首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial biogenesis requires the import of hundreds of different proteins from the cytosol. Protein import into mitochondria is a multistep pathway that includes recognition of precursor proteins by machinery both in the cytoplasm and on the mitochondrial surface, translocation of the precursor across one or both mitochondrial membranes, and folding of the protein after its import into the organelle. Over the past several years, many components of the import machinery have been identified using both biochemical and genetic methods. Recently, significant progress has been made determining the function of some of these import proteins. One purpose of this minireview is to summarize our current understanding of the import pathway, and to introduce the topics of the minireviews that will follow. The other goal of this minireview is to discuss recent findings suggesting that proteins are translocated across both the mitochondrial inner and outer membranes through aqueous channels.  相似文献   

2.
In recent decades, it has become evident that the condition for normal functioning of mitochondria in higher eukaryotes is the presence of membrane transport systems of macromolecules (proteins and nucleic acids). Natural competence of the mitochondria in plants, animals, and yeasts to actively uptake DNA may be directly related to horizontal gene transfer into these organelles occurring at much higher rate compared to the nuclear and chloroplast genomes. However, in contrast with import of proteins and tRNAs, little is known about the biological role and molecular mechanism underlying import of DNA into eukaryotic mitochondria. In this review, we discuss current state of investigations in this area, particularly specificity of DNA import into mitochondria and its features in plants, animals, and yeasts; a tentative mechanism of DNA import across the mitochondrial outer and inner membranes; experimental data evidencing several existing, but not yet fully understood mechanisms of DNA transfer into mitochondria. Currently available data regarding transport of informational macromolecules (DNA, RNA, and proteins) into the mitochondria do not rule out that the mechanism of protein and tRNA import as well as tRNA and DNA import into the mitochondria may partially overlap.  相似文献   

3.
Transfection of mammalian mitochondria has proved to be notoriously difficult. Whilst there have been sporadic reports of import of foreign nucleic acids into isolated organelles, these imported nucleic acids have never been demonstrated to be functional. Inability to manipulate mitochondrial gene expression has hampered our understanding of RNA processing, maturation and translation in mitochondria. In an attempt to establish a model system for mt-RNA expression, we have electroporated rat liver mitochondria and mitoplasts in the presence of various RNA constructs built around the mitochondrial reporter gene mt-luciferase. Following electroporation, a fraction of the RNA was shown to be stably maintained, mitochondria remained coupled for oxidative phosphorylation and intramitochondrial protein synthesis was unaffected. In no case, however, was this RNA translated.  相似文献   

4.
《The Journal of cell biology》1989,109(6):2603-2616
To identify the membrane regions through which yeast mitochondria import proteins from the cytoplasm, we have tagged these regions with two different partly translocated precursor proteins. One of these was bound to the mitochondrial surface of ATP-depleted mitochondria and could subsequently be chased into mitochondria upon addition of ATP. The other intermediate was irreversibly stuck across both mitochondrial membranes at protein import sites. Upon subfraction of the mitochondria, both intermediates cofractionated with membrane vesicles whose buoyant density was between that of inner and outer membranes. When these vesicles were prepared from mitochondria containing the chaseable intermediate, they internalized it upon addition of ATP. A non-hydrolyzable ATP analogue was inactive. This vesicle fraction contained closed, right-side-out inner membrane vesicles attached to leaky outer membrane vesicles. The vesicles contained the mitochondrial binding sites for cytoplasmic ribosomes and contained several mitochondrial proteins that were enriched relative to markers of inner or outer membranes. By immunoelectron microscopy, two of these proteins were concentrated at sites where mitochondrial inner and outer membranes are closely apposed. We conclude that these vesicles contain contact sites between the two mitochondrial membranes, that these sites are the entry point for proteins into mitochondria, and that the isolated vesicles are still translocation competent.  相似文献   

5.
T Komiya  M Sakaguchi    K Mihara 《The EMBO journal》1996,15(2):399-407
Two ATP-dependent cytosolic chaperones, mitochondrial import stimulation factor (MSF) and hsp70, are known to be involved in the import of precursor proteins into mitochondria. Hsp70 generally recognizes unfolded proteins, while MSF specifically recognizes mitochondrial precursor proteins and targets them to mitochondria in a NEM-sensitive manner. Here we analyzed the relative contribution of these chaperones in the import process and confirmed that the precursor proteins are targeted to mitochondria via two distinct pathways: one requiring MSF and the other requiring hsp70. Both pathways depend on distinct proteinaceous components of the outer mitochondrial membrane. The MSF-dependent pathway is NEM-sensitive and requires the hydrolysis of extra-mitochondrial ATP for the release of MSF from the mitochondrial import receptor, whereas the hsp70-dependent pathway is NEM-sensitive and does not require extra-mitochondrial ATP. The NEM-insensitive, hsp70-dependent import became NEM-sensitive depending on the amount of MSF added. The relative importance of the two pathways appears to be determined by the affinities of MSF and hsp70 for the precursor proteins.  相似文献   

6.
Most of the mitochondrial proteins are synthesized in the cytoplasm as precursors which are then translocated into the organelle. These precursors have a NH2-terminal extension which functions as a mitochondrial targeting signal. The import process through mitochondrial membranes is voltage-dependent; its mechanism is still unknown. Translocation has been proposed to occur through specific channels, thus, indicating the interest of the study of mitochondrial ionic channels. Two anion channels with different electrical characteristics have been described in the outer and the inner membranes. Using the technique of "Tip-Dip", we have shown the existence of a cation channel of large conductance in mitochondria. The characteristics of this channel differ from that of the other mitochondrial anion channels. A positively charged 13-residue synthetic peptide, with the sequence of the amino terminal extremity of the nuclear-coded subunit IV of yeast cytochrome C oxidase, induces a blockade of the cationic channel. From the characteristics of the blockade, it is likely that the channel could be permeable to the peptide. The specificity of this effect suggests that this channel might be involved in protein translocation.  相似文献   

7.
Mitochondrial protein import: two membranes,three translocases   总被引:8,自引:0,他引:8  
Most mitochondrial proteins are synthesised in the cytosol and must be translocated across one or two membranes to reach their functional destination inside mitochondria. Dynamic protein complexes in the outer and inner membranes function as specific machineries that recognise the various kinds of precursor proteins and promote their translocation through protein-conducting channels. At least three major translocase complexes with a high flexibility and versatility are needed to ensure the proper import of precursor proteins into mitochondria.  相似文献   

8.
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long‐standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence‐carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.  相似文献   

9.
Mitochondrial Ceramide and the Induction of Apoptosis   总被引:11,自引:0,他引:11  
In most cell types, a key event in apoptosis is the release of proapoptotic intermembrane space proteins from mitochondria to the cytoplasm. In general, it is the release of these intermembrane space proteins that is responsible for the activation of caspases and DNases that are responsible for the execution of apoptosis. The mechanism for the increased permeability of the mitochondrial outer membrane during the induction phase of apoptosis is currently unknown and highly debated. This review will focus on one such proposed mechanism, namely, the formation of ceramide channels in the mitochondrial outer membrane. Ceramides are known to play a major regulatory role in apoptosis by inducing the release of proapoptotic proteins from the mitochondria. As mitochondria are known to contain the enzymes responsible for the synthesis and hydrolysis of ceramide, there exists a mechanism for regulating the level of ceramide in mitochondria. In addition, mitochondrial ceramide levels have been shown to be elevated prior to the induction phase of apoptosis. Ceramide has been shown to form large protein permeable channels in planar phospholipid and mitochondrial outer membranes. Thus, ceramide channels are good candidates for the pathway with which proapoptotic proteins are released from mitochondria during the induction phase of apoptosis.  相似文献   

10.
Biogenesis of mitochondria depends on the coordinated action of at least six protein translocases present in both mitochondrial membranes. They use different energy sources to drive unidirectional transport of proteins across and into mitochondrial membranes. Here we present an overview on the energetic requirements of different mitochondrial import pathways.  相似文献   

11.
Recent research on the mechanism underlying the interaction of bacterial pathogens with their host has shifted the focus to secreted microbial proteins affecting the physiology and innate immune response of the target cell. These proteins either traverse the plasma membrane via specific entry pathways involving host cell receptors or are directly injected via bacterial secretion systems into the host cell, where they frequently target mitochondria. The import routes of bacterial proteins are mostly unknown, whereas the effect of mitochondrial targeting by these proteins has been investigated in detail. For a number of them, classical leader sequences recognized by the mitochondrial protein import machinery have been identified. Bacterial outer membrane beta-barrel proteins can also be recognized and imported by mitochondrial transporters. Besides an obvious importance in pathogenicity, understanding import of bacterial proteins into mitochondria has a highly relevant evolutionary aspect, considering the endosymbiotic, proteobacterial origin of mitochondria. The review covers the current knowledge on the mitochondrial targeting and import of bacterial pathogenicity factors.  相似文献   

12.
Many essential functions of mitochondrial metabolism have been studied in the past three decades in considerable depth: oxidative phosphorylation, catabolism of fatty acids, role in nitrogen metabolism, and amino acid metabolism. More recently, other aspects attracted much attention like protein translocation into mitochondria, inheritance of mitochondrial DNA, movement of mitochondria, their fusion and fission, and their involvement in apoptosis, ageing, cancer and other cellular processes. Together with these new views on the function of mitochondria, new ideas on the structure of mitochondria emerged. Here we will discuss the current knowledge about how the membranes of mitochondria are organized and how they interact. Interactions between components of the inner and the outer membrane are necessary for a number of central mitochondrial functions such as the channeling of metabolites, coordinated fusion and fission of mitochondria, and protein transport. Some of these interactions appear stable such as the so-called morphological contact sites; others are quite dynamic. Direct evidence that a certain protein is part of morphologically defined contact sites is lacking. Nevertheless, protein translocase complexes of the outer and the inner membrane exhibit stable interactions between the two membranes when precursor proteins are arrested during import into mitochondria. Finally, we discuss possible roles of cristae junctions, another morphologically defined membrane structure in mitochondria.  相似文献   

13.
Proteomic studies have demonstrated that yeast mitochondria contain roughly 1000 different proteins. Only eight of these proteins are encoded by the mitochondrial genome and are synthesized on mitochondrial ribosomes. The remaining 99% of mitochondrial precursors are encoded within the nuclear genome and after their synthesis on cytosolic ribosomes must be imported into the organelle. Targeting of these proteins to mitochondria and their import into one of the four mitochondrial subcompartments--outer membrane, intermembrane space (IMS), inner membrane and matrix--requires various membrane-embedded protein translocases, as well as numerous chaperones and cochaperones in the aqueous compartments. During the last years, several novel protein components involved in the import and assembly of mitochondrial proteins have been identified. The picture that emerges from these exciting new findings is that of highly dynamic import machineries, rather than of regulated, but static protein complexes. In this review, we will give an overview on the recent progress in our understanding of mitochondrial protein import. We will focus on the presequence translocase of the inner mitochondrial membrane, the TIM23 complex and the presequence translocase-associated motor, the PAM complex. These two molecular machineries mediate the multistep import of preproteins with cleavable N-terminal signal sequences into the matrix or inner membrane of mitochondria.  相似文献   

14.
15.
All but a small fraction of the hundreds of proteins in a mitochondrion are synthesized in thecytoplasm and imported into the organelle. Water-filled channels are integral to the process oftranslocating proteins since channels can provide an aqueous pathway through the hydrophobicenvironment of the membrane. The MCC (multiple conductance channel) and PSC(peptide-sensitive channel) are two high-conductance channels previously identified inelectrophysiological studies of mitochondrial membranes. MCC and PSC are the putative pores of the importcomplexes of the inner and outer membranes, respectively. The genetic, biochemical, andbiophysical evidence regarding these assignments are summarized herein. These findingssupport the identification of MCC and PSC as the protein import channels of mitochondria.  相似文献   

16.
To identify yeast cytosolic proteins that mediate targeting of precursor proteins to mitochondria, we developed an in vitro import system consisting of purified yeast mitochondria and a radiolabeled mitochondrial precursor protein whose C terminus was still attached to the ribosome. In this system, the N terminus of the nascent chain was translocated across both mitochondrial membranes, generating a translocation intermediate spanning both membranes. The nascent chain could then be completely chased into the mitochondrial matrix after release from the ribosome. Generation of this import intermediate was dependent on a mitochondrial membrane potential, mitochondrial surface proteins, and was stimulated by proteins that could be released from the ribosomes by high salt. The major salt-released stimulatory factor was yeast nascent polypeptide-associated complex (NAC). Purified NAC fully restored import of salt-washed ribosome-bound nascent chains by enhancing productive binding of the chains to mitochondria. We propose that ribosome-associated NAC facilitates recognition of nascent precursor chains by the mitochondrial import machinery.  相似文献   

17.
Mitochondria are responsible for many vital cellular functions in eukaryotic cells, such as ATP production, steroid synthesis and prosthetic group biogenesis. The vital functions of mitochondria are possible due to the compartmental nature of this organelle. Mitochondria form a dynamic network that can exist as a network throughout a cell or as distinct individual structures. Mitochondria are also composed of two membranes, an inner and outer membrane. The inner mitochondrial membrane (IMM) is significantly larger than the outer membrane and must fold upon itself to be contained within the outer mitochondrial membrane (OMM). These folds are known as cristae. Altogether these different membrane compartments specialize in different functions of the mitochondria. The OMM is responsible for passage of small metabolites into and out of the mitochondria while excluding macromolecules. The IMM is a highly selective barrier between the solutes of the cytosol and those within the mitochondrial matrix. Cristae specialize in oxidative phosphorylation. The functions of these membranes are afforded by membrane proteins that are able to transport specific solutes. The appropriate localization, assembly into multi-subunit protein complexes, and wild-type function of these membrane proteins therefore is vital for mitochondria to maintain appropriate function and support cellular survival. This review will address the composition and functions of mitochondrial membrane localized multi-subunit protein complexes along with how these proteins undergo degradation to maintain homeostatic functions of mitochondria in the context of mitochondria specific transporters and ion channels. Due to the large number of known mitochondrial membrane transporters and ion channels this review will focus on the topics presented at the Mitochondrial Ion Channels and Transporters Symposium hosted by the New York University College of Dentistry in September 2015 in honor of Casey Kinnally.  相似文献   

18.
19.
Sorting pathways of mitochondrial inner membrane proteins   总被引:14,自引:0,他引:14  
Two distinct pathways of sorting and assembly of nuclear-encoded mitochondrial inner membrane proteins are described. In the first pathway, precursor proteins that carry amino-terminal targeting signals are initially translocated via contact sites between both mitochondrial membranes into the mitochondrial matrix. They become proteolytically processed, interact with the 60-kDa heat-shock protein hsp60 in the matrix and are retranslocated to the inner membrane. The sorting of subunit 9 of Neurospora crassa F0-ATPase has been studied as an example. F0 subunit 9 belongs to that class of nuclear-encoded mitochondrial proteins which are evolutionarily derived from a prokaryotic ancestor according to the endosymbiont hypothesis. We suggest that after import into mitochondria, these proteins follow the ancestral sorting and assembly pathways established in prokaryotes (conservative sorting). On the other hand, ADP/ATP carrier was found not to require interaction with hsp60 for import and assembly. This agrees with previous findings that the ADP/ATP carrier possesses non-amino-terminal targeting signals and uses a different import receptor to other mitochondrial precursor proteins. It is proposed that the ADP/ATP carrier represents a class of mitochondrial inner membrane proteins which do not have a prokaryotic equivalent and thus appear to follow a non-conservative sorting pathway.  相似文献   

20.
Most mitochondrial proteins are synthesized in the cytosol, translocated into the organelle and directed along specific sorting pathways. Over the past 20 years, >30 proteins have been identified as having key roles in mitochondrial protein import. Recently, the elucidation of the structures of several import components has provided fresh insight into the import process. Here, we review the different pathways involved in sorting proteins into mitochondrial subcompartments. Along the way, we highlight the available structural information about the protein-import machinery and discuss how these structures correlate with previously ascribed functions. Future challenges for the cell biologists will be to use this structural information to test specific hypotheses addressing the molecular mechanisms of mitochondrial protein import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号