首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phage display is achieved by fusing polypeptide libraries to phage coat proteins. The resulting phage particles display the polypeptides on their surfaces and they also contain the encoding DNA. Library members with particular functions can be isolated with simple selections and polypeptide sequences can be decoded from the encapsulated DNA. The technology's success depends on the efficiency with which polypeptides can be displayed on the phage surface, and significant progress has been made in engineering M13 bacteriophage coat proteins as improved phage display platforms. Functional display has been achieved with all five M13 coat proteins, with both N- and C-terminal fusions. Also, coat protein mutants have been designed and selected to improve the efficiency of heterologous protein display, and in the extreme case, completely artificial coat proteins have been evolved specifically as display platforms. These studies demonstrate that the M13 phage coat is extremely malleable, and this property can be used to engineer the phage particle specifically for phage display. These improvements expand the utility of phage display as a powerful tool in modern biotechnology.  相似文献   

2.
3.
Analysis of molecular events in T4-infected Escherichia coli has revealed some of the most important principles of biology, including relationships between structures of genes and their products, virus-induced acquisition of metabolic function, and morphogenesis of complex structures through sequential gene product interaction rather than sequential gene activation. T4 bacteriophages and related strains were applied in the first formulations of many fundamental biological concepts. These include the unambiguous recognition of nucleic acids as the genetic material, the definition of the gene by fine-structure mutation, recombinational and functional analyses, the demonstration that the genetic code is triplet, the discovery of mRNA, the importance of recombination and DNA replications, light-dependent and light-independent DNA repair mechanisms, restriction and modification of DNA, self-splicing of intron/exon arrangement in prokaryotes, translation bypassing and others. Bacteriophage T4 possesses unique features that make it a good tool for a multicomponent vaccine platform. Hoc/Soc-fused antigens can be assembled on the T4 capsid in vitro and in vivo. T4-based phage display combined with affinity chromatography can be applied as a new method for bacteriophage purification. The T4 phage display system can also be used as an attractive approach for cancer therapy. The data show the efficient display of both single and multiple HIV antigens on the phage T4 capsid and offer insights for designing novel particulate HIV or other vaccines that have not been demonstrated by other vector systems.  相似文献   

4.
Two family 11 endoxylanases (EC 3.2.1.8) were functionally displayed on the surface of bacteriophage M13. The genes encoding endo-1,4-xylanase I from Aspergillus niger (ExlA) and endo-1,4-xylanase A from Bacillus subtilis (XynA) were fused to the gene encoding the minor coat protein g3p in phagemid vector pHOS31. Phage rescue resulted in functional monovalent display of the enzymes as was demonstrated by three independent tests. Firstly, purified recombinant phage particles showed a clear hydrolytic activity in an activity assay based on insoluble, chromagenic arabinoxylan substrate. Secondly, specific binding of endoxylanase displaying phages to immobilized endoxylanase inhibitors was demonstrated by interaction ELISA. Finally, two rounds of selection and amplification in a biopanning procedure against immobilized endoxylanase inhibitor were performed. Phages displaying endoxylanases were strongly enriched from background phages displaying unrelated proteins. These results open perspectives to use phage display for analysing protein-protein interactions at the interface between endoxylanases and their inhibitors. In addition, this technology should enable engineering of endoxylanases into novel variants with altered binding properties towards endoxylanase inhibitors.  相似文献   

5.
Phage display relies on an iterative cycle of selection and amplification of random combinatorial libraries to enrich the initial population of those peptides that satisfy a priori chosen criteria. The effectiveness of any phage display protocol depends directly on library amino acid sequence diversity and the strength of the selection procedure. In this study we monitored the dynamics of the selective pressure exerted by the host organism on a random peptide library in the absence of any additional selection pressure. The results indicate that sequence censorship exerted by Escherichia coli dramatically reduces library diversity and can significantly impair phage display effectiveness.  相似文献   

6.
Novel statistical methods have been developed and used to quantitate and annotate the sequence diversity within combinatorial peptide libraries on the basis of small numbers (1-200) of sequences selected at random from commercially available M13 p3-based phage display libraries. These libraries behave statistically as though they correspond to populations containing roughly 4.0+/-1.6% of the random dodecapeptides and 7.9+/-2.6% of the random constrained heptapeptides that are theoretically possible within the phage populations. Analysis of amino acid residue occurrence patterns shows no demonstrable influence on sequence censorship by Escherichia coli tRNA isoacceptor profiles or either overall codon or Class II codon usage patterns, suggesting no metabolic constraints on recombinant p3 synthesis. There is an overall depression in the occurrence of cysteine, arginine and glycine residues and an overabundance of proline, threonine and histidine residues. The majority of position-dependent amino acid sequence bias is clustered at three positions within the inserted peptides of the dodecapeptide library, +1, +3 and +12 downstream from the signal peptidase cleavage site. Conformational tendency measures of the peptides indicate a significant preference for inserts favoring a beta-turn conformation. The observed protein sequence limitations can primarily be attributed to genetic codon degeneracy and signal peptidase cleavage preferences. These data suggest that for applications in which maximal sequence diversity is essential, such as epitope mapping or novel receptor identification, combinatorial peptide libraries should be constructed using codon-corrected trinucleotide cassettes within vector-host systems designed to minimize morphogenesis-related censorship.  相似文献   

7.
We report display of the complete protease inhibitor (Kunitz) domain, BPTI, on the surface of bacteriophage M13 as a fusion to the gene III product. Phage that display BPTI bind specifically to anti-BPTI antibodies, trypsin and anhydrotrypsin. A point mutation of BPTI [Lys15-->Leu(K15L)] alters the binding specificity of fusion phage such that a human neutrophil elastase-binding phenotype is conferred while a trypsin-binding phenotype is eliminated. Phage were eluted from an immobilized protease with step gradients of decreasing pH. Phage that display Kunitz domains having higher affinity for the immobilized protease exhibit characteristic pH elution phenotypes, indicating that bound display phage can be selectively recovered from an affinity matrix. Utilization of this technology should enable the selection of remodeled protease inhibitors exhibiting novel binding specificities.  相似文献   

8.
9.
R N Konings 《FEBS letters》1973,35(1):155-160
  相似文献   

10.
11.
Filamentous bacteriophage, long and thin filaments that are secreted from the host cells without killing them, have been an antithesis to the standard view of head-and-tail bacterial killing machines. Episomally replicating filamentous phage Ff of Escherichia coli provide the majority of information about the principles and mechanisms of filamentous phage infection, episomal replication and assembly. Chromosomally- integrated "temperate" filamentous phage have complex replication and integration, which are currently under active investigation. The latter are directly or indirectly implicated in diseases caused by bacterial pathogens Vibrio cholerae, Pseudomonas aeruginosa and Neisseria meningitidis. In the first half of the review, both the Ff and temperate phage are described and compared. A large section of the review is devoted to an overview of phage display technology and its applications in nanotechnology.  相似文献   

12.
Yen M  Yin J 《BioTechniques》2007,43(1):31, 33, 35 passim
Phage display has been used as a high-throughput platform for identifying proteins or peptides with desired binding or catalytic activities from a complex proteome. Recently, phage display has been applied to profile the catalytic activities of posttranslational modification (PTM) enzymes. Here, we highlight recent work elucidating the downstream targets of PTM enzymes by phage display, including the genome-wide profiling of biosynthetic enzymes subject to phosphopantetheinyl transferase (PPTase) modification.  相似文献   

13.
High-density functional display of proteins on bacteriophage lambda   总被引:4,自引:0,他引:4  
We designed a bacteriophage lambda system to display peptides and proteins fused at the C terminus of the head protein gpD of phage lambda. DNA encoding the foreign peptide/protein was first inserted at the 3' end of a DNA segment encoding gpD under the control of the lac promoter in a plasmid vector (donor plasmid), which also carried lox P(wt) and lox P(511) recombination sequences. Cre-expressing cells were transformed with this plasmid and subsequently infected with a recipient lambda phage that carried a stuffer DNA segment flanked by lox P(wt) and lox P(511) sites. Recombination occurred in vivo at the lox sites and Amp(r) cointegrates were formed. The cointegrates produced recombinant phage that displayed foreign protein fused at the C terminus of gpD. The system was optimised by cloning DNA encoding different length fragments of HIV-1 p24 (amino acid residues 1-72, 1-156 and 1-231) and the display was compared with that obtained with M13 phage. The display on lambda phage was at least 100-fold higher than on M13 phage for all the fragments with no degradation of displayed products. The high-density display on lambda phage was superior to that on M13 phage and resulted in selective enrichment of epitope-bearing clones from gene-fragment libraries. Single-chain antibodies were displayed in functional form on phage lambda, strongly suggesting that correct disulphide bond formation takes place during display.This lambda phage display system, which avoids direct cloning into lambda DNA and in vitro packaging, achieved cloning efficiencies comparable to those obtained with any plasmid system. The high-density display of foreign proteins on bacteriophage lambda should be extremely useful in studying low-affinity protein-protein interactions more efficiently compared to the M13 phage-based system.  相似文献   

14.
Numerous examples of phage display applied to soluble proteins demonstrate the power of the technique for protein engineering, affinity reagent discovery and structure-function studies. Recent reports have expanded phage display to include membrane proteins (MPs). The scope and limitations of MP display remain undefined. Therefore, we report data from the phage display of representative types of membrane-associated proteins including plasma, nuclear, peripheral, single and multipass. The peripheral MP neuromodulin displays robustly with packaging by conventional M13-KO7 helper phage. The monotopic MP Nogo-66 can also display on the phage surface, if packaged by the modified M13-KO7+ helper phage. The modified phage coat of KO7+ can better mimic the zwitterionic character of the plasma membrane. Four examples of putatively α-helical, integral MPs failed to express as fusions to an anchoring phage coat protein and therefore did not display on the phage surface. However, the β-barrel MPs ShuA (Shigella heme uptake A) and MOMP (major outer membrane protein), which pass through the membrane 22 and 16 times, respectively, can display surprisingly well on the surfaces of both conventional and KO7+ phages. The results provide a guide for protein engineering and large-scale mutagenesis enabled by the phage display of MPs.  相似文献   

15.
The M13 phage assembles in the inner membrane of Escherichia coli. During maturation, about 2,700 copies of the major coat protein move from the membrane onto a single-stranded phage DNA molecule that extrudes out of the cell. The major coat protein is synthesized as a precursor, termed procoat protein, and inserts into the membrane via a Sec-independent pathway. It is processed by a leader peptidase from its leader (signal) peptide before it is assembled onto the phage DNA. The transmembrane regions of the procoat protein play an important role in all these processes. Using cysteine mutants with mutations in the transmembrane regions of the procoat and coat proteins, we investigated which of the residues are involved in multimer formation, interaction with the leader peptidase, and formation of M13 progeny particles. We found that most single cysteine residues do not interfere with the membrane insertion, processing, and assembly of the phage. Treatment of the cells with copper phenanthroline showed that the cysteine residues were readily engaged in dimer and multimer formation. This suggests that the coat proteins assemble into multimers before they proceed onto the nascent phage particles. In addition, we found that when a cysteine is located in the leader peptide at the -6 position, processing of the mutant procoat protein and of other exported proteins is affected. This inhibition of the leader peptidase results in death of the cell and shows that there are distinct amino acid residues in the M13 procoat protein involved at specific steps of the phage assembly process.  相似文献   

16.
The cos-site of lambda phage from pHC79 cosmide is transferred to DNA from M13 mp18 phage. The recombinant DNA thus obtained (MC18) is efficiently packaged into lambda proteins in vitro. The BamHI-HindIII fragment of pGP588 (a pBR322 derivatives containing fragment of human DNA) is subcloned into MC18. Although this pGP588 fragment contains numerous Alu repeats, no essential rearrangements of the insert were revealed. The efficiency infection by recombinant DNA packaged with lambda proteins is about 1 X 10(5) pfu/microgram DNA, whereas in the similar conditions the efficiency of lambda EMBL3A was 1 X 10(6) pfu/microgram. It is assumed that the MC vectors might be suitable for cloning and sequencing large fragments either with cohesive or blunt ends. It opens also the way to construct genomic libraries in single-stranded phages.  相似文献   

17.
Selecting high-affinity binding proteins by monovalent phage display   总被引:20,自引:0,他引:20  
H B Lowman  S H Bass  N Simpson  J A Wells 《Biochemistry》1991,30(45):10832-10838
Variants of human growth hormone (hGH) with increased affinity and specificity for the hGH receptor were isolated using an improved phage display system. Nearly one million random mutants of hGH were generated at 12 sites previously shown to modulate binding to the hGH receptor or human prolactin (hPRL) receptor. The mutant hormones were displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. After three to six cycles of enrichment for hGH-phage particles that bound to hGH receptor beads, we isolated hGH mutants that exhibited consensus binding sequences for the hGH receptor. Residues previously identified as important for hGH receptor binding by alanine-scanning mutagenesis were more highly conserved by this selection method. However, other residues nearby were not optimal, and by mutating them, hormone variants having greater affinity and selectivity for the hGH receptor were isolated. This approach should be useful for those who wish to modify and understand the energetics of protein-ligand interfaces.  相似文献   

18.
Summary The limited ability of ultraviolet (UV)-irradiated E. coli cells to W-reactivate UV-irradiated, single-stranded DNA phages fd and M13 was investigated. The kinetics of induction for W-reactivation of UV-irradiated fd phage are different from that for other SOS functions. W-reactivation of UV-irradiated M13 phage was studied using phage particles that contain at least two single-stranded DNA genomes. No effect on the extent of W-reactivation of diploid phage was observed, compared to that of normal haploid phage, indicating that the mechanism of W-reactivation of single-stranded DNA phages does not involve recombination between partially replicated genomes.  相似文献   

19.
Molecular Genetics and Genomics - The limited ability of ultraviolet (UV)-irradiated E. coli cells to W-reactivate UV-irradiated, single-stranded DNA phages fd and M13 was investigated. The...  相似文献   

20.
To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in ∼300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号