institutional channels.As more institutions have joined iGEM training camps and participated in related conferences, a shared interest among the Chinese scientific community in developing synthetic biology has become visible. In late 2009, at the conference that founded the informal ‘coordination group'', the proposition of integrating national expertise through a big-question approach emerged. According to one professor in Beijing—who was a key participant in the discussion at the time—this proposition of a nationwide synergy was not so much about ‘national pride'' or an aim to develop a ‘Chinese'' synthetic biology, it was about research practicality. She explained, “synthetic biology is at the convergence of many disciplines, computer modelling, nano-technology, bioengineering, genomic research etc. Individual researchers like me can only operate on part of the production chain. But I myself would like to see where my findings would fit in a bigger picture as well. It just makes sense for a country the size of China to set up some collective and coordinated framework so as to seek scientific breakthrough.”From the first participation in the iGEM contest to the later exploration of funding opportunities and collective research plans, scientists have been keen to invite and incorporate domestic and international resources, to keep up with global research. Yet, there are still regulatory challenges to be met.…with little social discontent and no imminent public threat, synthetic biology in China could be carried out in a ‘research-as-usual'' mannerThe reputation of “the ‘wild East'' of biology” (Dennis, 2002) is associated with China'' previous inattention to ethical concerns about the life sciences, especially in embryonic-stem-cell research. Similarly, synthetic biology creates few social concerns in China. Public debate is minimal and most media coverage has been positive. Synthetic biology is depicted as “a core in the fourth wave of scientific development” (Pan, 2008) or “another scientific revolution” (Huang, 2009). Whilst recognizing its possible risks, mainstream media believe that “more people would be attracted to doing good while making a profit than doing evil” (Fang & He, 2010). In addition, biosecurity and biosafety training in China are at an early stage, with few mandatory courses for students (Barr & Zhang, 2010). The four leading synthetic-biology teams I visited regarded the general biosafety regulations that apply to microbiology laboratories as sufficient for synthetic biology. In short, with little social discontent and no imminent public threat, synthetic biology in China could be carried out in a ‘research-as-usual'' manner.Yet, fieldwork suggests that, in contrast to this previous insensitivity to global ethical concerns, the synthetic-biology community in China has taken a more proactive approach to engaging with international debates. It is important to note that there are still no synthetic-biology-specific administrative guidelines or professional codes of conduct in China. However, Chinese stakeholders participate in building a ‘mutual inclusiveness'' between global and domestic discussions.One of the most recent examples of this is a national conference about the ethical and biosafety implications of synthetic biology, which was jointly hosted by the China Association for Science and Technology, the Chinese Society of Biotechnology and the Beijing Institutes of Life Science CAS, in Suzhou in June 2010. The discussion was open to the mainstream media. The debate was not simply a recapitulation of Western worries, such as playing god, potential dual-use or ecological containment. It also focused on the particular concerns of developing countries about how to avoid further widening the developmental gap with advanced countries (Liu, 2010).In addition to general discussions, there are also sustained transnational communications. For example, one of the first three projects funded by the NSFC was a three-year collaboration on biosafety and risk-assessment frameworks between the Institute of Botany at CAS and the Austrian Organization for International Dialogue and Conflict Management (IDC).Chinese scientists are also keen to increase their involvement in the formulation of international regulations. The CAS and the Chinese Academy of Engineering are engaged with their peer institutions in the UK and the USA to “design more robust frameworks for oversight, intellectual property and international cooperation” (Royal Society, 2009). It is too early to tell what influence China will achieve in this field. Yet, the changing image of the country from an unconcerned wild East to a partner in lively discussions signals a new dynamic in the global development of synthetic biology.Student contests, funding programmes, joint research centres and coordination groups are only a few of the means by which scientists can drive synthetic biology forward in ChinaFrom self-organized participation in iGEM to bottom-up funding and governance initiatives, two features are repeatedly exhibited in the emergence of synthetic biology in China: global resources and international perspectives complement national interests; and the national and cosmopolitan research strengths are mostly instigated at the grass-roots level. During the process of introducing, developing and reflecting on synthetic biology, many formal or informal, provisional or long-term alliances have been established from the bottom up. Student contests, funding programmes, joint research centres and coordination groups are only a few of the means by which scientists can drive synthetic biology forward in China.However, the inputs of different social actors has not led to disintegration of the field into an array of individualized pursuits, but has transformed it into collective synergies, or the big-question approach. Underlying the diverse efforts of Chinese scientists is a sense of ‘inclusiveness'', or the idea of bringing together previously detached research expertise. Thus, the big-question strategy cannot be interpreted as just another nationally organized agenda in response to global scientific advancements. Instead, it represents a more intricate development path corresponding to how contemporary research evolves on the ground.In comparison to the increasingly visible grass-roots efforts, the role of the Chinese government seems relatively small at this stageIn comparison to the increasingly visible grass-roots efforts, the role of the Chinese government seems relatively small at this stage. Government input—such as the potential stewardship of the MOST in directing a big-question approach or long-term funding—remain important; the scientists who were interviewed expend a great deal of effort to attract governmental participation. Yet, China'' experience highlights that the key to comprehending regional scientific capacity lies not so much in what the government can do, but rather in what is taking place in laboratories. It is important to remember that Chinese iGEM victories, collaborative synthetic-biology projects and ethical discussions all took place before the government became involved. Thus, to appreciate fully the dynamics of an emerging science, it might be necessary to focus on what is formulated from the bottom up.The experience of China in synthetic biology demonstrates the power of grass-roots, cross-border engagement to promote contemporary researchThe experience of China in synthetic biology demonstrates the power of grass-roots, cross-border engagement to promote contemporary research. More specifically, it is a result of the commitment of Chinese scientists to incorporating national and international resources, actors and social concerns. For practical reasons, the national organization of research, such as through the big-question approach, might still have an important role. However, synthetic biology might be not only a mosaic of national agendas, but also shaped by transnational activities and scientific resources. What Chinese scientists will collectively achieve remains to be seen. Yet, the emergence of synthetic biology in China might be indicative of a new paradigm for how research practices can be introduced, normalized and regulated.  相似文献   

4.
The temptation to silence dissenters whose non-mainstream views negatively affect public policies is powerful. However, silencing dissent, no matter how scientifically unsound it might be, can cause the public to mistrust science in general.Dissent is crucial for the advancement of science. Disagreement is at the heart of peer review and is important for uncovering unjustified assumptions, flawed methodologies and problematic reasoning. Enabling and encouraging dissent also helps to generate alternative hypotheses, models and explanations. Yet, despite the importance of dissent in science, there is growing concern that dissenting voices have a negative effect on the public perception of science, on policy-making and public health. In some cases, dissenting views are deliberately used to derail certain policies. For example, dissenting positions on climate change, environmental toxins or the hazards of tobacco smoke [1,2] seem to laypeople as equally valid conflicting opinions and thereby create or increase uncertainty. Critics often use legitimate scientific disagreements about narrow claims to reinforce the impression of uncertainty about general and widely accepted truths; for instance, that a given substance is harmful [3,4]. This impression of uncertainty about the evidence is then used to question particular policies [1,2,5,6].The negative effects of dissent on establishing public polices are present in cases in which the disagreements are scientifically well-grounded, but the significance of the dissent is misunderstood or blown out of proportion. A study showing that many factors affect the size of reef islands, to the effect that they will not necessarily be reduced in size as sea levels rise [7], was simplistically interpreted by the media as evidence that climate change will not have a negative impact on reef islands [8].In other instances, dissenting voices affect the public perception of and motivation to follow public-health policies or recommendations. For example, the publication of a now debunked link between the measles, mumps and rubella vaccine and autism [9], as well as the claim that the mercury preservative thimerosal, which was used in childhood vaccines, was a possible risk factor for autism [10,11], created public doubts about the safety of vaccinating children. Although later studies showed no evidence for these claims, doubts led many parents to reject vaccinations for their children, risking the herd immunity for diseases that had been largely eradicated from the industrialized world [12,13,14,15]. Many scientists have therefore come to regard dissent as problematic if it has the potential to affect public behaviour and policy-making. However, we argue that such concerns about dissent as an obstacle to public policy are both dangerous and misguided.Whether dissent is based on genuine scientific evidence or is unfounded, interested parties can use it to sow doubt, thwart public policies, promote problematic alternatives and lead the public to ignore sound advice. In response, scientists have adopted several strategies to limit these negative effects of dissent—masking dissent, silencing dissent and discrediting dissenters. The first strategy aims to present a united front to the public. Scientists mask existing disagreements among themselves by presenting only those claims or pieces of evidence about which they agree [16]. Although there is nearly universal agreement among scientists that average global temperatures are increasing, there are also legitimate disagreements about how much warming will occur, how quickly it will occur and the impact it might have [7,17,18,19]. As presenting these disagreements to the public probably creates more doubt and uncertainty than is warranted, scientists react by presenting only general claims [20].A second strategy is to silence dissenting views that might have negative consequences. This can take the form of self-censorship when scientists are reluctant to publish or publicly discuss research that might—incorrectly—be used to question existing scientific knowledge. For example, there are genuine disagreements about how best to model cloud formation, water vapour feedback and aerosols in general circulation paradigms, all of which have significant effects on the magnitude of global climate change predictions [17,19]. Yet, some scientists are hesitant to make these disagreements public, for fear that they will be accused of being denialists, faulted for confusing the public and policy-makers, censured for abating climate-change deniers, or criticized for undermining public policy [21,22,23,24].…there is growing concern that dissenting voices can have a negative effect on the public perception of science, on policy-making and public healthAnother strategy is to discredit dissenters, especially in cases in which the dissent seems to be ideologically motivated. This could involve publicizing the financial or political ties of the dissenters [2,6,25], which would call attention to their probable bias. In other cases, scientists might discredit the expertise of the dissenter. One such example concerns a 2007 study published in the Proceedings of the National Academy of Sciences USA, which claimed that cadis fly larvae consuming Bt maize pollen die at twice the rate of flies feeding on non-Bt maize pollen [26]. Immediately after publication, both the authors and the study itself became the target of relentless and sometimes scathing attacks from a group of scientists who were concerned that anti-GMO (genetically modified organism) interest groups would seize on the study to advance their agenda [27]. The article was criticized for its methodology and its conclusions, the Proceedings of the National Academy of Sciences USA was criticized for publishing the article and the US National Science Foundation was criticized for funding the study in the first place.Public policies, health advice and regulatory decisions should be based on the best available evidence and knowledge. As the public often lack the expertise to assess the quality of dissenting views, disagreements have the potential to cast doubt over the reliability of scientific knowledge and lead the public to question relevant policies. Strategies to block dissent therefore seem reasonable as a means to protect much needed or effective health policies, advice and regulations. However, even if the public were unable to evaluate the science appropriately, targeting dissent is not the most appropriate strategy to prevent negative side effects for several reasons. Chiefly, it contributes to the problems that the critics of dissent seek to address, namely increasing the cacophony of dissenting voices that only aim to create doubt. Focusing on dissent as a problematic activity sends the message to policy-makers and the public that any dissent undermines scientific knowledge. Reinforcing this false assumption further incentivizes those who seek merely to create doubt to thwart particular policies. Not surprisingly, think-tanks, industry and other organizations are willing to manufacture dissent simply to derail policies that they find economically or ideologically undesirable.Another danger of targeting dissent is that it probably stifles legitimate crucial voices that are needed for both advancing science and informing sound policy decisions. Attacking dissent makes scientists reluctant to voice genuine doubts, especially if they believe that doing so might harm their reputations, damage their careers and undermine prevailing theories or policies needed. For instance, a panel of scientists for the US National Academy of Sciences, when presenting a risk assessment of radiation in 1956, omitted wildly different predictions about the potential genetic harm of radiation [16]. They did not include this wide range of predictions in their final report precisely because they thought the differences would undermine confidence in their recommendations. Yet, this information could have been relevant to policy-makers. As such, targeting dissent as an obstacle to public policy might simply reinforce self-censorship and stifle legitimate and scientifically informed debate. If this happens, scientific progress is hindered.Second, even if the public has mistaken beliefs about science or the state of the knowledge of the science in question, focusing on dissent is not an effective way to protect public policy from false claims. It fails to address the presumed cause of the problem—the apparent lack of understanding of the science by the public. A better alternative would be to promote the public''s scientific literacy. If the public were educated to better assess the quality of the dissent and thus disregard instances of ideological, unsupported or unsound dissent, dissenting voices would not have such a negative effect. Of course, one might argue that educating the public would be costly and difficult, and that therefore, the public should simply listen to scientists about which dissent to ignore and which to consider. This is, however, a paternalistic attitude that requires the public to remain ignorant ‘for their own good''; a position that seems unjustified on many levels as there are better alternatives for addressing the problem.Moreover, silencing dissent, rather than promoting scientific literacy, risks undermining public trust in science even if the dissent is invalid. This was exemplified by the 2009 case of hacked e-mails from a computer server at the University of East Anglia''s Climate Research Unit (CRU). After the selective leaking of the e-mails, climate scientists at the CRU came under fire because some of the quotes, which were taken out of context, seemed to suggest that they were fudging data or suppressing dissenting views [28,29,30,31]. The stolen e-mails gave further ammunition to those opposing policies to reduce greenhouse emissions as they could use accusations of data ‘cover up'' as proof that climate scientists were not being honest with the public [29,30,31]. It also allowed critics to present climate scientists as conspirators who were trying to push a political agenda [32]. As a result, although there was nothing scientifically inappropriate revealed in the ‘climategate'' e-mails, it had the consequence of undermining the public''s trust in climate science [33,34,35,36].A significant amount of evidence shows that the ‘deficit model'' of public understanding of science, as described above, is too simplistic to account correctly for the public''s reluctance to accept particular policy decisions [37,38,39,40]. It ignores other important factors such as people''s attitudes towards science and technology, their social, political and ethical values, their past experiences and the public''s trust in governmental institutions [41,42,43,44]. The development of sound public policy depends not only on good science, but also on value judgements. One can agree with the scientific evidence for the safety of GMOs, for instance, but still disagree with the widespread use of GMOs because of social justice concerns about the developing world''s dependence on the interests of the global market. Similarly, one need not reject the scientific evidence about the harmful health effects of sugar to reject regulations on sugary drinks. One could rationally challenge such regulations on the grounds that informed citizens ought to be able to make free decisions about what they consume. Whether or not these value judgements are justified is an open question, but the focus on dissent hinders our ability to have that debate.Focusing on dissent as a problematic activity sends the message to policy-makers and the public that any dissent undermines scientific knowledgeAs such, targeting dissent completely fails to address the real issues. The focus on dissent, and the threat that it seems to pose to public policy, misdiagnoses the problem as one of the public misunderstanding science, its quality and its authority. It assumes that scientific or technological knowledge is the only relevant factor in the development of policy and it ignores the role of other factors, such as value judgements about social benefits and harms, and institutional trust and reliability [45,46]. The emphasis on dissent, and thus on scientific knowledge, as the only or main factor in public policy decisions does not give due attention to these legitimate considerations.Furthermore, by misdiagnosing the problem, targeting dissent also impedes more effective solutions and prevents an informed debate about the values that should guide public policy. By framing policy debates solely as debates over scientific facts, the normative aspects of public policy are hidden and neglected. Relevant ethical, social and political values fail to be publicly acknowledged and openly discussed.Controversies over GMOs and climate policies have called attention to the negative effects of dissent in the scientific community. Based on the assumption that the public''s reluctance to support particular policies is the result of their inability to properly understand scientific evidence, scientists have tried to limit dissenting views that create doubt. However, as outlined above, targeting dissent as an obstacle to public policy probably does more harm than good. It fails to focus on the real problem at stake—that science is not the only relevant factor in sound policy-making. Of course, we do not deny that scientific evidence is important to the develop.ment of public policy and behavioural decisions. Rather, our claim is that this role is misunderstood and often oversimplified in ways that actually contribute to problems in developing sound science-based policies.? Open in a separate windowInmaculada de Melo-MartínOpen in a separate windowKristen Intemann  相似文献   

5.
6.
7.
The French government has ambitious goals to make France a leading nation for synthetic biology research, but it still needs to put its money where its mouth is and provide the field with dedicated funding and other support.Synthetic biology is one of the most rapidly growing fields in the biological sciences and is attracting an increasing amount of public and private funding. France has also seen a slow but steady development of this field: the establishment of a national network of synthetic biologists in 2005, the first participation of a French team at the International Genetically Engineered Machine competition in 2007, the creation of a Master''s curriculum, an institute dedicated to synthetic and systems biology at the University of Évry-Val-d''Essonne-CNRS-Genopole in 2009–2010, and an increasing number of conferences and debates. However, scientists have driven the field with little dedicated financial support from the government.Yet the French government has a strong self-perception of its strengths and has set ambitious goals for synthetic biology. The public are told about a “new generation of products, industries and markets” that will derive from synthetic biology, and that research in the field will result in “a substantial jump for biotechnology” and an “industrial revolution”[1,2]. Indeed, France wants to compete with the USA, the UK, Germany and the rest of Europe and aims “for a world position of second or third”[1]. However, in contrast with the activities of its competitors, the French government has no specific scheme for funding or otherwise supporting synthetic biology[3]. Although we read that “France disposes of strong competences” and “all the assets needed”[2], one wonders how France will achieve its ambitious goals without dedicated budgets or detailed roadmaps to set up such institutions.In fact, France has been a straggler: whereas the UK and the USA have published several reports on synthetic biology since 2007, and have set up dedicated governing networks and research institutions, the governance of synthetic biology in France has only recently become an official matter. The National Research and Innovation Strategy (SNRI) only defined synthetic biology as a “priority” challenge in 2009 and created a working group in 2010 to assess the field''s developments, potentialities and challenges; the report was published in 2011[1].At the same time, the French Parliamentary Office for the Evaluation of Scientific and Technological Choices (OPECST) began a review of the field “to establish a worldwide state of the art and the position of our country in terms of training, research and technology transfer”. Its 2012 report entitled The Challenges of Synthetic Biology[2] assessed the main ethical, legal, economic and social challenges of the field. It made several recommendations for a “controlled” and “transparent” development of synthetic biology. This is not a surprise given that the development of genetically modified organisms and nuclear power in France has been heavily criticized for lack of transparency, and that the government prefers to avoid similar future controversies. Indeed, the French government seems more cautious today: making efforts to assess potential dangers and public opinion before actually supporting the science itself.Both reports stress the necessity of a “real” and “transparent” dialogue between science and society and call for “serene […] peaceful and constructive” public discussion. The proposed strategy has three aims: to establish an observatory, to create a permanent forum for discussion and to broaden the debate to include citizens[4]. An Observatory for Synthetic Biology was set up in January 2012 to collect information, mobilize actors, follow debates, analyse the various positions and organize a public forum. Let us hope that this observatory—unlike so many other structures—will have a tangible and durable influence on policy-making, public opinion and scientific practice.Many structural and organizational challenges persist, as neither the National Agency for Research nor the National Centre for Scientific Research have defined the field as a funding priority and public–private partnerships are rare in France. Moreover, strict boundaries between academic disciplines impede interdisciplinary work, and synthetic biology is often included in larger research programmes rather than supported as a research field in itself. Although both the SNRI and the OPECST reports make recommendations for future developments—including setting up funding policies and platforms—it is not clear whether these will materialize, or when, where and what size of investments will be made.France has ambitious goals for synthetic biology, but it remains to be seen whether the government is willing to put ‘meat to the bones'' in terms of financial and institutional support. If not, these goals might come to be seen as unrealistic and downgraded or they will be replaced with another vision that sees synthetic biology as something that only needs discussion and deliberation but no further investment. One thing is already certain: the future development of synthetic biology in France is a political issue.  相似文献   

8.
9.
The public view of life-extension technologies is more nuanced than expected and researchers must engage in discussions if they hope to promote awareness and acceptanceThere is increasing research and commercial interest in the development of novel interventions that might be able to extend human life expectancy by decelerating the ageing process. In this context, there is unabated interest in the life-extending effects of caloric restriction in mammals, and there are great hopes for drugs that could slow human ageing by mimicking its effects (Fontana et al, 2010). The multinational pharmaceutical company GlaxoSmithKline, for example, acquired Sirtris Pharmaceuticals in 2008, ostensibly for their portfolio of drugs targeting ‘diseases of ageing''. More recently, the immunosuppressant drug rapamycin has been shown to extend maximum lifespan in mice (Harrison et al, 2009). Such findings have stoked the kind of enthusiasm that has become common in media reports of life-extension and anti-ageing research, with claims that rapamycin might be “the cure for all that ails” (Hasty, 2009), or that it is an “anti-aging drug [that] could be used today” (Blagosklonny, 2007).Given the academic, commercial and media interest in prolonging human lifespan—a centuries-old dream of humanity—it is interesting to gauge what the public thinks about the possibility of living longer, healthier lives, and to ask whether they would be willing to buy and use drugs that slow the ageing process. Surveys that have addressed these questions, have given some rather surprising results, contrary to the expectations of many researchers in the field. They have also highlighted that although human life extension (HLE) and ageing are topics with enormous implications for society and individuals, scientists have not communicated efficiently with the public about their research and its possible applications.Given the academic, commercial and media interest in prolonging human lifespan […] it is interesting to gauge what the public thinks about the possibility of living longer, healthier lives…Proponents and opponents of HLE often assume that public attitudes towards ageing interventions will be strongly for or against, but until now, there has been little empirical evidence with which to test these assumptions (Lucke & Hall, 2005). We recently surveyed members of the public in Australia and found a variety of opinions, including some ambivalence towards the development and use of drugs that could slow ageing and increase lifespan. Our findings suggest that many members of the public anticipate both positive and negative outcomes from this work (Partridge 2009a, b, 2010; Underwood et al, 2009).In a community survey of public attitudes towards HLE we found that around two-thirds of a sample of 605 Australian adults supported research with the potential to increase the maximum human lifespan by slowing ageing (Partridge et al, 2010). However, only one-third expressed an interest in using an anti-ageing pill if it were developed. Half of the respondents were not interested in personally using such a pill and around one in ten were undecided.Some proponents of HLE anticipate their research being impeded by strong public antipathy (Miller, 2002, 2009). Richard Miller has claimed that opposition to the development of anti-ageing interventions often exists because of an “irrational public predisposition” to think that increased lifespans will only lead to elongation of infirmity. He has called this “gerontologiphobia”—a shared feeling among laypeople that while research to cure age-related diseases such as dementia is laudable, research that aims to intervene in ageing is a “public menace” (Miller, 2002).We found broad support for the amelioration of age-related diseases and for technologies that might preserve quality of life, but scepticism about a major promise of HLE—that it will delay the onset of age-related diseases and extend an individual''s healthy lifespan. From the people we interviewed, the most commonly cited potential negative personal outcome of HLE was that it would extend the number of years a person spent with chronic illnesses and poor quality of life (Partridge et al, 2009a). Although some members of the public envisioned more years spent in good health, almost 40% of participants were concerned that a drug to slow ageing would do more harm than good to them personally; another 13% were unsure about the benefits and costs (Partridge et al, 2010).…it might be that advocates of HLE have failed to persuade the public on this issueIt would be unwise to label such concerns as irrational, when it might be that advocates of HLE have failed to persuade the public on this issue. Have HLE researchers explained what they have discovered about ageing and what it means? Perhaps the public see the claims that have been made about HLE as ‘too good to be true‘.Results of surveys of biogerontologists suggest that they are either unaware or dismissive of public concerns about HLE. They often ignore them, dismiss them as “far-fetched”, or feel no responsibility “to respond” (Settersten Jr et al, 2008). Given this attitude, it is perhaps not surprising that the public are sceptical of their claims.Scientists are not always clear about the outcomes of their work, biogerontologists included. Although the life-extending effects of interventions in animal models are invoked as arguments for supporting anti-ageing research, it is not certain that these interventions will also extend healthy lifespans in humans. Miller (2009) reassuringly claims that the available evidence consistently suggests that quality of life is maintained in laboratory animals with extended lifespans, but he acknowledges that the evidence is “sparse” and urges more research on the topic (Miller, 2009). In the light of such ambiguity, researchers need to respond to public concerns in ways that reflect the available evidence and the potential of their work, without becoming apostles for technologies that have not yet been developed. An anti-ageing drug that extends lifespan without maintaining quality of life is clearly undesirable, but the public needs to be persuaded that such an outcome can be avoided.The public is also concerned about the possible adverse side effects of anti-ageing drugs. Many people were bemused when they discovered that members of the Caloric Restriction Society experienced a loss of libido and loss of muscle mass as a result of adhering to a low-calorie diet to extend their longevity—for many people, such side effects would not be worth the promise of some extra years of life. Adverse side effects are acknowledged as a considerable potential challenge to the development of an effective life-extending drug in humans (Fontana et al, 2010). If researchers do not discuss these possible effects, then a curious public might draw their own conclusions.Adverse side effects are acknowledged as a considerable potential challenge to the development of an effective life-extending drug in humansSome HLE advocates seem eager to tout potential anti-ageing drugs as being free from adverse side effects. For example, Blagosklonny (2007) has argued that rapamycin could be used to prevent age-related diseases in humans because it is “a non-toxic, well tolerated drug that is suitable for everyday oral administration” with its major “side-effects” being anti-tumour, bone-protecting, and mimicking caloric restriction effects. By contrast, Kaeberlein & Kennedy (2009) have advised the public against using the drug because of its immunosuppressive effects.Aubrey de Grey has called for scientists to provide more optimistic timescales for HLE on several occasions. He claims that public opposition to interventions in ageing is based on “extraordinarily transparently flawed opinions” that HLE would be unethical and unsustainable (de Grey, 2004). In his view, public opposition is driven by scepticism about whether HLE will be possible, and that concerns about extending infirmity, injustice or social harms are simply excuses to justify people''s belief that ageing is ‘not so bad'' (de Grey, 2007). He argues that this “pro-ageing trance” can only be broken by persuading the public that HLE technologies are just around the corner.Contrary to de Grey''s expectations of public pessimism, 75% of our survey participants thought that HLE technologies were likely to be developed in the near future. Furthermore, concerns about the personal, social and ethical implications of ageing interventions and HLE were not confined to those who believed that HLE is not feasible (Partridge et al, 2010).Juengst et al (2003) have rightly pointed out that any interventions that slow ageing and substantially increase human longevity might generate more social, economic, political, legal, ethical and public health issues than any other technological advance in biomedicine. Our survey supports this idea; the major ethical concerns raised by members of the public reflect the many and diverse issues that are discussed in the bioethics literature (Partridge et al, 2009b; Partridge & Hall, 2007).When pressed, even enthusiasts admit that a drastic extension of human life might be a mixed blessing. A recent review by researchers at the US National Institute on Aging pointed to several economic and social challenges that arise from longevity extension (Sierra et al, 2009). Perry (2004) suggests that the ability to slow ageing will cause “profound changes” and a “firestorm of controversy”. Even de Grey (2005) concedes that the development of an effective way to slow ageing will cause “mayhem” and “absolute pandemonium”. If even the advocates of anti-ageing and HLE anticipate widespread societal disruption, the public is right to express concerns about the prospect of these things becoming reality. It is accordingly unfair to dismiss public concerns about the social and ethical implications as “irrational”, “inane” or “breathtakingly stupid” (de Grey, 2004).The breadth of the possible implications of HLE reinforces the need for more discussion about the funding of such research and management of its outcomes ( Juengst et al, 2003). Biogerontologists need to take public concerns more seriously if they hope to foster support for their work. If there are misperceptions about the likely outcomes of intervention in ageing, then biogerontologists need to better explain their research to the public and discuss how their concerns will be addressed. It is not enough to hope that a breakthrough in human ageing research will automatically assuage public concerns about the effects of HLE on quality of life, overpopulation, economic sustainability, the environment and inequities in access to such technologies. The trajectories of other controversial research areas—such as human embryonic stem cell research and assisted reproductive technologies (Deech & Smajdor, 2007)—have shown that “listening to public concerns on research and responding appropriately” is a more effective way of fostering support than arrogant dismissal of public concerns (Anon, 2009).Biogerontologists need to take public concerns more seriously if they hope to foster support for their work? Open in a separate windowBrad PartridgeOpen in a separate windowJayne LuckeOpen in a separate windowWayne Hall  相似文献   

10.
Lessons from science studies for the ongoing debate about ‘big'' versus ‘little'' research projectsDuring the past six decades, the importance of scientific research to the developed world and the daily lives of its citizens has led many industrialized countries to rebrand themselves as ‘knowledge-based economies''. The increasing role of science as a main driver of innovation and economic growth has also changed the nature of research itself. Starting with the physical sciences, recent decades have seen academic research increasingly conducted in the form of large, expensive and collaborative ‘big science'' projects that often involve multidisciplinary, multinational teams of scientists, engineers and other experts.Although laboratory biology was late to join the big science trend, there has nevertheless been a remarkable increase in the number, scope and complexity of research collaborations…Although laboratory biology was late to join the big science trend, there has nevertheless been a remarkable increase in the number, scope and complexity of research collaborations and projects involving biologists over the past two decades (Parker et al, 2010). The Human Genome Project (HGP) is arguably the most well known of these and attracted serious scientific, public and government attention to ‘big biology''. Initial exchanges were polarized and often polemic, as proponents of the HGP applauded the advent of big biology and argued that it would produce results unattainable through other means (Hood, 1990). Critics highlighted the negative consequences of massive-scale research, including the industrialization, bureaucratization and politicization of research (Rechsteiner, 1990). They also suggested that it was not suited to generating knowledge at all; Nobel laureate Sydney Brenner joked that sequencing was so boring it should be done by prisoners: “the more heinous the crime, the bigger the chromosome they would have to decipher” (Roberts, 2001).A recent Opinion in EMBO reports summarized the arguments against “the creeping hegemony” of ‘big science'' over ‘little science'' in biomedical research. First, many large research projects are of questionable scientific and practical value. Second, big science transfers the control of research topics and goals to bureaucrats, when decisions about research should be primarily driven by the scientific community (Petsko, 2009). Gregory Petsko makes a valid point in his Opinion about wasteful research projects and raises the important question of how research goals should be set and by whom. Here, we contextualize Petsko''s arguments by drawing on the history and sociology of science to expound the drawbacks and benefits of big science. We then advance an alternative to the current antipodes of ‘big'' and ‘little'' biology, which offers some of the benefits and avoids some of the adverse consequences.Big science is not a recent development. Among the first large, collaborative research projects were the Manhattan Project to develop the atomic bomb, and efforts to decipher German codes during the Second World War. The concept itself was put forward in 1961 by physicist Alvin Weinberg, and further developed by historian of science Derek De Solla Price in his pioneering book, Little Science, Big Science. “The large-scale character of modern science, new and shining and all powerful, is so apparent that the happy term ‘Big Science'' has been coined to describe it” (De Solla Price, 1963). Weinberg noted that science had become ‘big'' in two ways. First, through the development of elaborate research instrumentation, the use of which requires large research teams, and second, through the explosive growth of scientific research in general. More recently, big science has come to refer to a diverse but strongly related set of changes in the organization of scientific research. This includes expensive equipment and large research teams, but also the increasing industrialization of research activities, the escalating frequency of interdisciplinary and international collaborations, and the increasing manpower needed to achieve research goals (Galison & Hevly, 1992). Many areas of biological research have shifted in these directions in recent years and have radically altered the methods by which biologists generate scientific knowledge.Despite this long history of collaboration, laboratory biology remained ‘small-scale'' until the rising prominence of molecular biology changed the research landscapeUnderstanding the implications of this change begins with an appreciation of the history of collaborations in the life sciences—biology has long been a collaborative effort. Natural scientists accompanied the great explorers in the grand alliance between science and exploration during the sixteenth and seventeenth centuries (Capshew & Rader, 1992), which not only served to map uncharted territories, but also contributed enormously to knowledge of the fauna and flora discovered. These early expeditions gradually evolved into coordinated, multidisciplinary research programmes, which began with the International Polar Years, intended to concentrate international research efforts at the North and South Poles (1882–1883; 1932–1933). The Polar Years became exemplars of large-scale life science collaboration, begetting the International Geophysical Year (1957–1958) and the International Biological Programme (1968–1974).For Weinberg, the potentially negative consequences associated with big science were “adminstratitis, moneyitis, and journalitis”…Despite this long history of collaboration, laboratory biology remained ‘small-scale'' until the rising prominence of molecular biology changed the research landscape. During the late 1950s and early 1960s, many research organizations encouraged international collaboration in the life sciences, spurring the creation of, among other things, the European Molecular Biology Organization (1964) and the European Molecular Biology Laboratory (1974). In addition, international mapping and sequencing projects were developed around model organisms such as Drosophila and Caenorhabditis elegans, and scientists formed research networks, exchanged research materials and information, and divided labour across laboratories. These new ways of working set the stage for the HGP, which is widely acknowledged as the cornerstone of the current ‘post-genomics era''. As an editorial on ‘post-genomics cultures'' put it in the journal Nature, “Like it or not, big biology is here to stay” (Anon, 2001).Just as big science is not new, neither are concerns about its consequences. As early as 1948, the sociologist Max Weber worried that as equipment was becoming more expensive, scientists were losing autonomy and becoming more dependent on external funding (Weber, 1948). Similarly, although Weinberg and De Solla Price expressed wonder at the scope of the changes they were witnessing, they too offered critical evaluations. For Weinberg, the potentially negative consequences associated with big science were “adminstratitis, moneyitis, and journalitis”; meaning the dominance of science administrators over practitioners, the tendency to view funding increases as a panacea for solving scientific problems, and progressively blurry lines between scientific and popular writing in order to woo public support for big research projects (Weinberg, 1961). De Solla Price worried that the bureaucracy associated with big science would fail to entice the intellectual mavericks on which science depends (De Solla Price, 1963). These concerns remain valid and have been voiced time and again.As big science represents a major investment of time, money and manpower, it tends to determine and channel research in particular directions that afford certain possibilities and preclude others (Cook & Brown, 1999). In the worst case, this can result in entire scientific communities following false leads, as was the case in the 1940s and 1950s for Soviet agronomy. Huge investments were made to demonstrate the superiority of Lamarckian over Mendelian theories of heritability, which held back Russian biology for decades (Soyfer, 1994). Such worst-case scenarios are, however, rare. A more likely consequence is that big science can diminish the diversity of research approaches. For instance, plasma fusion scientists are now under pressure to design projects that are relevant to the large-scale International Thermonuclear Experimental Reactor, despite the potential benefits of a wide array of smaller-scale machines and approaches (Hackett et al, 2004). Big science projects can also involve coordination challenges, take substantial time to realize success, and be difficult to evaluate (Neal et al, 2008).Importantly, big science projects allow for the coordination and activation of diverse forms of expertise across disciplinary, national and professional boundariesAnother danger of big science is that researchers will lose the intrinsic satisfaction that arises from having personal control over their work. Dissatisfaction could lower research productivity (Babu & Singh, 1998) and might create the concomitant danger of losing talented young researchers to other, more engaging callings. Moreover, the alienation of scientists from their work as a result of big science enterprises can lead to a loss of personal responsibility for research. In turn, this can increase the likelihood of misconduct, as effective social control is eroded and “the satisfactions of science are overshadowed by organizational demands, economic calculations, and career strategies” (Hackett, 1994).Practicing scientists are aware of these risks. Yet, they remain engaged in large-scale projects because they must, but also because of the real benefits these projects offer. Importantly, big science projects allow for the coordination and activation of diverse forms of expertise across disciplinary, national and professional boundaries to solve otherwise intractable basic and applied problems. Although calling for international and interdisciplinary collaboration is popular, practicing it is notably less popular and much harder (Weingart, 2000). Big science projects can act as a focal point that allows researchers from diverse backgrounds to cooperate, and simultaneously advances different scientific specialties while forging interstitial connections among them. Another major benefit of big science is that it facilitates the development of common research standards and metrics, allowing for the rapid development of nascent research frontiers (Fujimura, 1996). Furthermore, the high profile of big science efforts such as the HGP and CERN draw public attention to science, potentially enhancing scientific literacy and the public''s willingness to support research.Rather than arguing for or against big science, molecular biology would best benefit from strategic investments in a diverse portfolio of big, little and ‘mezzo'' research projectsBig science can also ease some of the problems associated with scientific management. In terms of training, graduate students and junior researchers involved in big science projects can gain additional skills in problem-solving, communication and team working (Court & Morris, 1994). The bureaucratic structure and well-defined roles of big science projects also make leadership transitions and researcher attrition easier to manage compared with the informal, refractory organization of most small research projects. Big science projects also provide a visible platform for resource acquisition and the recruitment of new scientific talent. Moreover, through their sheer size, diversity and complexity, they can also increase the frequency of serendipitous social interactions and scientific discoveries (Hackett et al, 2008). Finally, large-scale research projects can influence scientific and public policy. Big science creates organizational structures in which many scientists share responsibility for, and expectations of, a scientific problem (Van Lente, 1993). This shared ownership and these shared futures help coordinate communication and enable researchers to present a united front when advancing the potential benefits of their projects to funding bodies.Given these benefits and pitfalls of big science, how might molecular biology best proceed? Petsko''s response is that, “[s]cientific priorities must, for the most part, be set by the free exchange of ideas in the scientific literature, at meetings and in review panels. They must be set from the bottom up, from the community of scientists, not by the people who control the purse strings.” It is certainly the case, as Petsko also acknowledges, that science has benefited from a combination of generous public support and professional autonomy. However, we are less sanguine about his belief that the scientific community alone has the capacity to ascertain the practical value of particular lines of inquiry, determine the most appropriate scale of research, and bring them to fruition. In fact, current mismatches between the production of scientific knowledge and the information needs of public policy-makers strongly suggest that the opposite is true (Sarewitz & Pielke, 2007).Instead, we maintain that these types of decision should be determined through collective decision-making that involves researchers, governmental funding agencies, science policy experts and the public. In fact, the highly successful HGP involved such collaborations (Lambright, 2002). Taking into account the opinions and attitudes of these stakeholders better links knowledge production to the public good (Cash et al, 2003)—a major justification for supporting big biology. We do agree with Petsko, however, that large-scale projects can develop pathological characteristics, and that all programmes should therefore undergo regular assessments to determine their continuing worth.Rather than arguing for or against big science, molecular biology would best benefit from strategic investments in a diverse portfolio of big, little and ‘mezzo'' research projects. Their size, duration and organizational structure should be determined by the research question, subject matter and intended goals (Westfall, 2003). Parties involved in making these decisions should, in turn, aim at striking a profitable balance between differently sized research projects to garner the benefits of each and allow practitioners the autonomy to choose among them.This will require new, innovative methods for supporting and coordinating research. An important first step is ensuring that funding is made available for all kinds of research at a range of scales. For this to happen, the current funding model needs to be modified. The practice of allocating separate funds for individual investigator-driven and collective research projects is a positive step in the right direction, but it does not discriminate between projects of different sizes at a sufficiently fine resolution. Instead, multiple funding pools should be made available for projects of different sizes and scales, allowing for greater accuracy in project planning, funding and evaluation.It is up to scientists and policymakers to discern how to benefit from the advantages that ‘bigness'' has to offer, while avoiding the pitfalls inherent in doing soSecond, science policy should consciously facilitate the ‘scaling up'', ‘scaling down'' and concatenation of research projects when needed. For instance, special funds might be established for supporting small-scale but potentially transformative research with the capacity to be scaled up in the future. Alternatively, small-scale satellite research projects that are more nimble, exploratory and risky, could complement big science initiatives or be generated by them. This is also in line with Petsko''s statement that “the best kind of big science is the kind that supports and generates lots of good little science.” Another potentially fruitful strategy we suggest would be to fund independent, small-scale research projects to work on co-relevant research with the later objective of consolidating them into a single project in a kind of building-block assembly. By using these and other mechanisms for organizing research at different scales, it could help to ameliorate some of the problems associated with big science, while also accruing its most important benefits.Within the life sciences, the field of ecology perhaps best exemplifies this strategy. Although it encompasses many small-scale laboratory and field studies, ecologists now collaborate in a variety of novel organizations that blend elements of big, little and mezzo science and that are designed to catalyse different forms of research. For example, the US National Center for Ecological Analysis and Synthesis brings together researchers and data from many smaller projects to synthesize their findings. The Long Term Ecological Research Network consists of dozens of mezzo-scale collaborations focused on specific sites, but also leverages big science through cross-site collaborations. While investments are made in classical big science projects, such as the National Ecological Observatory Network, no one project or approach has dominated—nor should it. In these ways, ecologists have been able to reap the benefits of big science whilst maintaining diverse research approaches and individual autonomy and still being able to enjoy the intrinsic satisfaction associated with scientific work.Big biology is here to stay and is neither a curse nor a blessing. It is up to scientists and policy-makers to discern how to benefit from the advantages that ‘bigness'' has to offer, while avoiding the pitfalls inherent in so doing. The challenge confronting molecular biology in the coming years is to decide which kind of research projects are best suited to getting the job done. Molecular biology itself arose, in part, from the migration of physicists to biology; as physics research projects and collaborations grew and became more dependent on expensive equipment, appreciating the saliency of one''s own work became increasingly difficult, which led some to seek refuge in the comparatively little science of biology (Dev, 1990). The current situation, which Petsko criticizes in his Opinion article, is thus the result of an organizational and intellectual cycle that began more than six decades ago. It would certainly behoove molecular biologists to heed his warnings and consider the best paths forward.? Open in a separate windowNiki VermeulenOpen in a separate windowJohn N. ParkerOpen in a separate windowBart Penders  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Background:Disability-related considerations have largely been absent from the COVID-19 response, despite evidence that people with disabilities are at elevated risk for acquiring COVID-19. We evaluated clinical outcomes in patients who were admitted to hospital with COVID-19 with a disability compared with patients without a disability.Methods:We conducted a retrospective cohort study that included adults with COVID-19 who were admitted to hospital and discharged between Jan. 1, 2020, and Nov. 30, 2020, at 7 hospitals in Ontario, Canada. We compared in-hospital death, admission to the intensive care unit (ICU), hospital length of stay and unplanned 30-day readmission among patients with and without a physical disability, hearing or vision impairment, traumatic brain injury, or intellectual or developmental disability, overall and stratified by age (≤ 64 and ≥ 65 yr) using multivariable regression, controlling for sex, residence in a long-term care facility and comorbidity.Results:Among 1279 admissions to hospital for COVID-19, 22.3% had a disability. We found that patients with a disability were more likely to die than those without a disability (28.1% v. 17.6%), had longer hospital stays (median 13.9 v. 7.8 d) and more readmissions (17.6% v. 7.9%), but had lower ICU admission rates (22.5% v. 28.3%). After adjustment, there were no statistically significant differences between those with and without disabilities for in-hospital death or admission to ICU. After adjustment, patients with a disability had longer hospital stays (rate ratio 1.36, 95% confidence interval [CI] 1.19–1.56) and greater risk of readmission (relative risk 1.77, 95% CI 1.14–2.75). In age-stratified analyses, we observed longer hospital stays among patients with a disability than in those without, in both younger and older subgroups; readmission risk was driven by younger patients with a disability.Interpretation:Patients with a disability who were admitted to hospital with COVID-19 had longer stays and elevated readmission risk than those without disabilities. Disability-related needs should be addressed to support these patients in hospital and after discharge.

A successful public health response to the COVID-19 pandemic requires accurate and timely identification of, and support for, high-risk groups. There is increasing recognition that marginalized groups, including congregate care residents, racial and ethnic minorities, and people experiencing poverty, have elevated incidence of COVID-19.1,2 Older age and comorbidities such as diabetes are also risk factors for severe COVID-19 outcomes.3,4 One potential high-risk group that has received relatively little attention is people with disabilities.The World Health Organization estimates there are 1 billion people with disabilities globally.5 In North America, the prevalence of disability is 20%, with one-third of people older than 65 years having a disability.6 Disabilities include physical disabilities, hearing and vision impairments, traumatic brain injury and intellectual or developmental disabilities.5,6 Although activity limitations experienced by people with disabilities are heterogeneous,5,6 people with disabilities share high rates of risk factors for acquiring COVID-19, including poverty, residence in congregate care and being members of racialized communities.79 People with disabilities may be more reliant on close contact with others to meet their daily needs, and some people with disabilities, especially intellectual developmental disabilities, may have difficulty following public health rules. Once they acquire SARS-CoV-2 infection, people with disabilities may be at risk for severe outcomes because they have elevated rates of comorbidities.10 Some disabilities (e.g., spinal cord injuries and neurologic disabilities) result in physiologic changes that increase vulnerability to respiratory diseases and may mask symptoms of acute respiratory disease, which may delay diagnosis.1113 There have also been reports of barriers to high-quality hospital care for patients with disabilities who have COVID-19, including communication issues caused by the use of masks and restricted access to support persons.1417Some studies have suggested that patients with disabilities and COVID-19 are at elevated risk for severe disease and death, with most evaluating intellectual or developmental disability.13,1826 Yet, consideration of disability-related needs has largely been absent from the COVID-19 response, with vaccine eligibility driven primarily by age and medical comorbidity, limited accommodations made for patients with disabilities who are in hospital, and disability data often not being captured in surveillance programs.1417 To inform equitable pandemic supports, there is a need for data on patients with a broad range of disabilities who have COVID-19. We sought to evaluate standard clinical outcomes in patients admitted to hospital with COVID-1927 (i.e., in-hospital death, intensive care unit [ICU] admission, hospital length of stay and unplanned 30-d readmission) for patients with and without a disability, overall and stratified by age. We hypothesized that patients with a disability would have worse outcomes because of a greater prevalence of comorbidities,10 physiologic characteristics that increase morbidity risk1113 and barriers to high-quality hospital care.1417  相似文献   

19.
Elixirs of death     
Substandard and fake drugs are increasingly threatening lives in both the developed and developing world, but governments and industry are struggling to improve the situation.When people take medicine, they assume that it will make them better. However many patients cannot trust their drugs to be effective or even safe. Fake or substandard medicine is a major public health problem and it seems to be growing. More than 200 heart patients died in Pakistan in 2012 after taking a contaminated drug against hypertension [1]. In 2006, cough syrup that contained diethylene glycol as a cheap substitute for pharmaceutical-grade glycerin was distributed in Panama, causing the death of at least 219 people [2,3]. However, the problem is not restricted to developing countries. In 2012, more than 500 patients came down with fungal meningitis and several dozens died after receiving contaminated steroid injections from a compounding pharmacy in Massachusetts [4]. The same year, a fake version of the anti-cancer drug Avastin, which contained no active ingredient, was sold in the USA. The drug seemed to have entered the country through Turkey, Switzerland, Denmark and the UK [5].…many patients cannot trust their drugs to be effective or even safeThe extent of the problem is not really known, as companies and governments do not always report incidents [6]. However, the information that is available is alarming enough, especially in developing countries. One study found that 20% of antihypertensive drugs collected from pharmacies in Rwanda were substandard [7]. Similarly, in a survey of anti-malaria drugs in Southeast Asia and sub-Saharan Africa, 20–42% were found to be either of poor quality or outright fake [8], whilst 56% of amoxicillin capsules sampled in different Arab countries did not meet the US Pharmacopeia requirements [9].Developing countries are particularly susceptible to substandard and fake medicine. Regulatory authorities do not have the means or human resources to oversee drug manufacturing and distribution. A country plagued by civil war or famine might have more pressing problems—including shortages of medicine in the first place. The drug supply chain is confusingly complex with medicines passing through many different hands before they reach the patient, which creates many possible entry points for illegitimate products. Many people in developing countries live in rural areas with no local pharmacy, and anyway have little money and no health insurance. Instead, they buy cheap medicine from street vendors at the market or on the bus (Fig 1; [2,10,11]). “People do not have the money to buy medicine at a reasonable price. But quality comes at a price. A reasonable margin is required to pay for a quality control system,” explained Hans Hogerzeil, Professor of Global Health at Groningen University in the Netherlands. In some countries, falsifying medicine has developed into a major business. The low risk of being detected combined with relatively low penalties has turned falsifying medicine into the “perfect crime” [2].Open in a separate windowFigure 1Women sell smuggled, counterfeit medicine on the Adjame market in Abidjan, Ivory Coast, in 2007. Fraudulent street medecine sales rose by 15–25% in the past two years in Ivory Coast.Issouf Sanogo/AFP Photo/Getty Images.There are two main categories of illegitimate drugs. ‘Substandard'' medicines might result from poor-quality ingredients, production errors and incorrect storage. ‘Falsified'' medicine is made with clear criminal intent. It might be manufactured outside the regulatory system, perhaps in an illegitimate production shack that blends chalk with other ingredients and presses it into pills [10]. Whilst falsified medicines do not typically contain any active ingredients, substandard medicine might contain subtherapeutic amounts. This is particularly problematic when it comes to anti-infectious drugs, as it facilitates the emergence and spread of drug resistance [12]. A sad example is the emergence of artemisinin-resistant Plasmodium strains at the Thai–Cambodia border [8] and the Thai–Myanmar border [13], and increasing multidrug-resistant tuberculosis might also be attributed to substandard medication [11].Many people in developing countries live in rural areas with no local pharmacy, and anyway have little money and no health insuranceEven if a country effectively prosecutes falsified and substandard medicine within its borders, it is still vulnerable to fakes and low-quality drugs produced elsewhere where regulations are more lax. To address this problem, international initiatives are urgently required [10,14,15], but there is no internationally binding law to combat counterfeit and substandard medicine. Although drug companies, governments and NGOs are interested in good-quality medicines, the different parties seem to have difficulties coming to terms with how to proceed. What has held up progress is a conflation of health issues and economic interests: innovator companies and high-income countries have been accused of pushing for the enforcement of intellectual property regulations under the guise of protecting quality of medicine [14,16].The concern that intellectual property (IP) interests threaten public health dates back to the ‘Trade-Related Aspects of Intellectual Property Rights (TRIPS) Agreement'' of the World Trade Organization (WTO), adopted in 1994, to establish global protection of intellectual property rights, including patents for pharmaceuticals. The TRIPS Agreement had devastating consequences during the acquired immunodeficiency syndrome epidemic, as it blocked patients in developing countries from access to affordable medicine. Although it includes flexibility, such as the possibility for governments to grant compulsory licenses to manufacture or import a generic version of a patented drug, it has not always been clear how these can be used by countries [14,16,17].In response to public concerns over the public health consequences of TRIPS, the Doha Declaration on the TRIPS Agreement and Public Health was adopted at the WTO''s Ministerial Conference in 2001. It reaffirmed the right of countries to use TRIPS flexibilities and confirmed the primacy of public health over the enforcement of IP rights. Although things have changed for the better, the Doha Declaration did not solve all the problems associated with IP protection and public health. For example, anti-counterfeit legislation, encouraged by multi-national pharmaceutical industries and the EU, threatened to impede the availability of generic medicines in East Africa [14,16,18]. In 2008–2009, European customs authorities seized shipments of legitimate generic medicines in transit from India to other developing countries because they infringed European IP laws [14,16,17]. “We''re left with decisions being taken based on patents and trademarks that should be taken based on health,” commented Roger Bate, a global health expert and resident scholar at the American Enterprise Institute in Washington, USA. “The health community is shooting themselves in the foot.”Conflating health care and IP issues are reflected in the unclear use of the term ‘counterfeit'' [2,14]. “Since the 1990s the World Health Organization (WHO) has used the term ‘counterfeit'' in the sense we now use ‘falsified'',” explained Hogerzeil. “The confusion started in 1995 with the TRIPS agreement, through which the term ‘counterfeit'' got the very narrow meaning of trademark infringement.” As a consequence, an Indian generic, for example, which is legal in some countries but not in others, could be labelled as ‘counterfeit''—and thus acquire the negative connotation of bad quality. “The counterfeit discussion was very much used as a way to block the market of generics and to put them in a bad light,” Hogerzeil concluded.The rifts between the stakeholders have become so deep during the course of these discussions that progress is difficult to achieve. “India is not at all interested in any international regulation. And, unfortunately, it wouldn''t make much sense to do anything without them,” Hogerzeil explained. Indeed, India is a core player: not only does it have a large generics industry, but also the country seems to be, together with China, the biggest source of fake medical products [19,20]. The fact that India is so reluctant to react is tragically ironic, as this stance hampers the growth of its own generic companies like Ranbaxy, Cipla or Piramal. “I certainly don''t believe that Indian generics would lose market share if there was stronger action on public health,” Bate said. Indeed, stricter regulations and control systems would be advantageous, because they would keep fakers at bay. The Indian generic industry is a common target for fakers, because their products are broadly distributed. “The most likely example of a counterfeit product I have come across in emerging markets is a counterfeit Indian generic,” Bate said. Such fakes can damage a company''s reputation and have a negative impact on its revenues when customers stop buying the product.The WHO has had a key role in attempting to draft international regulations that would contain the spread of falsified and substandard medicine. It took a lead in 2006 with the launch of the International Medical Products Anti-Counterfeiting Taskforce (IMPACT). But IMPACT was not a success. Concerns were raised over the influence of multi-national drug companies and the possibility that issues on quality of medicines were conflated with the attempts to enforce stronger IP measures [17]. The WHO distanced itself from IMPACT after 2010. For example, it no longer hosts IMPACT''s secretariat at its headquarters in Geneva [2].‘Substandard'' medicines might result from poor quality ingredients, production errors and incorrect storage. ‘Falsified'' medicine is made with clear criminal intentIn 2010, the WHO''s member states established a working group to further investigate how to proceed, which led to the establishment of a new “Member State mechanism on substandard/spurious/falsely labelled/falsified/counterfeit medical products” (http://www.who.int/medicines/services/counterfeit/en/index.html). However, according to a publication by Amir Attaran from the University of Ottawa, Canada, and international colleagues, the working group “still cannot agree how to define the various poor-quality medicines, much less settle on any concrete actions” [14]. The paper''s authors demand more action and propose a binding legal framework: a treaty. “Until we have stronger public health law, I don''t think that we are going to resolve this problem,” Bate, who is one of the authors of the paper, said.Similarly, the US Food and Drug Administration (FDA) commissioned the Institute of Medicine (IOM) to convene a consensus committee on understanding the global public health implications of falsified and substandard pharmaceuticals [2]. Whilst others have called for a treaty, the IOM report calls on the World Health Assembly—the governing body of the WHO—to develop a code of practice such as a “voluntary soft law” that countries can sign to express their will to do better. “At the moment, there is not yet enough political interest in a treaty. A code of conduct may be more realistic,” Hogerzeil, who is also on the IOM committee, commented. Efforts to work towards a treaty should nonetheless be pursued, Bate insisted: “The IOM is right in that we are not ready to sign a treaty yet, but that does not mean you don''t start negotiating one.”Whilst a treaty might take some time, there are several ideas from the IOM report and elsewhere that could already be put into action to deal with this global health threat [10,12,14,15,19]. Any attempts to safeguard medicines need to address both falsified and substandard medicines, but the counter-measures are different [14]. Falsifying medicine is, by definition, a criminal act. To counteract fakers, action needs to be taken to ensure that the appropriate legal authorities deal with criminals. Substandard medicine, on the other hand, arises when mistakes are made in genuine manufacturing companies. Such mistakes can be reduced by helping companies do better and by improving quality control of drug regulatory authorities.Manufacturing pharmaceuticals is a difficult and costly business that requires clean water, high-quality chemicals, expensive equipment, technical expertise and distribution networks. Large and multi-national companies benefit from economies of scale to cope with these problems. But smaller companies often struggle and compromise in quality [2,21]. “India has 20–40 big companies and perhaps nearly 20,000 small ones. To me, it seems impossible for them to produce at good quality, if they remain so small,” Hogerzeil explained. “And only by being strict, can you force them to combine and to become bigger industries that can afford good-quality assurance systems.” Clamping down on drug quality will therefore lead to a consolidation of the industry, which is an essential step. “If you look at Europe and the US, there were hundreds of drug companies—now there are dozens. And if you look at the situation in India and China today, there are thousands and that will have to come down to dozens as well,” Bate explained.…innovator companies and high-income countries have been accused of pushing for the enforcement of intellectual property regulations under the guise of protecting […] medicineIn addition to consolidating the market by applying stricter rules, the IOM has also suggested measures for supporting companies that observe best practices [2]. For example, the IOM proposes that the International Finance Corporation and the Overseas Private Investment Corporation, which promote private-sector development to reduce poverty, should create separate investment vehicles for pharmaceutical manufacturers who want to upgrade to international standards. Another suggestion is to harmonize market registration of pharmaceutical products, which would ease the regulatory burden for generic producers in developing countries and improve the efficiency of regulatory agencies.Once the medicine leaves the manufacturer, controlling distribution systems becomes another major challenge in combatting falsified and substandard medicine. Global drug supply chains have grown increasingly complicated; drugs cross borders, are sold back and forth between wholesalers and distributers, and are often repackaged. Still, there is a main difference between developing and developed countries. In the latter case, relatively few companies dominate the market, whereas in poorer nations, the distribution system is often fragmented and uncontrolled with parallel schemes, too few pharmacies, even fewer pharmacists and many unlicensed medical vendors. Every transaction creates an opportunity for falsified or substandard medicine to enter the market [2,10,19]. More streamlined and transparent supply chains and stricter licensing requirements would be crucial to improve drug quality. “And we can start in the US,” Hogerzeil commented.…India is a core player: not only does it have a large generics industry, but the country also seems to be, together with China, the biggest source of fake medical productsDistribution could be improved at different levels, starting with the import of medicine. “There are states in the USA where the regulation for medicine importation is very lax. Anyone can import; private clinics can buy medicine from Lebanon or elsewhere and fly them in,” Hogerzeil explained. The next level would be better control over the distribution system within the country. The IOM suggests that state boards should license wholesalers and distributors that meet the National Association of Boards of Pharmacy accreditation standards. “Everybody dealing with medicine has to be licensed,” Hogerzeil said. “And there should be a paper trail of who buys what from whom. That way you close the entry points for illegal drugs and prevent that falsified medicines enter the legal supply chain.” The last level would be a track-and-trace system to identify authentic drugs [2]. Every single package of medicine should be identifiable through an individual marker, such as a 3D bar code. Once it is sold, it is ticked off in a central database, so the marker cannot be reused.According to Hogerzeil, equivalent measures at these different levels should be established in every country. “I don''t believe in double standards”, he said. “Don''t say to Uganda: ‘you can''t do that''. Rather, indicate to them what a cost-effective system in the West looks like and help them, and give them the time, to create something in that direction that is feasible in their situation.”Nigeria, for instance, has demonstrated that with enough political will, it is possible to reduce the proliferation of falsified and substandard medicine. Nigeria had been a major source for falsified products, but things changed in 2001, when Dora Akunyili was appointed Director General of the National Agency for Food and Drug Administration and Control. Akunyili has a personal motivation for fighting falsified drugs: her sister Vivian, a diabetic patient, lost her life to fake insulin in 1988. Akunyili strengthened import controls, campaigned for public awareness, clamped down on counterfeit operations and pushed for harsher punishments [10,19]. Paul Orhii, Akunyili''s successor, is committed to continuing her work [10]. Although there are no exact figures, various surveys indicate that the rate of bad-quality medicine has dropped considerably in Nigeria [10].China is also addressing its drug-quality problems. In a highly publicized event, the former head of China''s State Food and Drug Administration, Zheng Xiaoyu, was executed in 2007 after he was found guilty of accepting bribes to approve untested medicine. Since then, China''s fight against falsified medicine has continued. As a result of heightened enforcement, the number of drug companies in China dwindled from 5,000 in 2004 to about 3,500 this year [2]. Moreover, in July 2012, more than 1,900 suspects were arrested for the sale of fake or counterfeit drugs.Quality comes at a price, however. It is expensive to produce high-quality medicine, and it is expensive to control the production and distribution of drugs. Many low- and middle-income countries might not have the resources to tackle the problem and might not see quality of medicine as a priority. But they should, and affluent countries should help. Not only because health is a human right, but also for economic reasons. A great deal of time and money is invested into testing the safety and efficacy of medicine during drug development, and these resources are wasted when drugs do not reach patients. Falsified and substandard medicines are a financial burden to health systems and the emergence of drug-resistant pathogens might make invaluable medications useless. Investing in the safety of medicine is therefore a humane and an economic imperative.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号