首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
As the principal component of high-density lipoprotein (HDL), apolipoprotein (apo) A-I plays essential roles in lipid transport and metabolism. Because of its intrinsic conformational plasticity and flexibility, the molecular details of the tertiary structure of lipid-free apoA-I have not been fully elucidated. Previously, we demonstrated that the stability of the N-terminal helix bundle structure is modulated by proline substitution at the most hydrophobic region (residues around Y18) in the N-terminal domain. Here we examine the effect of proline substitution at S55 located in another relatively hydrophobic region compared to most of the helix bundle domain to elucidate the influences on the helix bundle structure and lipid interaction. Fluorescence measurements revealed that the S55P mutation had a modest effect on the stability of the bundle structure, indicating that residues around S55 are not pivotally involved in the helix bundle formation, in contrast to the insertion of proline at position 18. Although truncation of the C-terminal domain (Δ190-243) diminishes the lipid binding of apoA-I molecule, the mutation S55P in addition to the C-terminal truncation (S55P/Δ190-243) restored the lipid binding, suggesting that the S55P mutation causes a partial unfolding of the helix bundle to facilitate lipid binding. Furthermore, additional proline substitution at Y18 (Y18P/S55P/Δ190-243), which leads to a drastic unfolding of the helix bundle structure, yielded a greater lipid binding ability. Thus, proline substitutions in the N-terminal domain of apoA-I that destabilized the helix bundle promoted lipid solubilization. These results suggest that not only the hydrophobic C-terminal helical domain but also the stability of the N-terminal helix bundle in apoA-I are important modulators of the spontaneous solubilization of membrane lipids by apoA-I, a process that leads to the generation of nascent HDL particles.  相似文献   

2.
The tertiary structure of lipid-free apolipoprotein (apo) A-I in the monomeric state comprises two domains: a N-terminal alpha-helix bundle and a less organized C-terminal domain. This study examined how the N- and C-terminal segments of apoA-I (residues 1-43 and 223-243), which contain the most hydrophobic regions in the molecule and are located in opposite structural domains, contribute to the lipid-free conformation and lipid interaction. Measurements of circular dichroism in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that single (L230P) or triple (L230P/L233P/Y236P) proline insertions into the C-terminal alpha helix disrupted the organization of the C-terminal domain without affecting the stability of the N-terminal helix bundle. In contrast, proline insertion into the N terminus (Y18P) disrupted the bundle structure in the N-terminal domain, indicating that the alpha-helical segment in this region is part of the helix bundle. Calorimetric and gel-filtration measurements showed that disruption of the C-terminal alpha helix significantly reduced the enthalpy and free energy of binding of apoA-I to lipids, whereas disruption of the N-terminal alpha helix had only a small effect on lipid binding. Significantly, the presence of the Y18P mutation offset the negative effects of disruption/removal of the C-terminal helical domain on lipid binding, suggesting that the alpha helix around Y18 concealed a potential lipid-binding region in the N-terminal domain, which was exposed by the disruption of the helix-bundle structure. When these results are taken together, they indicate that the alpha-helical segment in the N terminus of apoA-I modulates the lipid-free structure and lipid interaction in concert with the C-terminal domain.  相似文献   

3.
The principal protein of high density lipoprotein (HDL), apolipoprotein (apo) A-I, in the lipid-free state contains two tertiary structure domains comprising an N-terminal helix bundle and a less organized C-terminal domain. It is not known how the properties of these domains modulate the formation and size distribution of apoA-I-containing nascent HDL particles created by ATP-binding cassette transporter A1 (ABCA1)-mediated efflux of cellular phospholipid and cholesterol. To address this issue, proteins corresponding to the two domains of human apoA-I (residues 1–189 and 190–243) and mouse apoA-I (residues 1–186 and 187–240) together with some human/mouse domain hybrids were examined for their abilities to form HDL particles when incubated with either ABCA1-expressing cells or phospholipid multilamellar vesicles. Incubation of human apoA-I with cells gave rise to two sizes of HDL particles (hydrodynamic diameter, 8 and 10 nm), and removal or disruption of the C-terminal domain eliminated the formation of the smaller particle. Variations in apoA-I domain structure and physical properties exerted similar effects on the rates of formation and sizes of HDL particles created by either spontaneous solubilization of phospholipid multilamellar vesicles or the ABCA1-mediated efflux of cellular lipids. It follows that the sizes of nascent HDL particles are determined at the point at which cellular phospholipid and cholesterol are solubilized by apoA-I; apparently, this is the rate-determining step in the overall ABCA1-mediated cellular lipid efflux process. The stability of the apoA-I N-terminal helix bundle domain and the hydrophobicity of the C-terminal domain are important determinants of both nascent HDL particle size and their rate of formation.  相似文献   

4.
Lipid binding of human apolipoprotein A-I (apoA-I) occurs initially through the C-terminal alpha-helices followed by conformational reorganization of the N-terminal helix bundle. This led us to hypothesize that apoA-I has multiple lipid-bound conformations, in which the N-terminal helix bundle adopts either open or closed conformations anchored by the C-terminal domain. To investigate such possible conformations of apoA-I at the surface of a spherical lipid particle, site-specific labeling of the N- and C-terminal helices in apoA-I by N-(1-pyrene)maleimide was employed after substitution of a Cys residue for Val-53 or Phe-229. Neither mutagenesis nor the pyrene labeling caused discernible changes in the lipid-free structure and lipid interaction of apoA-I. Taking advantage of a significant increase in fluorescence when a pyrene-labeled helix is in contact with the lipid surface, we monitored the behaviors of the N- and C-terminal helices upon binding of apoA-I to egg PC small unilamellar vesicles. Comparison of the binding isotherms for pyrene-labeled apoA-I as well as a C-terminal helical peptide suggests that an increase in surface concentration of apoA-I causes dissociation of the N-terminal helix from the surface leaving the C-terminal helix attached. Consistent with this, isothermal titration calorimetry measurements showed that the enthalpy of apoA-I binding to the lipid surface under near saturated conditions is much less exothermic than that for binding at a low surface concentration, indicating the N-terminal helix bundle is out of contact with lipid at high apoA-I surface concentrations. Interestingly, the presence of cholesterol significantly induces the open conformation of the helix bundle. These results provide insight into the multiple lipid-bound conformations that the N-terminal helix bundle of apoA-I can adopt on a lipid or lipoprotein particle, depending upon the availability of space on the surface and the surface composition.  相似文献   

5.
Apolipoprotein (apo) A-I is thought to undergo a conformational change during lipid association that results in the transition of random coil to alpha-helix. Using a series of deletion mutants lacking different regions along the molecule, we examined the contribution of alpha-helix formation in apoA-I to the binding to egg phosphatidylcholine (PC) small unilamellar vesicles (SUV). Binding isotherms determined by gel filtration showed that apoA-I binds to SUV with high affinity and deletions in the C-terminal region markedly decrease the affinity. Circular dichroism measurements demonstrated that binding to SUV led to an increase in alpha-helix content, but the helix content was somewhat less than in reconstituted discoidal PC.apoA-I complexes for all apoA-I variants, suggesting that the helical structure of apoA-I on SUV is different from that in discs. Isothermal titration calorimetry showed that the binding of apoA-I to SUV is accompanied by a large exothermic heat and deletions in the C-terminal regions greatly decrease the heat. Analysis of the rate of release of heat on binding, as well as the kinetics of quenching of tryptophan fluorescence by brominated PC, indicated that the opening of the N-terminal helix bundle is a rate-limiting step in apoA-I binding to the SUV surface. Significantly, the correlation of thermodynamic parameters of binding with the increase in the number of helical residues revealed that the contribution of alpha-helix formation upon lipid binding to the enthalpy and the free energy of the binding of apoA-I is -1.1 and -0.04 kcal/mol per residue, respectively. These results indicate that alpha-helix formation, especially in the C-terminal regions, provides the energetic source for high affinity binding of apoA-I to lipids.  相似文献   

6.
Apolipoprotein (apo) E is thought to undergo conformational changes in the N-terminal helix bundle domain upon lipid binding, modulating its receptor binding activity. In this study, site-specific fluorescence labeling of the N-terminal (S94) and C-terminal (W264 or S290) helices in apoE4 by pyrene maleimide or acrylodan was employed to probe the conformational organization and lipid binding behavior of the N- and C-terminal domains. Guanidine denaturation experiments monitored by acrylodan fluorescence demonstrated the less organized, more solvent-exposed structure of the C-terminal helices compared to the N-terminal helix bundle. Pyrene excimer fluorescence together with gel filtration chromatography indicated that there are extensive intermolecular helix-helix contacts through the C-terminal helices of apoE4. Comparison of increases in pyrene fluorescence upon binding of pyrene-labeled apoE4 to egg phosphatidylcholine small unilamellar vesicles suggests a two-step lipid-binding process; apoE4 initially binds to a lipid surface through the C-terminal helices followed by the slower conformational reorganization of the N-terminal helix bundle domain. Consistent with this, fluorescence resonance energy transfer measurements from Trp residues to acrylodan attached at position 94 demonstrated that upon binding to the lipid surface, opening of the N-terminal helix bundle occurs at the same rate as the increase in pyrene fluorescence of the N-terminal domain. Such a two-step mechanism of lipid binding of apoE4 is likely to apply to mostly phospholipid-covered lipoproteins such as VLDL. However, monitoring pyrene fluorescence upon binding to HDL(3) suggests that not only apoE-lipid interactions but also protein-protein interactions are important for apoE4 binding to HDL(3).  相似文献   

7.
A combined N- and C-terminal truncation variant of human apolipoprotein A-I (apoA-I) was designed, expressed in Escherichia coli, isolated, and characterized. Hydrodynamic experiments yielded a weight average molecular weight of 34000, indicating apoA-I-(44-186) exists in solution predominantly as a dimer. An axial ratio of 4.2 was calculated for the dimer based on sedimentation velocity experiments. Far-UV circular dichroism spectroscopy of apoA-I-(44-186) in buffer indicated the presence of 65% alpha-helix secondary structure. Guanidine hydrochloride denaturation experiments yielded a transition midpoint of 0.5 M for apoA-I-(44-186). ApoA-I-(44-186) induced solubilization of dimyristoylphosphatidylcholine vesicles at a rate comparable to that of full-length apoA-I, displayed lipoprotein binding ability, and was an acceptor of ABCA1-mediated cholesterol efflux from cultured macrophages. Fluorescence quenching studies with KI indicate that the three Trp residues in apoA-I-(44-186) are shielded from the aqueous environment. Taken together, the data indicate that lipid-free apoA-I-(44-186) adopts a folded conformation in solution that possesses lipid binding capability. The central region of apoA-I appears to adopt a globular amphipathic alpha-helix bundle organization that is stabilized by intramolecular and/or intermolecular helix-helix interactions. Lipid association likely results in a conformational adaptation wherein helix-helix contacts are substituted for helix-lipid interactions.  相似文献   

8.
Circular dichroism was used to monitor the thermal unfolding of ribonuclease A in 50% aqueous methanol. The spectrum of the protein at temperatures below -10 degrees C (pH* 3.0) was essentially identical to that of native ribonuclease A in aqueous solution. The spectrum of the thermally denatured material above 70 degrees C revealed some residual secondary structure in comparison to protein unfolded by 5 M Gdn.HCl at 70 degrees C in the presence or absence of methanol. The spectra as a function of temperature were deconvoluted to determine the contributions of different types of secondary structure. The position of the thermal unfolding transition as monitored by alpha-helix, with a midpoint at 38 degrees C, was at a much higher temperature than that monitored by beta-sheet, 26 degrees C, which also corresponded to that observed by delta A286, tyrosine fluorescence and hydrodynamic radius (from light scattering measurements). Thus, the loss of beta-sheet structure is decoupled from that of alpha-helix, suggesting a step-wise unfolding of the protein. The transition observed for loss of alpha-helix coincides with the previously measured transition for His-12 by NMR from a partially folded state to the unfolded state, suggesting that the unfolding of the N-terminal helix in RNase A is lost after unfolding of the core beta-sheet during thermal denaturation. The thermally denatured protein was relatively compact, as measured by dynamic light scattering.  相似文献   

9.
Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein and is comprised of a helical bundle domain and a C-terminal (CT) domain encompassing the last ~65 amino acid residues of the 243-residue protein. The CT domain contains three putative helices (helix 8, 9, and 10) and is critical for initiating lipid binding and harbors sites that mediate self-association of the lipid-free protein. Three lysine residues reside in helix-8 (K195, 206, 208), and three in helix-10 (K226, 238, 239). To determine the role of each CT lysine residue in apoA-I self-association, single, double and triple lysine to glutamine mutants were engineered via site-directed mutagenesis. Circular dichroism and chemical denaturation analysis revealed all mutants retained their structural integrity. Chemical crosslinking and size-exclusion chromatography showed a small effect on self-association when helix-8 lysine residues were changed into glutamine. In contrast, mutation of the three helix-10 lysine residues resulted in a predominantly monomeric protein and K226 was identified as a critical residue. When helix-10 glutamate residues 223, 234, or 235 were substituted with glutamine, reduced self-association was observed similar to that of the helix-10 lysine variants, suggesting ionic interactions between these residues. Thus, helix-10 is a critical part of apoA-I mediating self-association, and disruption of ionic interactions changes apoA-I from an oligomeric state into a monomer. Since the helix-10 triple mutant solubilized phospholipid vesicles at higher rates compared to wild-type apoA-I, this indicates monomeric apoA-I is more potent in lipid binding, presumably because helix-10 is fully accessible to interact with lipids.  相似文献   

10.
Urea denaturation of the lambda repressor has been studied by fluorescence and circular dichroic spectroscopies. Three phases of denaturation could be detected which we have assigned to part of the C-terminal domain, N-terminal domain and subunit dissociation coupled with further denaturation of the rest of the C-terminal domain at increasing urea concentrations. Acrylamide quenching suggests that at least one of the three tryptophan residues of the lambda repressor is in a different environment and its emission maximum is considerably blue-shifted. The transition in low urea concentration (midpoint approximately 2 M) affects the environment of this tryptophan residue, which is located in the C-terminal domain. Removal of the hinge and the N-terminal domain shifts this transition towards even lower urea concentrations, indicating the presence of interaction between hinge on N-terminal and C-terminal domains in the intact repressor.  相似文献   

11.
Detailed structural information on human exchangeable apolipoproteins (apo) is required to understand their functions in lipid transport. Using a series of deletion mutants that progressively lacked different regions along the molecule, we probed the structural organization of lipid-free human apoA-I and the role of different domains in lipid binding, making comparisons to apoE, which is a member of the same gene family and known to have two structural domains. Measurements of alpha-helix content by CD in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that deletion of the amino-terminal or central regions disrupts the tertiary organization, whereas deletion of the carboxyl terminus has no effect on stability and induces a more cooperative structure. These data are consistent with the lipid-free apoA-I molecule being organized into two structural domains similar to apoE; the amino-terminal and central parts form a helix bundle, whereas the carboxyl-terminal alpha-helices form a separate, less organized structure. The binding of the apoA-I variants to lipid emulsions is modulated by reorganization of the helix bundle structure, because the rate of release of heat on binding is inversely correlated with the stability of the helix bundle. Based on these observations, we propose that there is a two-step mechanism for lipid binding of apoA-I: apoA-I initially binds to a lipid surface through amphipathic alpha-helices in the carboxyl-terminal domain, followed by opening of the helix bundle in the amino-terminal domain. Because apoE behaves similarly, this mechanism is probably a general feature for lipid interaction of other exchangeable apolipoproteins, such as apoA-IV.  相似文献   

12.
Proteins with ultra-fast folding/unfolding kinetics are excellent candidates for study by molecular dynamics. Here, we describe such simulations of a three helix bundle protein, the engrailed homeodomain (En-HD), which folds via the diffusion-collision model. The unfolding pathway of En-HD was characterized by seven simulations of the protein and 12 simulations of its helical fragments yielding over 1.1 micros of simulation time in water. Various conformational states along the unfolding pathway were identified. There is the compact native-like transition state, a U-shaped helical intermediate and an unfolded state with dynamic helical segments. Each of these states is in good agreement with experimental data. Examining these states as well as the transitions between them, we find the role of long-range tertiary contacts, specifically salt-bridges, important in the folding/unfolding pathway. In the folding direction, charged residues form long-range tertiary contacts before the hydrophobic core is formed. The formation of HII is assisted by a specific salt-bridge and by non-specific (fluctuating) tertiary contacts, which we call contact-assisted helix formation. Salt-bridges persist as the protein approaches the transition state, stabilizing HII until the hydrophobic core is formed. To complement this information, simulations of fragments of En-HD illustrate the helical propensities of the individual segments. By thermal denaturation, HII proved to be the least stable helix, unfolding in less than 450 ps at high temperature. We observed the low helical propensity of C-terminal residues from HIII in fragment simulations which, when compared to En-HD unfolding simulations, link the unraveling of HIII to the initial event that drives the unfolding of En-HD.  相似文献   

13.
Apolipoprotein A-IV (apoA-IV) is an exchangeable apolipoprotein that shares many functional similarities with related apolipoproteins such as apoE and apoA-I but has also been implicated as a circulating satiety factor. However, despite the fact that it contains many predicted amphipathic alpha-helical domains, relatively little is known about its tertiary structure. We hypothesized that apoA-IV exhibits a characteristic functional domain organization that has been proposed to define apoE and apoA-I. To test this, we created truncation mutants in a bacterial system that deleted amino acids from either the N- or C-terminal ends of human apoA-IV. We found that apoA-IV was less stable than apoA-I but was more highly organized in terms of its cooperativity of unfolding. Deletion of the extreme N and C termini of apoA-IV did not significantly affect the cooperativity of unfolding, but deletions past amino acid 333 on the C terminus or amino acid 61 on the N terminus had major destabilizing effects. Functionally, apoA-IV was less efficient than apoA-I at clearing multilamellar phospholipid liposomes and promoting ATP-binding cassette transporter A1-mediated cholesterol efflux. However, deletion of a C-terminal region of apoA-IV, which is devoid of predicted amphipathic alpha helices (amino acids 333-376) stimulated both of these activities dramatically. We conclude that the amphipathic alpha helices in apoA-IV form a single, large domain that may be similar to the N-terminal helical bundle domains of apoA-I and apoE but that apoA-IV lacks the C-terminal lipid-binding and cholesterol efflux-promoting domain present in these apolipoproteins. In fact, the C terminus of apoA-IV appears to reduce the ability of apoA-IV to interact with lipids and promote cholesterol efflux. This indicates that, although apoA-IV may have evolved from gene duplication events of ancestral apolipoproteins and shares the basic amphipathic helical building blocks, the overall localization of functional domains within the sequence is quite different from apoA-I and apoE.  相似文献   

14.
Apolipoprotein (apo) E plays a major role in lipid metabolism by mediating cellular uptake of lipoprotein particles through interaction with members of the low density lipoprotein (LDL) receptor family. The primary region of apoE responsible for receptor binding has been limited to a cluster of basic amino acids between residues 134 and 150, located in the fourth helix of the N-terminal domain globular helix bundle structure. To investigate structural and functional requirements of this "receptor binding region" we engineered an apolipoprotein chimera wherein residues 131-151 of human apoE were substituted for residues 146-166 (helix 5) of Manduca sexta apolipophorin III (apoLp-III). Recombinant hybrid apolipoprotein was expressed in Escherichia coli, isolated, and characterized. Hybrid apolipoprotein and apoE3-N-terminal, but not apoLp-III, bound to heparin-Sepharose. Far UV circular dichroism spectroscopy revealed the presence of predominantly alpha-helix secondary structure, and stability studies revealed a urea denaturation midpoint of 1.05 m, similar to wild-type apoLp-III. Hybrid apolipoprotein-induced dimyristoylphosphatidylcholine (DMPC) bilayer vesicle solubilization activity was significantly enhanced compared with either parent protein, consistent with detection of solvent-exposed hydrophobic regions on the protein in fluorescent dye binding experiments. Unlike wild-type apoLp-III.DMPC complexes, disc particles bearing the hybrid apolipoprotein competed with 125ILDL for binding to the LDL receptor on cultured human skin fibroblasts. We conclude that a hybrid apolipoprotein containing a key receptor recognition element of apoE preserves the structural integrity of the parent protein while conferring a new biological activity, illustrating the potential of helix swapping to introduce desirable biological properties into unrelated or engineered apolipoproteins.  相似文献   

15.
Fang Y  Gursky O  Atkinson D 《Biochemistry》2003,42(22):6881-6890
Apolipoprotein A-I (apoA-I) plays an important structural and functional role in lipid transport and metabolism. This work is focused on the central region of apoA-I (residues 60-183) that is predicted to contain exclusively amphipathic alpha-helices. Six N- and/or C-terminally truncated mutants, delta(1-41), delta(1-59), delta(198-243), delta(209-243), delta(1-41,185-243), and delta(1-59,185-243), were analyzed in their lipid-free state in solution at pH 4.7-7.8 by far- and near-UV CD spectroscopy. At pH 7.8, all mutants show well-defined secondary structures consisting of 40-52% alpha-helix. Comparison of the alpha-helix content in the wild type and mutants suggests that deletion of either the N- or C-terminal region induces helical unfolding elsewhere in the structure, indicating that the terminal regions are important for the integrity of the solution conformation of apoA-I. Near-UV CD spectra indicate significant tertiary and/or quaternary structural changes resulting from deletion of the N-terminal 41 residues. Reduction in pH from 7.8 to 4.7 leads to an increase in the mutant helical content by 5-20% and to a large increase in thermal unfolding cooperativity. Van't Hoff analysis of the mutants at pH 4.7 indicates melting temperatures T(m) ranging from 51 to 59 degrees C and effective enthalpies deltaH(v)(T(m)) = 35 +/- 5 kcal/mol, similar to the values for plasma apoA-I at pH 7.8 (T(m) = 57 degrees C, deltaH(v) = 32 kcal/mol). Our results provide the first report of the pH effects on the secondary, tertiary, and/or quaternary structure of apoA-I variants and indicate the importance of the electrostatic interactions for the solution conformation of apoA-I.  相似文献   

16.
The thermal stabilities of the extramembranous and transmembranous regions of the bacterial voltage-gated sodium channel NaChBac have been characterised using thermal-melt synchrotron radiation circular dichroism (SRCD) spectroscopy. A series of constructs, ranging from the full-length protein containing both the C-terminal cytoplasmic and the transmembranous domains, to proteins with decreasing amounts of the cytoplasmic domain, were examined in order to separately define the roles of these two types of domains in the stability and processes of unfolding of a membrane protein. The sensitivity of the SRCD measurements over a wide range of wavelengths and temperatures has meant that subtle but reproducible conformational changes could be detected with accuracy. The residues in the C-terminal extramembranous domain were highly susceptible to thermal denaturation, but for the most part the transmembrane residues were not thermally-labile and retained their helical character even at very elevated temperatures. The process of thermal unfolding involved an initial irreversible unfolding of the highly labile distal extramembranous C-terminal helical region, which was accompanied by a reversible unfolding of a small number of helical residues in the transmembrane domain. This was then followed by the irreversible unfolding of a limited number of additional transmembrane helical residues at greatly elevated temperatures. Hence this study has been able to determine the different contributions and roles of the transmembrane and extramembrane residues in the processes of thermal denaturation of this multipass integral membrane protein.  相似文献   

17.
The N-terminal domain of human apolipoprotein E (apoE-NT) harbors residues critical for interaction with members of the low-density lipoprotein receptor (LDLR) family. Whereas lipid free apoE-NT adopts a stable four-helix bundle conformation, a lipid binding induced conformational adaptation is required for manifestation of LDLR binding ability. To investigate the structural basis for this conformational change, the short helix connecting helix 1 and 2 in the four-helix bundle was replaced by the sequence NPNG, introducing a beta-turn. Recombinant helix-to-turn (HT) variant apoE3-NT was produced in Escherichia coli, isolated and characterized. Stability studies revealed a denaturation transition midpoint of 1.9 m guanidine hydrochloride for HT apoE3-NT vs. 2.5 M for wild-type apoE3-NT. Wild-type and HT apoE3-NT form dimers in solution via an intermolecular disulfide bond. Native PAGE showed that reconstituted high-density lipoprotein prepared with HT apoE3-NT have a diameter in the range of 9 nm and possess binding activity for the LDLR on cultured human skin fibroblasts. In phospholipid vesicle solubilization assays, HT apoE3-NT was more effective than wild-type apoE3-NT at inducing a time dependent decrease in dimyristoylphosphatidylglycerol vesicle light scattering intensity. In lipoprotein binding assays, HT apoE3-NT protected human low-density lipoprotein from phospholipase C induced aggregation to a greater extent that wild-type apoE3-NT. The results indicate that a mutation at one end of the apoE3-NT four-helix bundle markedly enhances the lipid binding activity of this protein. In the context of lipoprotein associated full-length apoE, increased lipid binding affinity of the N-terminal domain may alter the balance between receptor-active and -inactive conformational states.  相似文献   

18.
Zhu HL  Atkinson D 《Biochemistry》2004,43(41):13156-13164
Because of its role in reverse cholesterol transport, human apolipoprotein A-I is the most widely studied exchangeable apolipoprotein. Residues 1-43 of human apoA-I, encoded by exon 3 of the gene, are highly conserved and less well understood than residues 44-243, encoded by exon 4. In contrast to residues 44-243, residues 1-43 do not contain the 22 amino acid tandem repeats thought to form lipid binding amphipathic helices. To understand the structural and functional roles of the N-terminal region, we studied a synthetic peptide representing the first 44 residues of human apoA-I ([1-44]apoA-I). Far-ultraviolet circular dichroism spectra showed that [1-44]apoA-I is unfolded in aqueous solution. However, in the presence of n-octyl beta-d-glucopyranoside, a nonionic lipid mimicking detergent, above its critical micelle concentration ( approximately 0.7% at 25 degrees C), sodium dodecyl sulfate, an ionic detergent, above its CMC ( approximately 0.2%), trimethylamine N-oxide, a folding inducing organic osmolyte, or trifluoroethanol, an alpha-helix inducer, alpha-helical structure was formed in [1-44]apoA-I up to approximately 45%. Characterization by density gradient ultracentrifugation and visualization by negative staining electron microscopy demonstrated that [1-44]apoA-I interacts with dimyristoylphosphatidylcholine (DMPC) over a wide range of lipid:peptide ratios from 1:1 to 12:1 (w/w). At 1:1 DMPC:[1-44]apoA-I (w/w) ratio, discoidal complexes with composition approximately 4:1 (w/w) and approximately 100 A diameter were formed in equilibrium with free peptide. At higher ratios, discoidal complexes were shown to exist together with a heterogeneous population of lipid vesicles with peptide bound also in equilibrium with free peptide. When bound to DMPC, [1-44]apoA-I has approximately 60% helical structure, independent of whether it forms discoidal or vesicular complexes. This helical content is consistent with that of the predicted G helix (residues 8-33). Our data provide the first strong and direct evidence that the N-terminal region of apoA-I binds lipid and can form discoidal structures and a heterogeneous population of vesicles. In doing so, approximately 60% of this region folds into alpha-helix from random coil. The composition of the 100 A discoidal complex is approximately 5 [1-44]apoA-I and approximately 150 DMPC molecules per disk. The helix length of 5 [1-44]apoA-I molecules in lipid-bound form is just long enough to wrap around the DMPC bilayer disk once.  相似文献   

19.
20.
The influence of apolipoprotein (apo) A-I structure on ABCA1-mediated efflux of cellular unesterified (free) cholesterol (FC) and phospholipid (PL) is not well understood. To address this issue, we used a series of apoA-I mutants to examine the contributions of various domains in the molecule to ABCA1-mediated FC and PL efflux from mouse J774 macrophages and human skin fibroblasts. Irrespective of the cell type, deletion or disruption of the C-terminal lipid-binding domain of apoA-I drastically reduced the FC and PL efflux ( approximately 90%), indicating that the C-terminal amphipathic alpha-helix is required for high affinity microsolubilization of FC and PL. Deletion in the N-terminal region of apoA-I also reduced the lipid efflux ( approximately 30%) and increased the K(m) about 2-fold compared with wild type apoA-I, whereas deletion of the central domain (Delta123-166) had no effect on either K(m) or V(max). These results indicate that ABCA1-mediated lipid efflux is relatively insensitive to the organization of the apoA-I N-terminal helix-bundle domain. Alterations in apoA-I structure caused parallel changes in its ability to bind to a PL bilayer and to induce efflux of FC and PL. Overall, these results are consistent with a two-step model for ABCA1-mediated lipid efflux. In the first step, apoA-I binds to ABCA1 and hydrophobic alpha-helices in the C-terminal domain of apoA-I insert into the region of the perturbed PL bilayer created by the PL transport activity of ABCA1, thereby allowing the second step of lipidation of apoA-I and formation of nascent high density lipoprotein particles to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号