首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Probably one of the first proteinaceous enzymes was an RNA-dependent RNA polymerase (RDRP). Although there are several conserved motifs present in the RDRPs of most positive and double-stranded RNA (dsRNA) viruses, the RDRPs of the dsRNA viruses show no detectable sequence similarity outside the conserved motifs. There is now, however, a group of dsRNA viruses of lower eucaryotes whose RDRPs are detectably similar. The origin of this sequence similarity appears to be common descent from one or more noninfectious viruses of a progenitor cell, an origin that predates the differentiation of protozoans and fungi. The cause of this preservation of sequence appears to be constraints placed on the RDRP by the life-style of these viruses--the maintenance of a stable, persistent, noninfectious state.  相似文献   

4.
5.
Amino acid sequence stretches similar to the four most conserved segments of positive strand RNA viral RNA-dependent RNA polymerases have been identified in proteins of four dsRNA viruses belonging to three families, i.e. P2 protein of bacteriophage phi 6 (Cystoviridae), RNA 2 product of infectious bursa disease virus (Birnaviridae), lambda 3 protein of reovirus, and VP1 of bluetongue virus (Reoviridae). High statistical significance of the observed similarity was demonstrated, allowing identification of these proteins as likely candidates for RNA-dependent RNA polymerases. Based on these observations, and on the previously reported sequence similarity between the RNA polymerases of a yeast dsRNA virus and those of positive strand RNA viruses, a possible evolutionary relationship between the two virus classes is discussed.  相似文献   

6.
RNA recombination in animal and plant viruses.   总被引:54,自引:1,他引:54       下载免费PDF全文
An increasing number of animal and plant viruses have been shown to undergo RNA-RNA recombination, which is defined as the exchange of genetic information between nonsegmented RNAs. Only some of these viruses have been shown to undergo recombination in experimental infection of tissue culture, animals, and plants. However, a survey of viral RNA structure and sequences suggests that many RNA viruses were derived form homologous or nonhomologous recombination between viruses or between viruses and cellular genes during natural viral evolution. The high frequency and widespread nature of RNA recombination indicate that this phenomenon plays a more significant role in the biology of RNA viruses than was previously recognized. Three types of RNA recombination are defined: homologous recombination; aberrant homologous recombination, which results in sequence duplication, insertion, or deletion during recombination; and nonhomologous (illegitimate) recombination, which does not involve sequence homology. RNA recombination has been shown to occur by a copy choice mechanism in some viruses. A model for this recombination mechanism is presented.  相似文献   

7.
The sequences of 50 RNA-dependent RNA polymerases (RDRPs) from 43 positive strand and 7 double strand RNA (dsRNA) viruses have been compared. The alignment permitted calculation of distances among the 50 viruses and a resultant dendrogram based on every amino acid, rather than just those amino acids in the conserved motifs. Remarkably, a large subgroup of these viruses, including vertebrate, plant, and insect viruses, forms a single cluster whose only common characteristic is exploitation of insect hosts or vectors. This similarity may be due to molecular constraints associated with a present and/or past ability to infect insects and/or to common descent from insect viruses. If common descent is important, as it appears to be, all the positive strand RNA viruses of eucaryotes except for the picornaviruses may have evolved from an ancestral dsRNA virus. Viral RDRPs appear to be inherited as modules rather than as portions of single RNA segments, implying that RNA recombination has played an important role in their dissemination.  相似文献   

8.
Mechanisms of arthropod transmission of plant and animal viruses.   总被引:5,自引:0,他引:5  
A majority of the plant-infecting viruses and many of the animal-infecting viruses are dependent upon arthropod vectors for transmission between hosts and/or as alternative hosts. The viruses have evolved specific associations with their vectors, and we are beginning to understand the underlying mechanisms that regulate the virus transmission process. A majority of plant viruses are carried on the cuticle lining of a vector's mouthparts or foregut. This initially appeared to be simple mechanical contamination, but it is now known to be a biologically complex interaction between specific virus proteins and as yet unidentified vector cuticle-associated compounds. Numerous other plant viruses and the majority of animal viruses are carried within the body of the vector. These viruses have evolved specific mechanisms to enable them to be transported through multiple tissues and to evade vector defenses. In response, vector species have evolved so that not all individuals within a species are susceptible to virus infection or can serve as a competent vector. Not only are the virus components of the transmission process being identified, but also the genetic and physiological components of the vectors which determine their ability to be used successfully by the virus are being elucidated. The mechanisms of arthropod-virus associations are many and complex, but common themes are beginning to emerge which may allow the development of novel strategies to ultimately control epidemics caused by arthropod-borne viruses.  相似文献   

9.
DNA polymerases from avian, feline, murine and simian RNA tumor viruses exhibit substantial differences in optimal assay conditions and vary widely in their template-primer preferences. Avian DNA polymerase utilizes both natural and synthetic template-primers efficiently in the presence of Mg++ as well as Mn++. By contrast, the mammalian viral DNA polymerases are much more responsive to poly(A)·oligo(dT) than to other template-primers, and exhibit up to 20-fold greater activity with Mn++ than with Mg++. In addition, simian sarcoma virus DNA polymerase shows no detectable response to poly(C)·oligo(dG) over a wide variety of conditions stimulatory to the other viral enzymes.  相似文献   

10.
11.
12.
Presumptive phylogenetic trees of evolutionary conserved fragments of RNA-dependent RNA polymerases of 26 positive strand RNA viruses were generated using a simple clustering procedure or a novel approach based on the so-called maximal topologic similarity principle. The latter methodology involves a quantitative measure of the degree of correspondence between the topology of generated trees and structure of the initial distance matrix. The algorithm for tree construction based on the maximal topologic similarity principle does not include the assumption of evolutionary rate constancy, as opposed to the clustering procedure. Nevertheless, it is demonstrated that the trees generated by the two methods are topologically similar, indicating that no drastic change of evolutionary rate had occurred in evolution of the positive strand RNA virus RNA polymerases. This in turn suggests that RNA-dependent RNA polymerases (or at least their evolutionary conserved core domains used for construction of the phylogenetic trees) are principally functionally equivalent in all positive strand RNA viruses.  相似文献   

13.
14.
15.
16.
DNA polymerase alpha, delta and epsilon can be isolated simultaneously from calf thymus. DNA polymerase delta was purified to apparent homogeneity by a four-column procedure including DEAE-Sephacel, phenyl-Sepharose, phosphocellulose, and hydroxylapatite, yielding two polypeptides of 125 and 48 kDa, respectively. On hydroxylapatite DNA polymerase delta can completely be separated from DNA polymerase epsilon. By KCl DNA polymerase delta is eluted first, while addition of potassium phosphate elutes DNA polymerase epsilon. DNA polymerases delta and epsilon could be distinguished from DNA polymerase alpha by their (i) resistance to the monoclonal antibody SJK 132-20, (ii) relative resistance to N2-[p-(n-butyl)phenyl]-2-deoxyguanosine triphosphate and 2-[p-(n-butyl)anilino]-2-deoxyadenosine triphosphate, (iii) presence of a 3'----5' exonuclease, (iv) polypeptide composition, (v) template requirements, (vi) processivities on the homopolymer poly(dA)/oligo(dT12-18), and (vii) lack of primase. The following differences of DNA polymerase delta to DNA polymerase epsilon were evident: (i) the independence of DNA polymerase epsilon to proliferating cell nuclear antigen for processivity, (ii) utilization of deoxy- and ribonucleotide primers, (iii) template requirements in the absence of proliferating cell nuclear antigen, (iv) mode of elution from hydroxylapatite, and (v) sensitivity to d2TTP and to dimethyl sulfoxide. Both enzymes contain a 3'----5' exonuclease, but are devoid of endonuclease, RNase H, DNA helicase, DNA dependent ATPase, DNA primase, and poly(ADP-ribose) polymerase. DNA polymerase delta is 100-150 fold dependent on proliferating cell nuclear antigen for activity and processivity on poly(dA)/oligo(dT12-18) at base ratios between 1:1 to 100:1. The activity of DNA polymerase delta requires an acidic pH of 6.5 and is also found on poly(dT)/oligo(dA12-18) and on poly(dT)/oligo(A12-18) but not on 10 other templates tested. All three DNA polymerases can be classified according to the revised nomenclature for eukaryotic DNA polymerases (Burgers, P.M. J., Bambara, R. A., Campbell, J. L., Chang, L. M. S., Downey, K. M., Hübscher, U., Lee, M. Y. W. T., Linn, S. M., So, A. G., and Spadari, S. (1990) Eur. J. Biochem. 191, 617-618).  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号