首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a global strategy based on the Bayesian network framework to prioritize the functional modules mediating genetic perturbations and their phenotypic effects among a set of overlapping candidate modules. We take lethality in Saccharomyces cerevisiae and human cancer as two examples to show the effectiveness of this approach. We discovered that lethality is more conserved at the module level than at the gene level and we identified several potentially 'new' cancer-related biological processes.  相似文献   

2.
We have developed a global strategy based on the Bayesian network framework to prioritize the functional modules mediating genetic perturbations and their phenotypic effects among a set of overlapping candidate modules. We take lethality in Saccharomyces cerevisiae and human cancer as two examples to show the effectiveness of this approach. We discovered that lethality is more conserved at the module level than at the gene level and we identified several potentially 'new' cancer-related biological processes.  相似文献   

3.
4.
Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis. Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells maintain a steady population of β-cells despite continuous turnover. We develop a new iterative process that incorporates modular design principles with hierarchical performance optimization targeted for environments with uncertainty and incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion models to design and understand system behavior, and find that certain features often associated with robustness (e.g., multicellular synchronization and noise attenuation) are actually detrimental for tissue homeostasis. We overcome these problems by engineering a new class of genetic modules for 'synthetic cellular heterogeneity' that function to generate beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle mechanism), demonstrate their capacity for enhancing robust control, and provide guidance for experimental implementation with various computational techniques. We found that designing modules for synthetic heterogeneity can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a 'phenotypic sensitivity analysis' method to determine how functional module behaviors combine to achieve optimal system performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships between a module's biochemical rate-constants, its high level functional behavior in isolation, and its impact on overall system performance once integrated.  相似文献   

5.
Systems biology approaches that are based on the genetics of gene expression have been fruitful in identifying genetic regulatory loci related to complex traits. We use microarray and genetic marker data from an F2 mouse intercross to examine the large-scale organization of the gene co-expression network in liver, and annotate several gene modules in terms of 22 physiological traits. We identify chromosomal loci (referred to as module quantitative trait loci, mQTL) that perturb the modules and describe a novel approach that integrates network properties with genetic marker information to model gene/trait relationships. Specifically, using the mQTL and the intramodular connectivity of a body weight–related module, we describe which factors determine the relationship between gene expression profiles and weight. Our approach results in the identification of genetic targets that influence gene modules (pathways) that are related to the clinical phenotypes of interest.  相似文献   

6.
To initiate a system-level analysis of C. elegans DAF-7/TGF-beta signaling, we combined interactome mapping with single and double genetic perturbations. Yeast two-hybrid (Y2H) screens starting with known DAF-7/TGF-beta pathway components defined a network of 71 interactions among 59 proteins. Coaffinity purification (co-AP) assays in mammalian cells confirmed the overall quality of this network. Systematic perturbations of the network using RNAi, both in wild-type and daf-7/TGF-beta pathway mutant animals, identified nine DAF-7/TGF-beta signaling modifiers, seven of which are conserved in humans. We show that one of these has functional homology to human SNO/SKI oncoproteins and that mutations at the corresponding genetic locus daf-5 confer defects in DAF-7/TGF-beta signaling. Our results reveal substantial molecular complexity in DAF-7/TGF-beta signal transduction. Integrating interactome maps with systematic genetic perturbations may be useful for developing a systems biology approach to this and other signaling modules.  相似文献   

7.
8.
9.
It is becoming clear that interconnected functional gene networks, rather than individual genes, govern stem cell self-renewal and differentiation. To identify epigenetic factors that impact on human epidermal stem cells we performed siRNA-based genetic screens for 332 chromatin modifiers. We developed a Bayesian mixture model to predict putative functional interactions between epigenetic modifiers that regulate differentiation. We discovered a network of genetic interactions involving EZH2, UHRF1 (both known to regulate epidermal self-renewal), ING5 (a MORF complex component), BPTF and SMARCA5 (NURF complex components). Genome-wide localization and global mRNA expression analysis revealed that these factors impact two distinct but functionally related gene sets, including integrin extracellular matrix receptors that mediate anchorage of epidermal stem cells to their niche. Using a competitive epidermal reconstitution assay we confirmed that ING5, BPTF, SMARCA5, EZH2 and UHRF1 control differentiation under physiological conditions. Thus, regulation of distinct gene expression programs through the interplay between diverse epigenetic strategies protects epidermal stem cells from differentiation.  相似文献   

10.
Redundancy among dynamic modules is emerging as a potentially generic trait in gene regulatory networks. Moreover, module redundancy could play an important role in network robustness to perturbations. We explored the effect of dynamic-module redundancy in the networks associated to hair patterning in Arabidopsis root and leaf epidermis. Recent studies have put forward several dynamic modules belonging to these networks. We defined these modules in a discrete dynamical framework that was previously reported. Then, we addressed whether these modules are sufficient or necessary for recovering epidermal cell types and patterning. After defining two quantitative estimates of the system's robustness, we also compared the robustness of each separate module with that of a network coupling all the leaf or root modules. We found that, considering certain assumptions, all the dynamic modules proposed so far are sufficient on their own for pattern formation, but reinforce each other during epidermal development. Furthermore, we found that networks of coupled modules are more robust to perturbations than single modules. These results suggest that dynamic-module redundancy might be an important trait in gene regulatory networks and point at central questions regarding network evolution, module coupling, pattern robustness and the evolution of development.  相似文献   

11.
12.
Tu K  Yu H  Zhu M 《BioTechniques》2005,38(2):277-283
Existing analysis tools to study the collective properties of gene functional modules cannot return highly homogeneous modules and do not provide quantitative measures of module activity level. By partitioning genes according to multiple gene functional categorization principles and summarizing gene expression values into module expression values, MEGO (module expression based on gene ontology), a standalone microarray data analysis program, is able to extract highly activated gene functional modules that are of much interest to microarray experimenters. With multiple functional categorization principles simultaneously introduced in MEGO, the partition of genes is more delicate, and the collective property of a group of genes is sharpened and easier to capture. The quantitative measures of module activity levels returned by MEGO give users a quick impression of the direction and degree of module regulation. MEGO efficiently determines the answers to frequently asked questions, such as which functional classes have been induced or repressed under a specific experiment and to which levels these functional classes have been affected. MEGO is available free of charge for academic use and may be downloaded from http://www.dxy.cn/mego/MEGOInstall.EXE. Supplementary information can be found on the authors' web page at http://www.dxy.cn/mego/ and at the BioTechniques' web site at http://www. BioTechniques.com/February2005/TuSupplementary.html.  相似文献   

13.
14.
15.
16.
The standard approach for identifying gene networks is based on experimental perturbations of gene regulatory systems such as gene knock-out experiments, followed by a genome-wide profiling of differential gene expressions. However, this approach is significantly limited in that it is not possible to perturb more than one or two genes simultaneously to discover complex gene interactions or to distinguish between direct and indirect downstream regulations of the differentially-expressed genes. As an alternative, genetical genomics study has been proposed to treat naturally-occurring genetic variants as potential perturbants of gene regulatory system and to recover gene networks via analysis of population gene-expression and genotype data. Despite many advantages of genetical genomics data analysis, the computational challenge that the effects of multifactorial genetic perturbations should be decoded simultaneously from data has prevented a widespread application of genetical genomics analysis. In this article, we propose a statistical framework for learning gene networks that overcomes the limitations of experimental perturbation methods and addresses the challenges of genetical genomics analysis. We introduce a new statistical model, called a sparse conditional Gaussian graphical model, and describe an efficient learning algorithm that simultaneously decodes the perturbations of gene regulatory system by a large number of SNPs to identify a gene network along with expression quantitative trait loci (eQTLs) that perturb this network. While our statistical model captures direct genetic perturbations of gene network, by performing inference on the probabilistic graphical model, we obtain detailed characterizations of how the direct SNP perturbation effects propagate through the gene network to perturb other genes indirectly. We demonstrate our statistical method using HapMap-simulated and yeast eQTL datasets. In particular, the yeast gene network identified computationally by our method under SNP perturbations is well supported by the results from experimental perturbation studies related to DNA replication stress response.  相似文献   

17.
Predicting the behavior of living organisms is an enormous challenge given their vast complexity. Efforts to model biological systems require large datasets generated by physical binding experiments and perturbation studies. Genetic perturbations have proven important and are greatly facilitated by the advent of comprehensive mutant libraries in model organisms. Small-molecule chemical perturbagens provide a complementary approach, especially for systems that lack mutant libraries, and can easily probe the function of essential genes. Though single chemical or genetic perturbations provide crucial information associating individual components (for example, genes, proteins or small molecules) with pathways or phenotypes, functional relationships between pathways and modules of components are most effectively obtained from combined perturbation experiments. Here we review the current state of and discuss some future directions for 'combination chemical genetics', the systematic application of multiple chemical or mixed chemical and genetic perturbations, both to gain insight into biological systems and to facilitate medical discoveries.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号