首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Surface plasmon resonance-based biosensors enable the interaction between biomolecules to be monitored in real time with a label-free assay format. In the present study, the technique was used to assess the interaction between exopolysaccharides (EPS) and different milk proteins. The EPS were derived from three homopolysaccharide (HoPS)-producing Lactobacilli strains; Lactobacillus sakei, Lactobacillus plantarum, and Lactobacillus salvarius. The purified milk proteins applied were β-casein, β-lactoglobulin, and κ-casein. The results show that the binding capacity depends on the pH and decreases with increasing pH. HoPS from L. salvarius and L. sakei provided the highest binding response and interacted with κ-casein at all the tested pH values, i.e. in the range 4.0−5.5, and with β-casein at pH 4.0−5.0. When examined at pH 4.0, only HoPS from L. salvarius and L. sakei interacted with β-lactoglobulin. Under the tested conditions, HoPS from L. plantarum showed always either a lower binding response or no binding at all compared with HoPS from L. salvarius and L. sakei.  相似文献   

2.
Methods for registration of intermolecular interactions based on the phenomenon of surface plasmon resonance (SPR) have become one of the most efficient tools to solve fundamental and applied problems of analytical biochemistry. Nevertheless, capabilities of these methods are often insufficient to detect low concentrations of analytes or to screen large numbers of objects. That is why considerable efforts are directed at enhancing the sensitivity and efficiency of SPR-based measurements. This review describes the basic principles of the detection of intermolecular interactions using this method, provides a comparison of various types of SPR detectors, and classifies modern approaches to enhance sensitivity and efficiency of measurements.  相似文献   

3.
Heparin and related heparan sulfate interact with a number of cytokines and growth factors, thereby playing an essential role in many physiological and pathophysiological processes by involving both signal transduction and the regulation of the tissue distribution of cytokines/growth factors. Follistatin (FS) is an autocrine protein with a heparin-binding motif that serves to regulate the cell proliferative activity of the paracrine hormone, and member of the TGF-β family, activin A (ActA). Follistatin is currently under investigation as an antagonist of another TGF-β family member, myostatin (Mstn), for the promotion of muscle growth in diseases associated with muscle atrophy. In this study, we employ surface plasmon resonance (SPR) spectroscopy to dissect the binding interactions between the heparin polysaccharide and both free follistatin (FS288) and its complexes (FS288-ActA and FS288-Mstn). FS288 complexes show much higher heparin binding affinity than FS288 alone. SPR solution competition studies using heparin oligosaccharides showed that the binding of FS288 and its complex to heparin is dependent on chain length. Full chain heparin or large oligosaccharides, having 18-20 sugar residues, show the highest binding activity for FS288 and the FS288-ActA complex, whereas smaller heparin molecules could interact with the FS288-Mstn complex. These interactions were also analyzed in normal physiological buffers and at different salt concentrations and pH values. Unbound follistatin was much more sensitive to all salt concentrations of >150 mM. The binding of heparin to the FS288-ActA complex was disrupted at 500 mM salt, whereas it was actually strengthened for the FS288-Mstn complex. At acidic pH values, binding of heparin to FS288 and the FS288-ActA complex was enhanced. While slightly acidic pH values (pH 6.2 and 5.2) enhanced the binding of the FS288-Mstn complex to heparin, at pH 4 heparin binding was inhibited. Overall, these studies demonstrate that binding of a specific ligand to FS288 differentially regulates its affinity and behavior for heparin molecules.  相似文献   

4.
Qu  Binnan  Wang  Xiaogang  Li  Bowen  Chen  Peiqi  Nie  Qiuyue 《Plasmonics (Norwell, Mass.)》2020,15(6):1591-1597

In this paper, we propose a novel sub-wavelength plasma structure that can effectively enhance surface plasmon resonance (SPR) to achieve a significant local field. On the basis of a plasma ring structure, we add a slit and two thin plasma layers, working as a metal-insulator-metal (MIM) waveguide at a specific incident wave frequency and generate the Fabry-Perot resonance (FPR). The structure thus couples the incident wave energy to the vicinity of the slit and intensifies the SPR inside the plasma ring. In addition, we also find the coupling and competing between SPR and FPR. For the coupling mode, the average field enhancement in the ring is up to a factor of 9.7. Moreover, the optimized thickness of the plasma layer is much thinner than the skin depth of the plasma to ensure the incident wave easily entering the MIM waveguide. We further calculate the dispersion relationship of surface plasmon polaritons in the waveguide cavity. The simulation results and theoretical dispersion function are in good agreements.

  相似文献   

5.
Scattering field interactions and surface plasmon resonance (SPR) in coupled silver nanospheres are simulated by using the finite-element method, which includes the influences of near-field enhancements of electric field by the particle sizes, separation distances, propagation directions, as well as the polarizations of the incident wave. The proposed structures exhibit a red- and blue-shifted that can be tuned by varying the particle sizes and the separation distances, respectively. Implications for surface-enhance Raman scattering and nano-optics are discussed in three-dimensional models. The evolution of SPR and nano-photonic device with the structural variations can be designed in a controlled manner.  相似文献   

6.
Surface plasmon resonance imaging and surface plasmon induced fluorescent are sensitive tools for surface analysis. However, existing instruments in this area have provided limited capability for concurrent detection, and may be large and expensive. We demonstrate a highly cost-effective system capable of concurrent surface plasmon resonance microscopy (SPRM) and surface plasmon resonance-enhanced fluorescence (SPRF) imaging, allowing for simultaneous monitoring of reflectivity and fluorescence from discrete spatial regions. The instrument allows for high performance imaging and quantitative measurements with surface plasmon resonance, and surface plasmon induced fluorescence, with inexpensive off-the-shelf components.  相似文献   

7.
We have demonstrated that plasma treatments of silver nanoparticles bring about blueshift and narrowing in their localized surface plasmon resonance. Surface-enhanced Raman scattering analysis revealed that hydrocarbons adsorbed on silver surfaces were removed effectively by plasma exposure. It was found that the decrease in Raman line intensity for hydrocarbons was correlated well with the blueshift. Our findings indicate that one of the most important factors for remarkable differences in plasmon resonance wavelengths and line widths reported for the silver nanoparticles supported on substrates between most of the experimental data and calculations by Mie’s theory is due to the impurity adsorption on silver surfaces.  相似文献   

8.
Tunable properties of localized surface plasmon resonances (LSPR) of gold-dielectric multilayered nanoshells are studied by quasi-static theory and plasmon hybridization theory. Multilayered nanoshells with the gold core and nanoshell separated by a spacer layer exhibit strong coupling between the core and nanoshell plasmon resonance modes. It is found that the absorption spectra characteristics of LSPR are sensitive to multiple parameters including the surrounding medium refractive index, the dielectric constant of spacer layer, the radius of inner core gold sphere, outer shell layer thickness, and their coupling strength. The results show that LSPR is mainly influenced by the ratio of spacer layer dielectric constant ε 2 to surrounding medium dielectric constant ε 4. Absorption spectrum of \(\left |\omega _{-}^{+}\right \rangle \) mode is red-shifted with increasing core radius when ε 2 > ε 4. It is surprising to find that LSPR is blue-shifted with increasing core radius when ε 2 < ε 4, and no shift when ε 2 = ε 4. These interesting contrary shifts of \(\left |\omega _{-}^{+}\right \rangle \) mode with different ratios ε 2/ε 4 are well analysed with plasmon hybridization theory and the distributions of induced charges interaction between the inner core and outer shell. In addition, for the sake of clarity, the distributions of electric filed intensity at their plasmon resonance wavelengths are also calculated. This work may provide an alternative approach to analyse property of the core-shell nanoshell particles based on plasmon hybridization theory and the induced charge interaction.  相似文献   

9.
Proteins of plasma membrane could be an index of purification of the plasma membrane of animal cells. A convenient method is proposed for determining the plasma membrane proteins by a surface plasmon resonance (SPR) biosensor. Biotinylated proteins were observed only in the peripheral areas of MOLT-4 cells which were treated by 5-[5-(N-succinimidyloxycarbonyl) pentylamido] hexyl-d-biotinamide. The proteins on HeLa cells were also biotinylated. And then the membrane samples of the HeLa cells were injected onto the avidin-immobilized SPR-surface, and components bound non-specifically on the surface were removed by a washout solution. The amount of biotinylated protein (BP) was determined directly from the absolute resonance unit (RU) after injection of the washout solution. In the method a reference surface was not needed. The amount of BP bound to the surface was gradually attenuated with the repeated injection, and a method for calibrating the RU value was introduced by considering the ratio of attenuation by every injection. The correlation between the BP titer calculated by the calibration and the theoretically-estimated one was greatly improved. Three cycles of the BP determination on a sensor surface was performed successfully. During the purification process of membrane fractions, the degree of purification as judged by the BP titer was in good agreement with the degree of increase in aminopeptidase N activity in the membrane fraction. Thus, the BP titer could be used as an index for purification of plasma membrane.  相似文献   

10.
THE processes whereby nucleoprotein core particles of certain animal viruses become enveloped by and bud off from host cell membranes can be studied by preparing membrane1,2 or “sedimentable”3 fractions from infected cells and examining them for the presence of virus proteins. We find that similar experiments designed to monitor assembly of vesicular stoma-titus virus (VSV) at sites along the plasma membranes of HeLa cells are best interpreted after first investigating the possibility that virus proteins adsorb to plasma membranes during cell fractionation and membrane isolation. In this report, we show that at 0° C the membrane protein of VSV, among other virus proteins, adsorbs to plasma membranes isolated from uninfected HeLa cells. With appropriate pulse-chase experiments, however, we are able to demonstrate the progressive association, in vivo, of VSV core protein with plasma membranes of infected HeLa cells.  相似文献   

11.
Recently, long-range surface plasmon resonance (LRSPR) sensor has attracted a great deal of attention as a potentially non-destructive and label-free technique for cellular studies in real time. Thus, much effort has been placed on the fabrication and optimization of multilayered structure required for the excitation of LRSPR. In this work, a detailed study about the influence of both plasma polymerized dielectric buffer layer (DBL) and thin gold film on the excitation of LRSPR was performed. The DBLs of different thicknesses were deposited directly onto SF11 glass slides by radio frequency plasma polymerization (pp) of perfluorooctyl ethylene (PFOE). Thereafter, Au films of different thicknesses were thermally evaporated onto the ppPFOE layers. Atomic force microscopy (AFM) results suggest that the resulting SF11/ppPFOE/Au structure has a smooth surface regardless of Au film’s thickness. LRSPR measurements indicate that the excitation of LRSPR relies not only on the thickness of the ppPFOE buffer layer, but also on the thickness and optical property of thin Au film. Theoretical simulation based on Fresnel’s equation allows for the determination of both the thickness and optical constant of each layer supporting the LRSPR, and also enables us to predict the optimum combination of ppPFOE and Au film in a LRSPR sensor. The performance of various LRSPR sensors to monitor the bulk refractive index variation has also been investigated.  相似文献   

12.
Radioactive, chromogenic, fluorescent and other labels have long provided the basis of detection systems for biomolecular interactions including immunoassays and receptor binding studies. However there has been unprecedented growth in a number of powerful label free biosensor technologies over the last decade. While largely at the proof-of-concept stage in terms of clinical applications, the development of more accessible platforms may see surface plasmon resonance (SPR) emerge as one of the most powerful optical detection platforms for the real-time monitoring of biomolecular interactions in a label-free environment.In this review, we provide an overview of SPR principles and current and future capabilities in a diagnostic context, including its application for monitoring a wide range of molecular markers of disease. The advantages and pitfalls of using SPR to study biomolecular interactions are discussed, with particular emphasis on its potential to differentiate subspecies of analytes and the inherent ability for quantitation through calibration-free concentration analysis (CFCA). In addition, recent advances in multiplex applications, high throughput arrays, miniaturisation, and enhancements using noble metal nanoparticles that promise unprecedented sensitivity to the level of single molecule detection, are discussed.In summary, while SPR is not a new technique, technological advances may see SPR quickly emerge as a highly powerful technology, enabling rapid and routine analysis of molecular interactions for a diverse range of targets, including those with clinical applicability. As the technology produces data quickly, in real-time and in a label-free environment, it may well have a significant presence in future developments in lab-on-a-chip technologies including point-of-care devices and personalised medicine.  相似文献   

13.
针对一种新兴生物检测方法——表面等离子体波共振(SPR)技术,文中SPR传感系统采用偏振干涉和角度调制方案,使SPR传感灵敏度与光复反射系数的模和相位都相关,从而实现较大线形范围内的高灵敏测量。同时开展了该SPR传感系统在环保领域的应用研究,SPR共振信号可实时随甲烷含量线性改变,气体检测灵敏度达到1 070ppm,实验结果验证了这种SPR传感技术的检测性能并显示了其在环保监测领域的应用潜力。  相似文献   

14.
SPR技术在免疫学研究中的应用   总被引:1,自引:0,他引:1  
表面等离子共振(Surface Plasmon Resonance,SPR)技术是研究生物分子相互作用的强有力工具之一,该技术使生物分子之间相互作用的实时检测成为可能,并且灵敏度高、无需标记.通过分析传感图谱及分子相互作用的响应值获取分子相互作用的模式和动力学常数等方面的信息,并且获得的信息是能够定性和定量.SPR技术现在已广泛应用于生物、化学、免疫学研究及新药开发等领域.本文主要就SPR技术在免疫学研究中抗体活性检测、抗原表位预测等方面的应用进行了综述.  相似文献   

15.
The labeling strategy with gold nanoparticles for the conventional surface plasmon resonance (SPR) signal enhancement has been frequently used for the sensitive determination of small molecules binding to its interaction partners. However, the influence of gold nanoparticles with different size and shape on SPR signal is not known. In this paper, three kinds of gold nanoparticles, namely nanorods, nanospheres, and nanooctahedrons with different size, were prepared and used to investigate their effects on the conventional SPR signal at a fixed excitation wavelength 670 nm. It was found that the SPR signal (i.e., resonant angle shift) was varied with the shapes and sizes of gold nanoparticles in suspension at a fixed concentration due to their different plasmon absorbance bands. For gold nanorods with different longitudinal absorbance bands, three conventional SPR signal regions could be clearly observed when the gold nanorod suspensions were separately introduced onto the SPR sensor chip surface. One region was the longitudinal absorbance bands coinciding with or close to the SPR excitation wavelength that suppressed the SPR angle shift. The second region was the longitudinal absorbance bands at 624 to 639 and 728 to 763 nm that produced a moderate increase on the SPR resonant angle shift. The third region was found for the longitudinal absorbance bands from 700 to 726 nm that resulted in a remarkable increase in the SPR angle shift responses. This phenomenon can be explained on the basis of calculation of the correlation of SPR angle shift response with the gold nanorod longitudinal absorbance bands. For nanospheres and nanooctahedrons, the SPR angle shift responses were found to be particle shape and size dependent in a simple way with a sustaining increase when the sizes of the nanoparticles were increased. Consequently, a guideline for choosing gold nanoparticles as tags is suggested for the SPR determination of small molecules with binding to the immobilized interaction partners.  相似文献   

16.
In this paper, a rough silver core-shell nanoparticle with strong electric field enhancement in the vicinity of a bumpy structure on the silver core-shell surface is reported. A dipolar plasmonic mode of the silver nanoshell is investigated by using the quasi-static approach and plasmon hybridization theory, which analytical results identify the electric field enhancement spectra in which the enhancement is optimized. As the silver shell thickness is small, the hot spots play an important role in the plasmonic field enhancement. In addition, the deposition of a rough silver shell can generate a stronger near-field enhancement near the silver surface which is more desirable than that of a smooth silver shell for sensitive detection based on SPR and surface enhanced Raman scattering (SERS). The plasmonic field enhancement of a bumpy silver core-shell nanoparticle permits the detection and characterization of bovine serum albumin (BSA) protein molecule and hemoglobin solution with a high sensitivity.  相似文献   

17.
基于表面等离子共振的适配体传感器是利用适配体进行高特异性、高灵敏度、高通量检测的新型生物传感器。我们在简要阐述适配体的筛选方法、偶联技术及适配体传感器工作原理的基础上,结合最新的研究结果,对基于表面等离子共振的适配体传感器在生物活性小分子检测、传染病检测、肿瘤标志物检测、食品安全监测等方面的应用研究进展进行了综述。  相似文献   

18.
Protein-protein interactions are pivotal to most, if not all, physiological processes, and understanding the nature of such interactions is a central step in biological research. Surface Plasmon Resonance (SPR) is a sensitive detection technique for label-free study of bio-molecular interactions in real time. In a typical SPR experiment, one component (usually a protein, termed ''ligand'') is immobilized onto a sensor chip surface, while the other (the ''analyte'') is free in solution and is injected over the surface. Association and dissociation of the analyte from the ligand are measured and plotted in real time on a graph called a sensogram, from which pre-equilibrium and equilibrium data is derived. Being label-free, consuming low amounts of material, and providing pre-equilibrium kinetic data, often makes SPR the method of choice when studying dynamics of protein interactions. However, one has to keep in mind that due to the method''s high sensitivity, the data obtained needs to be carefully analyzed, and supported by other biochemical methods. SPR is particularly suitable for studying membrane proteins since it consumes small amounts of purified material, and is compatible with lipids and detergents. This protocol describes an SPR experiment characterizing the kinetic properties of the interaction between a membrane protein (an ABC transporter) and a soluble protein (the transporter''s cognate substrate binding protein).  相似文献   

19.
The surface plasmon energy in spherical silver nanoparticles embedded in silica host matrix depends on the size and temperature of the nanoparticles. The dependences of the surface plasmon energy were studied for silver nanoparticles in the size range 11?C30?nm and in the temperature interval 293?C650?K. As the size of the nanoparticles decreases or the temperature increases, the surface plasmon resonance shifts to red. When the size of the nanoparticles decreases, the scattering rate of the conduction electrons increases, which results in the nonlinear red shift of the surface plasmon resonance. The red shift with temperature is linear for larger nanoparticles and becomes nonlinear for smaller ones. As the temperature of the nanoparticles increases, the volume thermal expansion of the nanoparticles leads to the red shift of the surface plasmon resonance. The thermal volume expansion coefficient depends on the size and temperature. It increases with a decrease of the nanoparticle size and an increase of the temperature.  相似文献   

20.

The aim is to investigate how the sensing features of a surface plasmon resonance sensor based on the Kretschmann configuration are affected when the optical substrate is an anisotropic medium. The investigation considers the use of two different uniaxial anisotropic crystals, one made of barium titanate and another made of lithium niobate, as the optical substrate. It also considered that the sensor operates in the angular interrogation mode at the gold–water interface. The Fresnel equations and the finite element method were employed to determine the sensing features. The present study revealed that both formulations provide almost identical results for the resonance angle (difference less than 1%). On the other hand, the two formulations provide results with significant differences for additional features like the sensitivity and the full width at half maximum.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号