首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experimentation with woody perennials may be difficult due to slow plant growth and a lack of sufficient amounts of uniform plant material. In this study, we sought to determine whether rooted leaves could be used as a substitute for whole plants in ion accumulation studies. Grapevine leaves are particularly amenable for rooting since their petioles are of sufficient length for dipping in rooting hormone and for holding the leaf above the soil surface. To determine whether rooted leaves would be useful for salinity experiments, we investigated the ion uptake characteristics of rooted leaves derived from a backcross population that differed in Cl accumulation. Long-term ion accumulation studies conducted over several weeks and short-term radioactive uptake studies conducted over several hours were performed. The data showed that the Cl content of rooted grapevine leaves from different genotypes grown at 25 and 50 mM NaCl was similar to data reported by others. Short-term radioactive uptake assays did not always reveal differences in uptake between the genotypes. Therefore, we suggest that rooted leaves under certain conditions may provide a space-efficient method for generating sufficient amounts of plant material. This material could be used for studying whole plant, molecular and electrophysiological aspects of ion transport and for conducting experiments where root material from specific genotypes is required.  相似文献   

2.
Clarke JE  Johnson GN 《Planta》2001,212(5-6):808-816
The effect of temperature on the rate of electron transfer through photosystems I and II (PSI and PSII) was investigated in leaves of barley (Hordeum vulgare L.). Measurements of PSI and PSII photochemistry were made in 21% O2 and in 2% O2, to limit electron transport to O2 in the Mehler reaction. Measurements were made in the presence of saturating CO2 concentrations to suppress photorespiration. It was observed that the O2 dependency of PSII electron transport is highly temperature dependent. At 10 °C, the quantum yield of PSII (ΦPSII) was insensitive to O2 concentration, indicating that there was no Mehler reaction operating. At high temperatures (>25 °C) a substantial reduction in ΦPSII was observed when the O2 concentration was reduced. However, under the same conditions, there was no effect of O2 concentration on the ΔpH-dependent process of non-photochemical quenching. The rate of electron transport through PSI was also found to be independent of O2 concentration across the temperature range. We conclude that the Mehler reaction is not important in maintaining a thylakoid proton gradient that is capable of controlling PSII activity, and present evidence that cyclic electron transport around PSI acts to maintain membrane energisation at low temperature. Received: 6 July 2000 / Accepted: 3 August 2000  相似文献   

3.
Abstract The contribution from temperature gradients within a plant to convective transport is calculated. Its magnitude depends primarily on the temperature differences in the plant and the radius of the conducting elements; the other quantities affecting it are well-established physical constants. Assuming a temperature difference in the plant of 1 K and a conductive element radius of 10?4 m, the speed of convective flow is 0.5 cm h?1 and this is independent of distance.  相似文献   

4.
In the frog intestine, both in vitro and in vivo, experiments were carried out in order to increase knowledge of the mechanism of sugar exit across the basolateral membrane of the enterocyte. The frog intestine was chosen because it lacks crypt cells and, consequently, any external fluid circuit mechanism during sugar transport can be avoided. Therefore, the sugar concentration in the absorbate collected on the serosal side is likely to be similar to that present underneath the basolateral membrane of the enterocyte. Under this condition, cell and absorbate sugar concentrations are similar; yet there is a concomitant net transintestinal sugar transport. Moreover, in in vivo experiments a net transintestinal sugar transport takes place even against a concentration difference. These results suggest that sugar exit across the basolateral membrane is not simply due to a chemically facilitated diffusion.  相似文献   

5.
Flower and fruit colors are important agronomic traits. To date, there is no forward genetic evidence that the glutathione S-transferase (GST) gene is responsible for the white flower color in peach (Prunus persica). In this study, genetic analysis indicated that the white-flower trait is monogenetic, is recessive to the non-white allele, and shows pleiotropic effects with non-white-flowered types. The genetic locus underpinning this trait was mapped onto chromosome 3 between 0.421951 and 3.227115 Mb by using bulked segregant analysis in conjunction with whole-genome sequencing, and was further mapped between 0 and 1.178149 Mb by using the backcross 1 (BC1) population. Finally, the locus was fine-mapped within 535.974- and 552.027-kb intervals by using 151 F2 individuals and 75 individuals from a BC1 self-pollinated (BC1S1) population, respectively. Pp3G013600, encoding a GST that is known to transport anthocyanin, was identified within the mapping interval. The analysis of genome sequence data showed Pp3G013600 in white flowers has a 2-bp insertion or a 5-bp deletion in the third exon. These variants likely render the GST non-functional because of early stop codons that reduce the protein length from 215 amino acids to 167 and 175 amino acids, respectively. Genetic markers based on these variants validated a complete correlation between the GST loss-of-function alleles and white flower in 128 peach accessions. This correlation was further confirmed by silencing of Pp3G013600 using virus-induced gene silencing technology, which reduced anthocyanin accumulation in peach fruit. The new knowledge from this study is useful for designing peach breeding programs to generate cultivars with white flower and fruit skin.  相似文献   

6.
The role of glutamine and alanine transport in the recycling of neurotransmitter glutamate was investigated in Guinea pig brain cortical tissue slices and prisms, and in cultured neuroblastoma and astrocyte cell lines. The ability of exogenous (2 mm) glutamine to displace 13C label supplied as [3-13C]pyruvate, [2-13C]acetate, l-[3-13C]lactate, or d-[1-13C]glucose was investigated using NMR spectroscopy. Glutamine transport was inhibited in slices under quiescent or depolarising conditions using histidine, which shares most transport routes with glutamine, or 2-(methylamino)isobutyric acid (MeAIB), a specific inhibitor of the neuronal system A. Glutamine mainly entered a large, slow turnover pool, probably located in neurons, which did not interact with the glutamate/glutamine neurotransmitter cycle. This uptake was inhibited by MeAIB. When [1-13C]glucose was used as substrate, glutamate/glutamine cycle turnover was inhibited by histidine but not MeAIB, suggesting that neuronal system A may not play a prominent role in neurotransmitter cycling. When transport was blocked by histidine under depolarising conditions, neurotransmitter pools were depleted, showing that glutamine transport is essential for maintenance of glutamate, GABA and alanine pools. Alanine labelling and release were decreased by histidine, showing that alanine was released from neurons and returned to astrocytes. The resultant implications for metabolic compartmentation and regulation of metabolism by transport processes are discussed.  相似文献   

7.
The quantum yield of non-cyclic electron transport from PS II (PS II) and the apparent quantum yield of CO2 fixation (CO2) were measured in the maize genotype, R-CH HOPI, which shows a high leaf anthocyanin content when grown at a temperature slightly below 20 °C. Thus, the leaf anthocyanin content was thirty-five times higher in plants grown at 18 °C when compared to plants grown at 23 °C. The relationship between PS II and CO2 obtained at different CO2 partial pressure was linear for plants with both high and low leaf anthocyanin content. The PS II/CO2 ratio was about 16 in plants with high leaf anthocyanin content and about 10 in plants with low leaf anthocyanin content. The leaf light absorptance in the 400–700 nm region was higher in plants with higher leaf anthocyanin content. Since leaf absorptance between 400 and 600 nm and leaf anthocyanin content also resulted in a strict linear relationship, an indirect estimation of the absorbed light by leaf anthocyanins and thus at chloroplasts was derived. Using the correct estimation of the absorbed light at chloroplasts, to obtain CO2, differences in PS II/CO2 ratios between plants with different leaf anthocyanin content were eliminated. The modulation of leaf anthocyanin content by growth temperature is regarded as an effective strategy to modulate the light available at the chloroplasts.  相似文献   

8.
Small animal deep‐tissue fluorescence imaging in the second Biological Window (II‐BW, 1000–1350 nm) is limited by the presence of undesirable infrared‐excited, infrared‐emitted (900–1700 nm) autofluorescence whose origin, spectral properties and dependence on strains is still unknown. In this work, the infrared autofluorescence and laser‐induced whole body heating of five different mouse strains with distinct coat colors (black, grey, agouti, white and nude) has been systematically investigated. While neither the spectral properties nor the magnitude of organ autofluorescence vary significantly between mouse strains, the coat color has been found to strongly determine both the autofluorescence intensity as well as the laser‐induced whole body heating. Results included in this work reveal mouse strain as a critical parameter that has to be seriously considered in the design and performance of small animal imaging experiments based on infrared‐emitting fluorescent markers.

  相似文献   


9.
ABC transporters involved in the transport of plant secondary metabolites   总被引:10,自引:0,他引:10  
Yazaki K 《FEBS letters》2006,580(4):1183-1191
Plants produce a large number of secondary metabolites, such as alkaloids, terpenoids, polyphenols, quinones and many further compounds having combined structures of those groups. Physiological roles of those metabolites for plants are still under investigation, but they play, at least in part, important functions as protectants for plant bodies against herbivores and pathogens, as well as from physical stresses like ultraviolet light and heat. In order to accomplish these functions, biosyntheses and accumulation of secondary metabolites are highly regulated in a temporal and spatial manner in plant organs, where they can appropriately accumulate. In this mini-review, I introduce the mechanism of accumulation and membrane transport of these metabolites, in particular, focusing on ATP-binding cassette transporters involved.  相似文献   

10.
Hairy root cultures of grapevine were obtained from plantlets co-inoculated by virulent Agrobacterium rhizogenes strains and disarmed A. tumefaciens strains harbouring the binary vectors pKHG4 and pKVHG 2+. These plasmids contain the nptII, hpt and gus genes and differ for the presence of the gene encoding for the grapevine chrome mosaic virus coat protein. For the cultivar ‘Gravesac’, 72% of the excised root tips initiated hairy root cultures on growth regulator-free media. According to the nature of the strains used in co-inoculation, co-transformation frequencies of the hairy root clones ranged from 4 to 16%. Co-transformed roots showed resistance to kanamycin and hygromycin but responses varied from clone to clone. Fluorometric GUS expression and GCMV coat protein production showed a large variability among hairy root clones co-transformed by pKHVG2+. Though the presence of gus, nptII and GCMV coat protein genes was checked by polymerase chain reaction and Southern blotting, it was difficult to establish a clear relationship between expression of the different transgenes. The regeneration of plants was not achieved, but the possibility to graft in vitro transgenic roots to non transformed shoot systems could permit rapid testing of the resistance induced by nepovirus coat protein in roots of cultivars that are recalcitrant to A. tumefaciens-mediated transformation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Most of the thousands of grapevine cultivars (Vitis vinifera L.) can be divided into two groups, red and white, based on the presence or absence of anthocyanin in the berry skin, which has been found from genetic experiments to be controlled by a single locus. A regulatory gene, VvMYBA1, which could activate anthocyanin biosynthesis in a transient assay, was recently shown not to be transcribed in white berries due to the presence of a retrotransposon in the promoter. We have found that the berry colour locus comprises two very similar genes, VvMYBA1 and VvMYBA2, located on a single bacterial artificial chromosome. Either gene can regulate colour in the grape berry. The white berry allele of VvMYBA2 is inactivated by two non-conservative mutations, one leads to an amino acid substitution and the other to a frame shift resulting in a smaller protein. Transient assays showed that either mutation removed the ability of the regulator to switch on anthocyanin biosynthesis. VvMYBA2 sequence analyses, together with marker information, confirmed that 55 white cultivars all contain the white berry allele, but not red berry alleles. These results suggest that all extant white cultivars of grape vines have a common origin. We conclude that rare mutational events occurring in two adjacent genes were essential for the genesis of the white grapes used to produce the white wines and white table grapes we enjoy today.  相似文献   

12.
13.
The prevalence of nonalcoholic fatty liver (NAFLD) is rapidly increasing worldwide. When untreated, it may lead to complications such as liver cirrhosis or hepatocarcinoma. The diagnosis of NAFLD is usually obtained by ultrasonography, a technique that can underestimate its prevalence. For this reason, physicians aspire for an accurate, cost-effective, and noninvasive method to determine both the presence and the specific stage of the NAFLD. In this paper, we report an integrated approach for the quantitative estimation of the density of triglycerides in the liver based on the use of autofluorescence and reflectance signals generated by the abdomen of obese C57BL6/J mice. Singular value decomposition is applied to the generated spectra and its corresponding regression model provided a determination coefficient of 0.99 and a root mean square error of 240 mg/dl. This, in turn, enabled the quantitative imaging of triglycerides density in the livers of mice under in vivo conditions.  相似文献   

14.
15.
16.
Bacillus subtilis KS1 was isolated from grape berry skin as a biological control agent against grapevine fungal diseases. KS1 was identified as a new strain of B. subtilis according to morphological, biochemical, and genetic analyses. In vitro bioassay demonstrated that KS1 suppressed the growth of Botrytis cinerea (the casual agent of grape grey mold) and Colletotrichum gloeosporioides (the casual agent of grape ripe rot). The biocontrol activity of KS1 against grapevine fungal diseases in vineyards was evaluated over a 3-year span (from 2007 to 2009). Downy mildew, caused by Plasmopara viticola, was reduced on berry skins and leaves by treatment with KS1. The KS1 genome possesses ituD and lpa-14 genes, both of which play a role in iturin A production followed by iturin A production in the culture. In contrast, mutants lacking both genes lost the antagonistic activity against B. cinerea and C. gloeosporioides and the activity in iturin A production, suggesting that the antagonistic activity of KS1 against grapevine fungal pathogens may depend on iturin A production. As KS1 showed tolerance to various chemical pesticides, chemical pesticides could be applied before and/or after KS1 treatment in vineyards. Due to its potential as a biological control agent against grape downy mildew, KS1 is expected to contribute to the further improvement of integrated pest management systems and to potentially reduce the amount of chemical fungicides applied in vineyards.  相似文献   

17.
Background: Since the identification of the genes controlling the root acquisitionof iron (Fe), the control of inter- and intracellular distributionhas become an important challenge in understanding metal homeostasis.The identification of the yellow stripe-like (YSL) transporterfamily has paved the way to decipher the mechanisms of long-distancetransport of Fe. Scope: Once in the plant, Fe will systematically react with organicligands whose identity is poorly known so far. Among potentialligands, nicotianamine has been identified as an important moleculefor the circulation and delivery of metals since it participatesin the loading of copper (Cu) and nickel in xylem and preventsFe precipitation in leaves. Nicotianamine is a precursor ofphytosiderophores, which are high-affinity Fe ligands exclusivelysynthesized by Poaceae species and excreted by roots for thechelation and acquisition of Fe. Maize YS1 is the founding memberof a family of membrane transporters called YS1-like (YSL),which functions in root Fe–phytosiderophore uptake fromthe soil. Next to this well-known Fe acquisition role, mostof the other YSL family members are likely to function in plant-widedistribution of metals since (a) they are produced in vasculartissues throughout the plant and (b) they are found in non-Poaceaespecies that do not synthesize phytosiderophores. The hypothesizedactivity as Fe–nicotianamine transporters of several YSLmembers has been demonstrated experimentally by heterologousexpression in yeast or by electrophysiology in Xenopus oocytesbut, despite numerous attempts, proof of the arabidopsis YSLsubstrate specificity is still lacking. Reverse genetics, however,has revealed a role for AtYSL members in the remobilizationof Cu and zinc from senescing leaves, in the formation of pollenand in the Fe, zinc and Cu loading of seeds. Conclusions: Preliminary data on the YSL family of transporters clearly arguesin favour of its role in the long-distance transport of metalsthrough and between vascular tissues to eventually support gametogenesisand embryo development.  相似文献   

18.
In vivo trafficking and localization of p24 proteins in plant cells   总被引:1,自引:0,他引:1  
p24 proteins constitute a family of putative cargo receptors that traffic in the early secretory pathway. p24 proteins can be divided into four subfamilies (p23, p24, p25 and p26) by sequence homology. In contrast to mammals and yeast, most plant p24 proteins contain in their cytosolic C-terminus both a dilysine motif in the −3, −4 position and a diaromatic motif in the −7, −8 position. We have previously shown that the cytosolic tail of Arabidopsis p24 proteins has the ability to interact with ARF1 and coatomer (through the dilysine motif) and with COPII subunits (through the diaromatic motif). Here, we establish the localization and trafficking properties of an Arabidopsis thaliana p24 protein ( At p24) and have investigated the contribution of the sorting motifs in its cytosolic tail to its in vivo localization. At p24-red fluorescent protein localizes exclusively to the endoplasmic reticulum (ER), in contrast with the localization of p24 proteins in other eukaryotes, and the dilysine motif is necessary and sufficient for ER localization. In contrast, At p24 mutants lacking the dilysine motif are transported along the secretory pathway to the prevacuolar compartment and the vacuole, although a significant fraction is also found at the plasma membrane. Finally, we have found that ER export of At p24 is COPII dependent, while its ER localization requires COPI function, presumably for efficient Golgi to ER recycling.  相似文献   

19.
Sorghum ( Sorghum bicolor ) synthesizes a complex mixture of 3-deoxyanthocyanidin phytoalexins in response to inoculation with the non-pathogenic fungus Bipolaris maydis . The anthocyanin cyanidin 3-dimalonyl glucoside, is also synthesized naturally in response to light. To determine the order and time of appearance of these compounds, etiolated sorghum mesocotyls were inoculated with B. maydis and tissue extracts were analysed by photodiode array-HPLC every 2 h for the first 24 h and at 48 h post inoculation (hpi). Uninoculated and inoculated etiolated mesocotyls were also allowed to incorporate L-[U-14C] phenylalanine. Apigeninidin appeared at 10 hpi, followed by luteolinidin and apigeninidin 5-O-arabinoside at 14 hpi. Luteolinidin 5-methylether was not detected until 18 hpi and apigeninidin 7-methylether not until 20 hpi. The concentrations of the primary phytoalexins, apigeninidin, luteolinidin and apigeninidin 5-O-arabinoside, rose steadily between 12 and 24 hpi, and the levels of apigeninidin and luteolinidin were approximately equivalent by 24 hpi. However, between 24 and 48 hpi luteolinidin and luteolinidin 5-methylether accumulated rapidly so that by 48 hpi the amounts of luteolinidin and luteolinidin 5-methylether had increased approximately twofold. Radiolabelling also showed that 14C was incorporated into the 3-deoxyanthocyanidins and cyanidin 3-dimalonyl glucoside. Several other unidentified phenolic compounds also accumulated radioactivity.  相似文献   

20.
We firstly characterized zinc uptake phenomenon across basolateral membrane vesicles (BLMVs) isolated from normal rat kidney. The process was found to be time, temperature, and substrate concentration dependent, and displayed saturability. Zn2+ uptake was competitively inhibited in the presence of 2 mM Cd with Ki of 3.9 mM. Zinc uptake was also inhibited in the presence of sulfhydryl reacting compound suggesting involvement of {–}SH groups in the transport process. Further, to elucidate the effect of in vivo Cd on zinc transport in BLMVs, Cd nephrotoxicity was induced by subcutaneous administration of CdCl2 at dose of 0.6 mg/kg/d for 5 days in a week for 12 weeks. An indolent renal failure developed in Cd exposed rats was accompanied with a significantly high urinary excretion of Cd2+, Zn2+ and proteins. The histopathology and electron microscopy of kidneys of Cd exposed rats documented changes of proximal tubular degeneration. Notably, Cd content in renal cortex of Cd exposed rats was 215 μg/g tissue that was higher than the critical concentration of Cd in kidneys which was associated with significantly higher Zn and metallothionein (MT) contents. Zinc uptake in BLMVs isolated from kidneys of Cd exposed rats was significantly reduced. Further, kinetic studies revealed that decrease in zinc uptake synchronized with decrease in maximal velocity (Vmax) and increase in affinity constant which is suggestive of decreased number of active zinc transporters. Furthermore, conformational modulation of Zn transporter in BLM was further supported by observed variation in transition temperature for zinc transport in BLMVs isolated from Cd-exposed kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号