首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imprinted genes are expressed predominantly from either their paternal or their maternal allele. To date, all imprinted genes identified in plants are expressed in the endosperm. In Arabidopsis thaliana, maternal imprinting has been clearly demonstrated for the Polycomb group gene MEDEA (MEA) and for FWA. Direct repeats upstream of FWA are subject to DNA methylation. However, it is still not clear to what extent similar cis-acting elements may be part of a conserved molecular mechanism controlling maternally imprinted genes. In this work, we show that the Polycomb group gene FERTILIZATION-INDEPENDENT SEED2 (FIS2) is imprinted. Maintenance of FIS2 imprinting depends on DNA methylation, whereas loss of DNA methylation does not affect MEA imprinting. DNA methylation targets a small region upstream of FIS2 distinct from the target of DNA methylation associated with FWA. We show that FWA and FIS2 imprinting requires the maintenance of DNA methylation throughout the plant life cycle, including male gametogenesis and endosperm development. Our data thus demonstrate that parental genomic imprinting in plants depends on diverse cis-elements and mechanisms dependent or independent of DNA methylation. We propose that imprinting has evolved under constraints linked to the evolution of plant reproduction and not by the selection of a specific molecular mechanism.  相似文献   

2.
Imprinting, i.e. parent-of-origin expression of alleles, plays an important role in regulating development in mammals and plants. DNA methylation catalyzed by DNA methyltransferases plays a pivotal role in regulating imprinting by silencing parental alleles. DEMETER (DME), a DNA glycosylase functioning in the base-excision DNA repair pathway, can excise 5-methylcytosine from DNA and regulate genomic imprinting in Arabidopsis. DME demethylates the maternal MEDEA (MEA) promoter in endosperm, resulting in expression of the maternal MEA allele. However, it is not known whether DME interacts with other proteins in regulating gene imprinting. Here we report the identification of histone H1.2 as a DME-interacting protein in a yeast two-hybrid screen, and confirmation of their interaction by the in vitro pull-down assay. Genetic analysis of the loss-of-function histone h1 mutant showed that the maternal histone H1 allele is required for DME regulation of MEA, FWA and FIS2 imprinting in Arabidopsis endosperm but the paternal allele is dispensable. Furthermore, we show that mutations in histone H1 result in an increase of DNA methylation in the maternal MEA and FWA promoter in endosperm. Our results suggest that histone H1 is involved in DME-mediated DNA methylation and gene regulation at imprinted loci.  相似文献   

3.
Genomic imprinting is an epigenetic phenomenon in which genes are expressed monoallelically in a parent-of-origin-specific manner. Each chromosome is imprinted with its parental identity. Here we will discuss the nature of this imprinting mark. DNA methylation has a well-established central role in imprinting, and the details of DNA methylation dynamics and the mechanisms that target it to imprinted loci are areas of active investigation. However, there is increasing evidence that DNA methylation is not solely responsible for imprinted expression. At the same time, there is growing appreciation for the contributions of post-translational histone modifications to the regulation of imprinting. The integration of our understanding of these two mechanisms is an important goal for the future of the imprinting field. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.  相似文献   

4.
Genomic imprinting is an epigenetic phenomenon characterized by monoallelic expression of the genes depending on their parental origin. The molecular basis of this expression is covalent modifications of DNA and histones that are formed during maturation of germline cells. Abnormalities of the establishment of genomic imprinting during gametogenesis or its maintenance at various stages of development, caused by aberrant epigenetic modifications of the chromatin, predominantly disturbance of DNA methylation state, are a form of mutational variability of imprinted genomic loci. In this review, we consider the spectrum of epimutations of imprinted genes, present their classification, and discuss possible causes of their appearance and their role in etiology of hereditary human diseases.  相似文献   

5.
Genomic imprinting is an epigenetic mechanism that causes functional differences between paternal and maternal genomes, and plays an essential role in mammalian development. Stage-specific changes in the DNA methylation patterns of imprinted genes suggest that their imprints are erased some time during the primordial germ cell (PGC) stage, before their gametic patterns are re-established during gametogenesis according to the sex of individuals. To define the exact timing and pattern of the erasure process, we have analyzed parental-origin-specific expression of imprinted genes and DNA methylation patterns of differentially methylated regions (DMRs) in embryos, each derived from a single day 11.5 to day 13.5 PGC by nuclear transfer. Cloned embryos produced from day 12.5 to day 13.5 PGCs showed growth retardation and early embryonic lethality around day 9.5. Imprinted genes lost their parental-origin-specific expression patterns completely and became biallelic or silenced. We confirmed that clones derived from both male and female PGCs gave the same result, demonstrating the existence of a common default state of genomic imprinting to male and female germlines. When we produced clone embryos from day 11.5 PGCs, their development was significantly improved, allowing them to survive until at least the day 11.5 embryonic stage. Interestingly, several intermediate states of genomic imprinting between somatic cell states and the default states were seen in these embryos. Loss of the monoallelic expression of imprinted genes proceeded in a step-wise manner coordinated specifically for each imprinted gene. DNA demethylation of the DMRs of the imprinted genes in exact accordance with the loss of their imprinted monoallelic expression was also observed. Analysis of DNA methylation in day 10.5 to day 12.5 PGCs demonstrated that PGC clones represented the DNA methylation status of donor PGCs well. These findings provide strong evidence that the erasure process of genomic imprinting memory proceeds in the day 10.5 to day 11.5 PGCs, with the timing precisely controlled for each imprinted gene. The nuclear transfer technique enabled us to analyze the imprinting status of each PGC and clearly demonstrated a close relationship between expression and DNA methylation patterns and the ability of imprinted genes to support development.  相似文献   

6.
Long JE  Cai X 《Gene》2007,388(1-2):125-134
Epigenetic reprogramming has a crucial role in establishing nuclear totipotency in normal development and in cloned animals. Insulin-like growth factor-2 receptor (Igf-2r) is a tissue-specifically and species-dependently imprinted gene, regulated by epigenetic modifications. The diversity of Igf-2r imprinting suggests that the success of animal cloning may be species-dependent. To determine the relation between epigenetic modifications and Igf-2r expression in cattle, and explore whether this gene was correctly imprinted and reprogrammed after nuclear transfer, we quantified Igf-2r mRNA in a cattle cell line after treated with an inhibitor of DNA methylation transferase or an inhibitor of histone deacetylase, and confirmed that DNA methylation and histone acetylation could regulate this gene expression. CpG island searching showed that there is a conservative imprinting control region (ICR) within the second intron of Igf-2r in cattle, analogous to mice and sheep, regulating this gene imprinting. DNA methylation analysis in sperm and blood cells showed that DNA methylation at Igf-2r ICR2 was reprogrammed in normal cattle. The methylation at Igf-2r ICR2 showed significant variation in tissues, such as blood, liver, brain, heart and heart. It suggested that Igf-2r imprinting was tissue-specifically regulated. In cloned cattle, DNA methylation at Igf-2r ICR2 was markedly altered in comparison with normal fetus, while patterns of DNA methylation at Igf-2r 3'-UTR (3-terminal untranslated region) were similar to normal fetus, it indicated that 3'-UTR was not significantly altered by cloning procedures, but DNA methylation at the locus of gene imprinting was disrupted and not completely reprogrammed after nuclear transfer.  相似文献   

7.
The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.Key words: genomic imprinting, DNA methylation, Gtl2, secondary DMR, epigenetics  相似文献   

8.
Genomic imprinting is a form of epigenetic gene regulation that results in expression from a single allele in a parent-of-origin-dependent manner. This form of monoallelic expression affects a small but growing number of genes and is essential to normal mammalian development. Despite extensive studies and some major breakthroughs regarding this intriguing phenomenon, we have not yet fully characterized the underlying molecular mechanisms of genomic imprinting. This is in part due to the complexity of the system in that the epigenetic markings required for proper imprinting must be established in the germline, maintained throughout development, and then erased before being re-established in the next generation's germline. Furthermore, imprinted gene expression is often tissue or stage-specific. It has also become clear that while imprinted loci across the genome seem to rely consistently on epigenetic markings of DNA methylation and/or histone modifications to discern parental alleles, the regulatory activities underlying these markings vary among loci. Here, we discuss different modes of imprinting regulation in mammals and how perturbations of these systems result in human disease. We focus on the mechanism of genomic imprinting mediated by insulators as is present at the H19/Igf2 locus, and by non-coding RNA present at the Igf2r and Kcnq1 loci. In addition to imprinting mechanisms at autosomal loci, what is known about imprinted X-chromosome inactivation and how it compares to autosomal imprinting is also discussed. Overall, this review summarizes many years of imprinting research, while pointing out exciting new discoveries that further elucidate the mechanism of genomic imprinting, and speculating on areas that require further investigation.  相似文献   

9.
10.
11.
12.
13.
《Epigenetics》2013,8(8):1012-1020
The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.  相似文献   

14.
Endosperm gene imprinting and seed development   总被引:4,自引:0,他引:4  
Imprinting occurs in the endosperm of flowering plants. Endosperm, produced by fertilization of the central cell in the female gametophyte, is essential for embryo and seed development. Several imprinted genes play an important role in endosperm development. The mechanism of gene imprinting involves DNA methylation and histone modification. DNA methylation is actively removed at the imprinted alleles to be activated. Histone methylation mediated by the Polycomb group complex provides another layer of epigenetic regulation at the silenced alleles. Endosperm gene imprinting can be uncoupled from seed development when fertilization of the central cell is prevented. Imprinting may be a mechanism to ensure fertilization of the central cell thereby preventing parthenogenic development of the endosperm.  相似文献   

15.
The developmental failure of mammalian parthenogenote has been a mystery for a long time and posed a question as to why bi-parental reproduction is necessary for development to term. In the 1980s, it was proven that this failure was not due to the genetic information itself, but to epigenetic modification of genomic DNA. In the following decade, several studies successfully identified imprinted genes which were differentially expressed in a parent-of-origin-specific manner, and it was shown that the differential expression depended on the pattern of DNA methylation. These facts prompted development of genome-wide systematic screening methods based on DNA methylation and differential gene expression to identify imprinted genes. Recently computational approaches and microarray technology have been introduced to identify imprinted genes/loci, contributing to the expansion of our knowledge. However, it has been shown that the gene silencing derived from genomic imprinting is accomplished by several mechanisms in addition to direct DNA methylation, indicating that novel approaches are further required for comprehensive understanding of genomic imprinting. To unveil the mechanism of developmental failure in mammalian parthenogenote, systematic screenings for imprinted genes/loci have been developed. In this review, we describe genomic imprinting focusing on the history of genome-wide screening.  相似文献   

16.
在哺乳动物中,有一部分特别的基因,它们由于受到印迹而只表达单一亲本的基因,这种表观遗传的修饰现象就是基因组印记,这有别于经典的孟德尔遗传学定律。DNA甲基化是一种重要的表观遗传修饰,主要的修饰部位发生在DNA的CpG岛。它参与了细胞分化,基因组稳定性、基因印记等多种细胞生物学过程,基因印迹的建立和维持是胚胎正常发育的基础,这一过程的实现有赖于各种DNA甲基化转移酶的精确表达和密切的配合。已发现在哺乳动物的基因组中存在着许多的印记基因,DLK1基因为父系表达母源沉默的印记基因,它的表达同样受到DNA甲基化的调节,它首先在神经母细胞瘤发现并克隆,定位于人类染色体14q32,属于表皮生长因子样超家族的成员之一,约有6个外显子。研究表明,DLK1基因在胚胎肝、早期肌肉组织以及造血干细胞等组织中均有表达,人DLK1基因全长1557bp,编码序列含有1152核苷酸,编码383个氨基酸残基,在人、小鼠、绵羊都存在保守序列,它参与多种细胞的增殖、分化并且与相关肿瘤的发生发展有着密切的关系,印迹基因的印迹异常与肿瘤的易感性及发生发展有重要的关系,本文就国内外DLK1基因的研究进展做一综述。  相似文献   

17.
在哺乳动物中,有一部分特别的基因,它们由于受到印迹而只表达单一亲本的基因,这种表观遗传的修饰现象就是基因组印记,这有别于经典的孟德尔遗传学定律。DNA甲基化是一种重要的表观遗传修饰,主要的修饰部位发生在DNA的CpG岛,它参与了细胞分化,基因组稳定性、基因印记等多种细胞生物学过程,基因印迹的建立和维持是胚胎正常发育的基础,这一过程的实现有赖于各种DNA甲基化转移酶的精确表达和密切的配合。已发现在哺乳动物的基因组中存在着许多的印记基因,DLK1基因为父系表达母源沉默的印记基因,它的表达同样受到DNA甲基化的调节,它首先在神经母细胞瘤发现并克隆,定位于人类染色体14q32,属于表皮生长因子样超家族的成员之一,约有6个外显子。研究表明,DLK1基因在胚胎肝、早期肌肉组织以及造血干细胞等组织中均有表达,人DLK1基因全长1557bp,编码序列含有1152核苷酸,编码383个氨基酸残基,在人、小鼠、绵羊都存在保守序列,它参与多种细胞的增殖、分化并且与相关肿瘤的发生发展有着密切的关系,印迹基因的印迹异常与肿瘤的易感性及发生发展有重要的关系,本文就国内外DLK1基因的研究进展做一综述。  相似文献   

18.
Genomic imprinting is an epigenetic process by which specific gene regions are marked by the male and the female germ lines by histone modifications and DNA methylation, so that only the paternal allele or only the maternal allele of a gene is active. Genomic imprints are erased in primordial germ cells, newly established during later stages of germ cell development and stably inherited through somatic cell divisions during postzygotic development. Defects in imprint erasure, establishment or maintenance result in aberrant epigenetic patterns and expression profiles and can cause specific diseases. Imprinting defects can occur spontaneously without any DNA sequence change (primary imprinting defect) or as the result of a mutation in a cis-regulatory element or a trans-acting factor (secondary imprinting defect). The distinction between primary and secondary imprinting defects is important for assessing the risk of recurrence in affected families.  相似文献   

19.
20.
Exposure to endocrine disruptors is associated with developmental defects. One compound of concern, to which humans are widely exposed, is bisphenol A (BPA). In model organisms, BPA exposure is linked to metabolic disorders, infertility, cancer, and behavior anomalies. Recently, BPA exposure has been linked to DNA methylation changes, indicating that epigenetic mechanisms may be relevant. We investigated effects of exposure on genomic imprinting in the mouse as imprinted genes are regulated by differential DNA methylation and aberrant imprinting disrupts fetal, placental, and postnatal development. Through allele-specific and quantitative real-time PCR analysis, we demonstrated that maternal BPA exposure during late stages of oocyte development and early stages of embryonic development significantly disrupted imprinted gene expression in embryonic day (E) 9.5 and 12.5 embryos and placentas. The affected genes included Snrpn, Ube3a, Igf2, Kcnq1ot1, Cdkn1c, and Ascl2; mutations and aberrant regulation of these genes are associated with imprinting disorders in humans. Furthermore, the majority of affected genes were expressed abnormally in the placenta. DNA methylation studies showed that BPA exposure significantly altered the methylation levels of differentially methylated regions (DMRs) including the Snrpn imprinting control region (ICR) and Igf2 DMR1. Moreover, exposure significantly reduced genome-wide methylation levels in the placenta, but not the embryo. Histological and immunohistochemical examinations revealed that these epigenetic defects were associated with abnormal placental development. In contrast to this early exposure paradigm, exposure outside of the epigenetic reprogramming window did not cause significant imprinting perturbations. Our data suggest that early exposure to common environmental compounds has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号