首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular behaviour during development is dictated, in part, by the insoluble extracellular matrix and the soluble growth factor peptides, the major molecules responsible for integrating cells into morphologically and functionally defined groups. These extracellular molecules influence cellular behaviour by binding at the cell surface to specific receptors that transduce intracellular signals in various ways not yet fully clear. Syndecan, a cell surface proteoglycan found predominantly on epithelia in mature tissues binds both extracellular matrix components (fibronectin, collagens I, III, V, and thrombospondin) and basic fibroblast growth factor (bFGF). Syndecan consists of chondroitin sulfate and heparan sulphate chains linked to a 31 kilodalton (kDa) integral membrane protein. Syndecan represents a family of integral membrane proteoglycans that differ in extracellular domains, but share cytoplasmic domains. Syndecan behaves as a matrix receptor: it binds selectively to components of the extracellular matrix, associates intracellularly with the actin cytoskeleton when cross-linked at the cell surface, its extracellular domain is shed upon cell rounding and it localizes solely to basolateral surfaces of simple epithelia. Mammary epithelial cells made syndecan-deficient become fibroblastic in morphology and cell behaviour, showing that syndecan maintains epithelial cell morphology. Syndecan changes in quantity, location and structure during development: it appears initially on four-cell embryos (prior to its known matrix ligands), becomes restricted in the pre-implementation embryo to the cells that will form the embryo proper, changes its expression due to epithelial-mesenchymal interactions (for example, induced in kidney mesenchyme by the ureteric bud), and with association of cells with extracellular matrix (for example, during B-cell differentiation), and ultimately, in mature tissues becomes restricted to epithelial tissues. The number and size of its glycosaminoglycan chains vary with changes in cell shape and organization yielding tissue type-specific polymorphic forms of syndecan. Its interactions with the major extracellular effector molecules that influence cell behaviour, its role in maintaining cell shape and its spatial and temporal changes in expression during development indicate that syndecan is involved in morphogenesis.  相似文献   

2.
Cultured bovine capillary endothelial (BCE) cells were found to synthesize and secrete high molecular mass heparan sulfate proteoglycans and glycosaminoglycans, which bound basic fibroblast growth factor (bFGF). The secreted heparan sulfate molecules were purified by DEAE cellulose chromatography, followed by Sepharose 4B chromatography and affinity chromatography on immobilized bFGF. Most of the heparinase-sensitive sulfated molecules secreted into the medium by BCE cells bound to immobilized bFGF at low salt concentrations. However, elution from bFGF with increasing salt concentrations demonstrated varying affinities for bFGF among the secreted heparan sulfate molecules, with part of the heparan sulfate requiring NaCl concentrations between 1.0 and 1.5 M for elution. Cell extracts prepared from BCE cells also contained a bFGF-binding heparan sulfate proteoglycan, which could be released from the intact cells by a short proteinase treatment. The purified bFGF-binding heparan sulfate competed with 125I-bFGF for binding to low-affinity binding sites but not to high-affinity sites on the cells. Heparan sulfate did not interfere with bFGF stimulation of plasminogen activator activity in BCE cells in agreement with its lack of effect on binding of 125I-bFGF to high-affinity sites. Soluble bFGF was readily degraded by plasmin, whereas bFGF bound to heparan sulfate was protected from proteolytic degradation. Treatment of the heparan sulfate with heparinase before addition of plasmin abolished the protection and resulted in degradation of bFGF by the added proteinase. The results suggest that heparan sulfate released either directly by cells or through proteolytic degradation of their extracellular milieu may act as carrier for bFGF and facilitate the diffusion of locally produced growth factor by competing with its binding to surrounding matrix structures. Simultaneously, the secreted heparan sulfate glycosaminoglycans protect the growth factor from proteolytic degradation by extracellular proteinases, which are abundant at sites of neovascularization or cell invasion.  相似文献   

3.
Heparan sulfate proteoglycans (HSPG) are ubiquitous constituents of mammalian cell surfaces and most extracellular matrices. A portion of the cell surface HSPG is anchored via a covalently linked glycosyl-phosphatidylinositol (Pl) residue, which can be released by treatment with a glycosyl-Pl specific phospholipase C (Pl-PLC). We report that exposure of bovine aortic endothelial and smooth muscle cells to Pl-PLC resulted in release of cell surface-associated, growth-promoting activity that was neutralized by antibasic fibroblast growth factor (bFGF) antibodies. Active bFGF was also released by treating the cells with bacterial heparitinase. Under the same conditions there was no release of mitogenic activity from cells (BHK-21, NIH/3T3, PF-HR9) that expressed little or no bFGF, as opposed to Pl-PLC-mediated release of active bFGF from the same cells transfected with the bFGF gene. The released bFGF competed with recombinant bFGF in a radioreceptor assay. Addition of Pl-PLC to sparsely seeded vascular endothelial cells resulted in a marked stimulation of cell proliferation, but there was no mitogenic effect of Pl-PLC on 3T3 fibroblasts. Studies with exogenously added 125I-bFGF revealed that about 6.5% and 20% of the cell surface-bound bFGF were released by treatment with Pl-PLC and heparitinase, respectively. Both enzymes also released sulfate-labeled heparan sulfate from metabolically labeled 3T3 fibroblasts. Pl-PLC failed to release 125I-bFGF from the subendothelial extracellular matrix (ECM), as compared to release of 60% of the ECM-bound bFGF by heparitinase. Our results indicate that 3-8% of the total cellular content of bFGF is associated with glycosyl-Pl anchored cell surface HSPG. This FGF may exert both autocrine and paracrine effects, provided that it is released by Pl-PLC and adequately presented to high affinity bFGF cell surface receptor sites.  相似文献   

4.
Basic fibroblast growth factor (bFGF) is a therapeutic target of anti-angiogenesis. Here, we report that a novel sulfated glycopeptide derived from Gekko swinhonis Guenther (GSPP), an anticancer drug in traditional Chinese medicine, inhibits tumor angiogenesis by targeting bFGF. GSPP significantly decreased the production of bFGF in hepatoma cells by suppressing early growth response-1. GSPP inhibited the release of bFGF from extracellular matrix by blocking heparanase enzymatic activity. Moreover, GSPP competitively inhibited bFGF binding to heparin/heparan sulfate via direct binding to bFGF. Importantly, GSPP abrogated the bFGF-stimulated proliferation and migration of endothelial cells, whereas it had no inhibitory effect on endothelial cells in the absence of bFGF. Further study revealed that GSPP prevented bFGF-induced neovascularization and inhibited tumor angiogenesis and tumor growth in a xenograft mouse model. These results demonstrate that GSPP inhibits tumor angiogenesis by blocking bFGF production, release from the extracellular matrix, and binding to its low affinity receptor, heparin/heparan sulfate.  相似文献   

5.
Recently we identified a plasma serine protease with a high affinity to glycosaminoglycans like heparin or hyaluronic acid, termed hyaluronan-binding protease (HABP). Since glycosaminoglycans are found on cell surfaces and in the extracellular matrix a physiological role of this plasma protease in a pericellular environment was postulated. Here we studied the influence of HABP on the regulation of endothelial cell growth. We found that HABP efficiently prevented the basic fibroblast growth factor/epidermal growth factor (bFGF/EGF)-dependent proliferation of human umbilical vein endothelial cells. Proteolytic cleavage of adhesion molecules was found to be involved, but was not solely responsible for the anti-proliferative activity. Pre-treatment of growth factor-supplemented cell culture medium with HABP indicated that no direct contact between the active protease and cells was required for growth inhibition. In vitro studies revealed a growth factor-directed activity of HABP, resulting in complexation and partial hydrolysis and, thus, inactivation of basic fibroblast growth factor, a potent mitogen for endothelial cells. Heparin and heparan sulfate fully protected bFGF from complexation and cleavage by HABP, although these glycosaminoglycans are known to enhance the proteolytic activity of HABP. This finding suggested that free circulating bFGF rather than bFGF bound to heparan sulfate proteoglycans would be a physiologic substrate. In conclusion, down-regulation of bFGF-dependent endothelial cell growth represents an important mechanism through which HABP could control cell growth in physiologic or pathologic processes like angiogenesis, wound healing or tumor development.  相似文献   

6.
Heparan sulfate proteoglycans (HSPG) are obligatory for receptor binding and mitogenic activity of basic fibroblast growth factor (bFGF). Mutant Chinese hamster ovary cells (pgsA-745) deficient in xylosyltransferase are unable to initiate glycosaminoglycan synthesis and hence can not bind bFGF to low- and high-affinity cell surface receptors. Exposure of pgsA-745 cells to β-D-xylopyranosides containing hydrophobic aglycones resulted in restoration of bFGF binding in a manner similar to that induced by soluble heparin or by heparan sulfate (HS) normally associated with cell sulfate. Restoration of bFGF binding correlated with the ability of the β-D-xylosides to prime the synthesis of heparan sulfate. Thus, both heparan sulfate synthesis and bFGF receptor binding were induced by low concentrations (10–30 μM) of estradiol-β-D-xyloside and naphthyl-β-D-xyloside, but not by cis/trans-decahydro-2-naphthyl-β-D-xyloside, which at low concentration primes mainly chondroitin sulfate. The obligatory involvement of xyloside-primed heparan sulfate in restoration of bFGF-receptor binding was also demonstrated by its sensitivity to heparinase treatment and by the lack of restoration activity in CHO cell mutants that lack enzymatic activities required to form the repeating disaccharide unit characteristic of heparan sulfate. Xyloside-primed heparan sulfate binds to the cell surface. Restoration of bFGF receptor binding was induced by both soluble and cell bound xyloside-primed heparan sulfate and was abolished in cells that were exposed to 0.5–1.0 M NaCl prior to the bFGF binding reaction. These results indicate that heparan sulfate chains produced on xyloside primers behave like heparan sulfate chains attached to cellular core proteins in terms of affinity for bFGF and ability to function as low-affinity sites in a dual receptor mechanism characteristic of bFGF and other heparin-binding growth promoting factors.  相似文献   

7.
Syndecan from embryonic tooth mesenchyme binds tenascin.   总被引:13,自引:0,他引:13  
Syndecan is a cell surface heparan sulfate-rich proteoglycan found on various epithelial cells but also in some embryonic mesenchymal tissues. We have immunoisolated syndecan from embryonic tooth mesenchyme that appeared as a 250-300-kDa molecule (Kav = 0.3 in Sepharose 4B), containing only heparan sulfate side chains (Mr = 35,000). Northern analysis of whole tooth germs and tooth mesenchymes also revealed high expression of syndecan mRNAs (2.6 and 3.4 kilobases). In the binding assay utilizing nitrocellulose as a solid phase to immobilize matrix molecules, syndecan immunoisolated from tooth mesenchyme revealed binding to tenascin, and this interaction was shown to be mediated via heparan sulfate side chains. In contrast, syndecan from mouse mammary epithelial cells showed only weak interaction with tenascin. We propose that syndecan and tenascin may represent interactions of a cell surface receptor and a matrix ligand involved in mesenchymal cell condensation and differentiation during early organogenesis.  相似文献   

8.
Syndecans are transmembrane proteoglycans expressed on adherent cells. They are a family of four proteins, which participate in cell-matrix adhesion, the regulation of growth factors (FGFs, VEGF, HGF) binding and signaling. The extracellular domain of syndecans contains heparan sulfate and chondroitin sulfate glycosaminoglycan chains. Syndecans have transmembrane region and a short cytoplasmic domain. The cytoplasmic domain attaches activated protein kinase Calpha, phosphatidyl-inositol-4,5-bisphosphate, syntenin, beta-catenin and many others molecules. Syndecans bind numerous ligands, which are present in extracellular matrix: growth factors, enzymes, extracellular matrix molecules (fibronectin, laminin). They form connections with actin cytoskeleton. The changes in syndecan expression influence on cell adhesion and migration, structure of focal contacts and cytoskeleton. Syndecans participate in cell differentiation and tissue regeneration.  相似文献   

9.
Polyclonal antibodies were prepared against recombinant basic fibroblast growth factor (bFGF) that reacted only with bFGF but not acidic FGF. These antibodies were able to inhibit various biological activities of bFGF such as the ability of bFGF to stimulate DNA synthesis in 3T3 cells, proliferation and migration of bovine capillary endothelial cells (BCEC), and neurite extension in pheochromocytoma (PC12) cells. The anti-bFGF antibodies also inhibited the mitogenic activity of subendothelial cell extracellular matrix for BCEC, demonstrating that the growth factor component in extracellular matrix required for supporting BCEC proliferation was bFGF. Anti-bFGF antibodies inhibited the cross-linking of bFGF to its high affinity receptor on BCEC cells. However, these antibodies did not inhibit the binding of bFGF to heparin-Sepharose or to the low affinity receptors of BCEC which have been demonstrated to be heparin-like molecules. These results suggest that bFGF has distinct domains for binding to high affinity cellular receptors and for binding to heparin.  相似文献   

10.
Basic fibroblast growth factor (bFGF) was internalized at a rapid rate by Chinese hamster ovary (CHO) cells that do not express significant numbers of high affinity receptors for bFGF as well as CHO cells that have been transfected with cDNA encoding FGF receptor-1 or FGF receptor-2. Internalization of bFGF was completely blocked by the addition of 10 micrograms/ml heparin in the parental CHO cells but only partially inhibited in cells expressing transfected FGF receptors. Bovine aortic endothelial cells also exhibit heparin-sensitive and heparin-resistant internalization of bFGF. The internalization of bFGF through the heparin-resistant pathway in CHO cells was efficiently competed by addition of unlabeled bFGF, was proportional to the number of receptors expressed, and approached saturation, suggesting that the heparin-resistant internalization was due to high affinity receptors. Internalization of bFGF through the heparin-sensitive pathway was not efficiently competed by unlabeled bFGF and did not approach saturation at concentrations of bFGF up to 50 ng/ml, properties similar to the interaction of bFGF with low affinity heparan sulfate binding sites on the cell surface. Internalization of bFGF in CHO cells not expressing FGF receptors was inhibited by heparin, heparan sulfate, and dermatan sulfate, the same glycosaminoglycans that block binding to cell-surface heparin sulfates. Internalization of bFGF in the parental CHO cells was inhibited at the same concentrations of heparin that block binding to cell-surface heparan sulfates. Finally, inhibition of the sulfation of CHO cell heparan sulfates by the addition of chlorate or digestion of CHO cell heparan sulfates with heparinase inhibited bFGF internalization in the parental CHO cells. These results demonstrate that bFGF can be internalized through a direct interaction with cell-surface heparan sulfates. Thus, there are two pathways for internalization of bFGF: high affinity receptor-mediated and heparan sulfate-mediated.  相似文献   

11.
The syndecan family of heparan sulfate proteoglycans is expressed on the surface of all adherent cells. Syndecans interact with a wide variety of molecules, including growth factors, cytokines, proteinases, adhesion receptors and extracellular matrix components, through their heparan sulfate chains. Recent studies indicate that these interactions not only regulate key events in development and homeostasis, but also key mechanisms of the host inflammatory response. This review will focus on the molecular and cellular aspects of how syndecans modulate tissue injury and inflammation, and how syndecans affect the outcome of inflammatory diseases in vivo.  相似文献   

12.
Cell surface proteoglycans help present some polypeptide growth factors such as basic fibroblast growth factor (bFGF) to their receptors and may act as reservoirs for others such as transforming growth factor-beta (TGF-beta). Betaglycan, a cell surface heparan sulfate/chondroitin sulfate proteoglycan that binds TGF-beta via its core protein, is shown here to bind bFGF via its heparan sulfate chains. We investigated the potential for regulation of betaglycan by its ligands in osteoblasts, a system in which bFGF and TGF-beta have complementary effects. We report here that the apparent molecular mass of betaglycan from an osteoblast-enriched primary culture of fetal rat calvaria is decreased in response to bFGF, as detected by an increased electrophoretic migration of betaglycan. The betaglycan forms expressed in bFGF-treated osteoblasts have a reduced content of heparan sulfate GAGs, without detectable changes in the content of chondroitin sulfate GAGs or the size of the core protein. bFGF did not affect the overall population of cell-surface-associated proteins identified by sulfate labeling, which contained primarily heparan sulfate, and had only small effects on the major secreted proteoglycans, which were, by contrast, chondroitin sulfate proteoglycans. The effect of bFGF on betaglycan is therefore a selective one. These results suggest that cells can interact with members of the TGF-beta and FGF families through separate domains of the same membrane proteoglycan, and can selectively regulate the bFGF-binding carbohydrate chains of this proteoglycan in response to bFGF.  相似文献   

13.
《The Journal of cell biology》1996,132(6):1209-1221
Syndecan-1 is a cell surface proteoglycan containing a highly conserved transmembrane and cytoplasmic domain, and an extracellular domain bearing heparan sulfate glycosaminoglycans. Through these domains, syndecan-1 is proposed to have roles in growth factor action, extracellular matrix adhesion, and cytoskeletal organization that controls cell morphology. To study the role of syndecan-1 in cell adhesion and cytoskeleton reorganization, mouse syndecan-1 cDNA was transfected into human Raji cells, a lymphoblastoid cell line that grows as suspended cells and exhibits little or no endogenous cell surface heparan sulfate. High expressing transfectants (Raji-Sl cells) bind to and spread on immobilized thrombospondin or fibronectin, which are ligands for the heparan sulfate chains of the proteoglycan. This binding and spreading as not dependent on the cytoplasmic domain of the core protein, is mutants expressing core proteins with cytoplasmic deletions maintain the ability to spread. The spreading is mediated through engagement of the syndecan-1 core protein, as the Raji-S 1 cells also bind to and spread on immobilized mAb 281.2, an antibody specific for the ectodomain of the syndecan-1 core protein. Spreading on the antibody is independent of the heparan sulfate glycosaminoglycan chains and can be inhibited by competition with soluble mAb 281.2. The spreading can be inhibited by treatment with cytochalasin D or colchicine. These data suggest that the core protein of syndecan-1 mediates spreading through the formation of a multimolecular signaling complex at the cell surface that signals cytoskeleton reorganization. This complex may form via intramembrane or extracellular interactions with the syndecan core protein.  相似文献   

14.
Cultured monolayers of NMuMG mouse mammary epithelial cells have augmented amounts of cell surface chondroitin sulfate glycosaminoglycan (GAG) when cultured in transforming growth factor-beta (TGF-beta), presumably because of increased synthesis on their cell surface proteoglycan (named syndecan), previously shown to contain chondroitin sulfate and heparan sulfate GAG. This increase occurs throughout the monolayer as shown using soluble thrombospondin as a binding probe. However, comparison of staining intensity of the GAG chains and syndecan core protein suggests variability among cells in the attachment of GAG chains to the core protein. Characterization of purified syndecan confirms the enhanced addition of chondroitin sulfate in TGF-beta: (a) radiosulfate incorporation into chondroitin sulfate is increased 6.2-fold in this proteoglycan fraction and heparan sulfate is increased 1.8-fold, despite no apparent increase in amount of core protein per cell, and (b) the size and density of the proteoglycan are increased, but reduced by removal of chondroitin sulfate. This is shown in part by treatment of the cells with 0.5 mM xyloside that blocks the chondroitin sulfate addition without affecting heparan sulfate. Higher xyloside concentrations block heparan sulfate as well and syndecan appears at the cell surface as core protein without GAG chains. The enhanced amount of GAG on syndecan is partly attributed to an increase in chain length. Whereas this accounts for the additional heparan sulfate synthesis, it is insufficient to explain the total increase in chondroitin sulfate; an approximately threefold increase in chondroitin sulfate chain addition occurs as well, confirmed by assessing chondroitin sulfate ABC lyase (ABCase)-generated chondroitin sulfate linkage stubs on the core protein. One of the effects of TGF-beta during embryonic tissue interactions is likely to be the enhanced synthesis of chondroitin sulfate chains on this cell surface proteoglycan.  相似文献   

15.
Basic fibroblast growth factor (bFGF) binds to heparin-like molecules present in the extracellular matrix (ECM) of transformed fetal bovine aortic endothelial GM 7373 cells. Binding of bFGF to ECM can be competed by heparin or heparan sulfate, and ECM-bound bFGF can be released by treating the cells with heparinase or heparatinase. After binding to ECM, bFGF is slowly released into the medium in a biologically active form, as shown by its capacity to induce an increase of cell-associated plasminogen activator activity and cell proliferation. The increase is prevented upon removal of ECM-bound bFGF by a neutral 2 M NaCl wash. Soluble heparin and heparan sulfate reduce the amount of ECM-bound bFGF released into the medium, possibly competing with ECM polysaccharides for heparinase-like enzymes produced by endothelial cells, suggesting that these enzymes are involved in the mobilization of ECM-bound bFGF.  相似文献   

16.
We have proposed a model in which fibroblast growth factor (FGF) signalling requires the interaction of FGF with at least two FGF receptors, a heparan sulfate proteoglycan (HSPG) and a tyrosine kinase. Since FGF may be a key mediator of skeletal muscle differentiation, we examined the synthesis of glycosaminoglycans in MM14 skeletal muscle myoblasts and their participation in FGF signalling. Proliferating and differentiated MM14 cells exhibit similar levels of HSPG, while differentiated cells exhibit reduced levels of chondroitin sulfate proteoglycans and heparan sulfate chains. HSPGs, including syndecan, present in proliferating cells bind bFGF, while the majority of chondroitin sulfate and heparan sulfate chains do not. Treatment of skeletal muscle cells with chlorate, a reversible inhibitor of glycosaminoglycan sulfation, was used to examine the requirement of sulfated proteoglycans for FGF signalling. Chlorate treatment reduced glycosaminoglycan sulfation by 90% and binding of FGF to high affinity sites by 80%. Chlorate treatment of MM14 myoblasts abrogated the biological activity of acidic, basic, and Kaposi's sarcoma FGFs resulting in terminal differentiation. Chlorate inhibition of FGF signalling was reversed by the simultaneous addition of sodium sulfate or heparin. Further support for a direct role of heparan sulfate proteoglycans in fibroblast growth factor signal transduction was demonstrated by the ability of heparitinase to inhibit basic FGF binding and biological activity. These results suggest that activation of FGF receptors by acidic, basic or Kaposi's sarcoma FGF requires simultaneous binding to a HSPG and the tyrosine kinase receptor. Skeletal muscle differentiation in vivo may be dependent on FGFs, FGF tyrosine kinase receptors, and HSPGs. The regulation of these molecules may then be expected to have important implications for skeletal muscle development and regeneration.  相似文献   

17.
Heparan sulfate proteoglycans on the cell surface act as low affinity binding sites for acidic and basic fibroblast growth factor (FGF) [Moscatelli (1887): J Cell Physiol 131:123–130] and play an important role in the interaction of FGF with the FGF receptor (FGFR). In this study, several aspects of the interaction of FGFs with cell surface heparan sulfate proteoglycans were examined. Reciprocal cross blocking studies demonstrated that acidic FGF (aFGF) and basic FGF (bFGF) bind to identical or closely associated heparan sulfate motifs on BALB/c 3T3 cell surface heparan sulfate proteoglycans. However, the binding affinity of the two growth factros for these heparan sulfate proteoglycans differs considerably, competition binding data indicating that aFGF has a 4.7-fold lower affinity than bFGF for 3T3 heparan sulfate proteoglycan. Subsequent studies of dissociation kinetics demonstrated that bFGF dissociates form the FGFR at least 10-fold slower than aFGF, whereas, following removal of cell surface heparan sulfate proteoplycan. Subsequent studies of dissociation kinetic demonstrated that bFGF dissociates from the FGFR at least 10-fold slwer than aFGF, whereas, following removal of cell surface heparan sulfate proteoglycans by heparinase treatment, the dissociation rate of both FGFs is similar and rapid. These results support the concept that cell surface heparan sulfate proteoglycans stabilize the interactio fo FGF with FGFR, possibly by the formatin of a ternary complex. © Wiley-Liss, Inc.  相似文献   

18.
Neurite growth-promoting protein (amphoterin, p30) binds syndecan.   总被引:8,自引:0,他引:8  
A new ligand for syndecan (a cell surface heparan sulfate-rich proteoglycan) has been discovered. In the solid-phase binding assay utilizing small nitrocellulose discs to immobilize matrix molecules, binding of syndecan to neurite growth-promoting protein, p30/amphoterin, was observed. This binding was strongly dependent on the concentration of amphoterin used to coat the discs, but was saturable with an excess amount of syndecan. The interaction was inhibitable with heparan sulfate and heparin but less effectively with chondroitin sulfate, indicating that heparan sulfate chains of syndecan were involved in the binding. Anti-amphoterin antibodies inhibited the binding partially. Mouse mammary epithelial cells were shown to bind amphoterin directly but not after trypsin treatment or in the presence of heparin and to produce amphoterin in the extracellular space. Both syndecan and amphoterin were found to localize on lateral surfaces of newly adhered mammary epithelial cells. Toward confluency amphoterin amounts decreased. Because amphoterin can be localized to the same sites with syndecan and because of their interaction, amphoterin is a new putative pericellular ligand for syndecan. These interactions may be involved in the regulation of cell behavior.  相似文献   

19.
Syndecans are transmembrane proteoglycans which can participate in diverse cell surface interactions, involving extracellular matrix macromolecules, growth factors, protease inhibitors, and even viral entry. Currently, all extracellular interactions are believed to be mediated by distinct structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link with the microfilament cytoskeleton, thereby mediating signaling events. The molecular details are unknown, but the conservation of regions of syndecan cytoplasmic domains, and a strong tendency for homotypic association, support the idea that the ligand-induced clustering may be a discrete source of specific transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Syndecan is an integral membrane proteoglycan that contains both heparan sulfate and chondroitin sulfate chains and that links the cytoskeleton to interstitial extracellular matrix components, including collagen and fibronectin. Immunohistochemistry with a monoclonal antibody directed to the core protein of the syndecan ectodomain has been used to analyze the distribution of this proteoglycan in the developing mouse limb bud and in high-density cultures of limb mesenchyme cells. By Day 9 of gestation when the limb buds are just apparent, syndecan is detected on cells throughout the limb region, including both ectodermal and mesenchymal components. This distribution does not change as the limb bud elongates along its proximodistal axis, except for its reduction in the apical ectodermal ridge. By Day 11, the intensity of immunofluorescence in the central core decreases relative to other regions. By Day 13 immunostaining is lost in the regions destined for chondrogenesis and myogenesis but persists in the limb ectoderm and peripheral and distal mesenchyme. In the limb mesenchyme cell cultures, syndecan is initially undetected, but is found throughout the culture by 24 hr. With further culture the antigen becomes reduced in chondrogenic foci and in association with myogenic cells. When chick limb ectoderm is placed on the high-density cultures, immunoreactivity in the mouse mesenchyme is enhanced suggesting that epithelial-mesenchymal interactions modulate syndecan expression in the limb bud. Based on analysis of 35S-labeled syndecan from the cultures, syndecan from limb mesenchyme cells contains more glycosaminoglycan chains and is larger in size than the previously described polymorphic forms of syndecan from various epithelia. The high affinity of syndecan for components of the extracellular matrix and its distribution in the early limb bud are consistent with a role in maintaining the morphologic integrity of the limb bud during the period of initiation and rapid outgrowth, and in preventing the onset of chondrogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号