首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A diverse group of anoxygenic phototrophic bacteria thrive in habitats characterized by extremes of temperature, pH, or salinity. These `extremophilic' anoxygenic phototrophs are optimally adapted to the conditions of their habitats and are ideal model systems for defining the physiochemical limits of photosynthesis. Extremophilic phototrophs have provided new insight into the evolution of photosynthesis and play ecological roles as primary producers in their unusual habitats. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The efficiency of five extraction methods for extracellular polymeric substances (EPS) was compared on three benthic eukaryotic biofilms isolated from an extreme acidic river, Río Tinto (SW, Spain). Three chemical methods (MilliQ water, NaCl, and ethylenediamine tetraacetic acid [EDTA]) and two physical methods (Dowex 50.8 and Crown Ether cation exchange resins) were tested. The quality and quantity of the EPS extracted from acidic biofilms varied according to which EPS extraction protocol was used. Higher amounts were obtained when NaCl and Crown Ether resins were used as extractant agents, followed by EDTA, Dowex, and MilliQ. EPS amounts varied from approximately 155 to 478 mg g−1 of dry weight depending on the extraction method and biofilm analyzed. EPS were primarily composed of carbohydrate, heavy metals, and humic acid, plus small quantities of proteins and DNA. Neutral hexose concentrations corresponded to more than 90% of the total EPS dry weight. The proportions of each metals in the EPS extracted with EDTA are similar to the proportions present in the water from each locality where the biofilms were collected except for Al, Cu, Zn, and Pb. In this study, the extracellular matrix heavy metal sorption efficiencies of five methods for extracting EPS from eukaryotic acidic biofilms were compared.  相似文献   

3.
1. Phototrophic biofilms consist of a matrix of phototrophs, non‐photosynthetic bacteria and extracellular polymeric substances (EPS) which is spatially structured. Despite widespread exploitation of algae and bacteria within phototrophic biofilms, for example by protozoans, the ‘engineering’ effects of these ciliates on the spatial heterogeneity of phototrophic biofilms are poorly studied. 2. We studied the potential engineering effects of two ciliates, Urostyla sp. and Paramecium bursaria, on the spatial heterogeneity of synthetic multispecies biofilms. Biomass of phototrophic organisms, EPS and bacteria was analysed three dimensionally using confocal laser scanning microscopy. Spatial heterogeneity and cover of the phototrophs, bacteria and EPS were determined at several depths within the biofilm. 3. Ciliate species did not interfere with the overall development of phototrophic microorganisms, because the thickness of the biofilm was equal whether the ciliates were present or not, even though their abundance did affect spatial heterogeneity of biofilm components. When Urostyla was present, it reduced aggregation in EPS and bacteria and increased EPS biovolume. This implies a local facilitating effect of ciliates on photosynthetic activity. Biofilms to which Paramecium was added did not differ from controls in terms of phototrophs, EPS cover and biovolume. Nevertheless, ciliates affected the spatial heterogeneity of these components as phototrophs and EPS became more evenly distributed. 4. This study shows that ecosystem engineering by organisms does not only occur at large spatial scales, as in grasslands and estuaries, but also plays a role at the microscopic scale of biofilms. This effect on spatial heterogeneity was not driven by substantial exploitation of biofilm components, but via the subtle engineering effects of ciliates.  相似文献   

4.
Phototrophic biofilm samples from an Italian wastewater treatment plant were studied in microcosm experiments under varying irradiances, temperatures and flow regimes to assess the effects of environmental variables and phototrophic biomass on capsular exopolysaccharides (CPS). The results, obtained from circular dichroism spectroscopy and High Performance Liquid Chromatography, suggest that CPS have a stable spatial conformation and a complex monosaccharide composition. The total amount present was positively correlated with the biomass of cyanobacteria and diatoms, and negatively with the biovolume of green algae. The proportion of uronic acids showed the same correlation with these taxon groups, indicating a potential role of cyanobacteria and diatoms in the removal of residual nutrients and noxious cations in wastewater treatment. While overall biofilm growth was limited by low irradiance, high temperature (30°C) and low flow velocity (25 l h?1) yielded the highest phototrophic biomass, the largest amount of CPS produced, and the highest proportion of carboxylic acids present.  相似文献   

5.
Pigment extracts of phototrophic bacteria isolated from Lake Kinneret (Rhodopseudomonas palustris, Thiocapsa roseopersicina, Prosthecochloris aestuaris andChlorobium phaeobacteroides) were studied by means of high performance liquid chromatography (HPLC). An absorption wavelength of 360 nm provided the best resolution among the pigments of the species tested and between them and chlorophylla. Signature pigments were identified for each of these species, and their presence was thereby monitored in lake water samples.C. phaeobacteroides, which was observed in the anaerobic hypolimnion and predominated in the metalimnion, was recognized by a characteristic cluster of major chlorophyllous pigment peaks. The spectral qualities of these pigments were close but not identical to published data on bacteriochlorophylle, presumably due to the use of different solvents for extraction. The intensity of these pigment peaks was employed to determine the depth of the greatest phototrophic bacterial biomass, which was not related to that of algae.  相似文献   

6.
In the present study, biomass development and changes in community composition of phototrophic biofilms grown under different controlled ambient conditions (light, temperature and flow) were examined. Source communities were taken from a wastewater treatment plant and used to inoculate growth surfaces in a semi-continuous-flow microcosm. We recorded biofilm growth curves in cultures over a period of 30 days across 12 experiments. Biovolume of phototrophs and community composition for taxonomic shifts were also obtained using light and electron microscopy. Species richness in the cultured biofilms was greatly reduced with respect to the natural samples, and diversity decreased even further during biofilm development. Diadesmis confervacea, Phormidium spp., Scenedesmus spp. and Synechocystis spp. were identified as key taxa in the microcosm. While a significant positive effect of irradiance on biofilm growth could be identified, impacts of temperature and flow rate on biofilm development and diversity were less evident. We discuss the hypothesis that biofilm development could have been subject to multistability, i.e. the existence of several possible stable biofilm configurations for the same set of environmental parameters; small variations in the species composition might have been sufficient to switch between these different configurations and thus have contributed to overwriting the original effects of temperature and flow velocity.  相似文献   

7.
1. The effect of phosphate on species composition in biofilms was studied under three different phosphate regimes (0.5, 5 and 50 μm ) in two different multi species communities: one composed of the four diatom species Melosira varians, Nitzschia perminuta, Navicula trivialis and Achnanthes lanceolata and one containing these diatom species plus the two cyanobacterial species Leptolyngbya foveolarum and Cylindrospermum stagnale. 2. Algal growth in monocultures and mixtures was measured as chlorophyll a and PAM fluorimetry was applied to document density and physiological condition of the two main groups of photosynthetic organisms in mixed cultures. 3. In phosphate‐replete communities, a single species dominated the community (N. perminuta in the diatom mixture and L. foveolarum in the all species mixture), while in the phosphate‐deprived communities several species persisted, in spite of severe phosphate limitation. 4. We conclude that high supply of phosphate enables the species L. foveolarum, and to a lesser extent N. perminuta, to overgrow biofilm consortia, facilitated by their filamentous growth form, motility or the excretion of inhibitors. The persistence of several species under a low phosphate regime is explained by a less intense interspecific interaction in low‐density biofilms. This clarifies field observations published previously.  相似文献   

8.
In this paper we report studies on photosynthetic formation of inorganic pyrophosphate (PPi) in three phototrophic bacteria. Formation of PPi was found in chromatophores from Rhodopseudomonas viridis but not in chromatophores from Rhodopseudomonas blastica and Rhodobacter capsulatus. The maximal rate of PPi synthesis in Rps. viridis was 0.15 mol PPi formed/(min*mol Bacteriochlorophyll) at 23°C. The synthesis of PPi was inhibited by electron transport inhibitors, uncouplers and fluoride, but was insensitive to oligomycin and venturicidin. The steady state rate of PPi synthesis under continuous illumination was about 15% of the steady-state rate of ATP synthesis. The synthesis of PPi after short light flashes was also studied. The yield of PPi after a single 1 ms flash was equivalent to approximately 1 mol PPi/500 mol Bacteriochlorophyll. In Rps. viridis chromatophores, PPi was also found to induce a membrane potential, which was sensitive to carbonyl cyanide p-trifluoromethoxyphenylhydrazone and NaF.Abbreviations BChl Bacteriochlorophyll - F0F1-ATPase Membrane bound proton translocating ATP synthase - FCCP Carbonyl cyanide p-trifluoromethoxyphenylhydrazone - H+-PPase Membrane bound proton translocating PPi synthase - TPP+ Tetraphenyl phosphonium ion - TPB- Tetraphenyl boron ion - Transmembrane electrical potential difference  相似文献   

9.
We investigated phototrophic microorganisms dwelling on stone walls made of Piperno, a volcanic rock frequently used as construction material in historical buildings in Naples, Italy. Biofilms from three historical buildings in the center of the city and from a natural Piperno quarry located in a suburban area were examined. Light and electron microscopy, and molecular biology techniques allowed the identification of 17 species belonging to Cyanobacteria, Rhodophyta, Bacillariophyta, and Chlorophyta. Cyanobacteria were the dominant components in all the biofilms. No significant differences in microbial composition were observed for biofilms collected in autumn and spring, with minor exceptions for the quarry samples, where environmental conditions were relatively more stable than in the city. Results are discussed in comparison with information on microbial communities dwelling on other kinds of substrata commonly used in historical buildings in the Neapolitan area.  相似文献   

10.
The present work reports on the first attempt to study water mobility in phototrophic biofilms, applying the 1H-NMR relaxometry technique to closely monitored microbial communities grown in a microcosm under controlled ambient conditions. Longitudinal water proton relaxation times exhibited a bi-exponential behavior in all biofilm samples, indicating two types of water molecules with diverging dynamic properties, confined to different compartments of the biofilm. The fast-relaxing component can be attributed to water molecules tightly bound to the intracellular matrix, while the slow-relaxing component could reflect the behavior of water embedded in the biopolymer matrix, confined into matrix pores and channels. The results are discussed with respect to a possible key role of exopolysaccharides and uronic acids in water binding in phototrophic biofilms.  相似文献   

11.
The present work reports on the first attempt to study water mobility in phototrophic biofilms, applying the (1)H-NMR relaxometry technique to closely monitored microbial communities grown in a microcosm under controlled ambient conditions. Longitudinal water proton relaxation times exhibited a bi-exponential behavior in all biofilm samples, indicating two types of water molecules with diverging dynamic properties, confined to different compartments of the biofilm. The fast-relaxing component can be attributed to water molecules tightly bound to the intracellular matrix, while the slow-relaxing component could reflect the behavior of water embedded in the biopolymer matrix, confined into matrix pores and channels. The results are discussed with respect to a possible key role of exopolysaccharides and uronic acids in water binding in phototrophic biofilms.  相似文献   

12.
Phototrophic biofilms are used in a variety of biotechnological and industrial processes. Understanding their structure, ie microbial composition, is a necessary step for understanding their function and, ultimately, for the success of their application. DNA analysis methods can be used to obtain information on the taxonomic composition and relative abundance of the biofilm members. The potential bias introduced by DNA extraction methods in the study of the diversity of a complex phototrophic sulfide-oxidizing biofilm was examined. The efficiency of eight different DNA extraction methods combining physical, mechanical and chemical procedures was assessed. Methods were compared in terms of extraction efficiency, measured by DNA quantification, and detectable diversity (16S rRNA genes recovered), evaluated by denaturing gradient gel electrophoresis (DGGE). Significant differences were found in DNA yields ranging from 116 ± 12 to 1893 ± 96 ng of DNA. The different DGGE fingerprints ranged from 7 to 12 bands. Methods including phenol–chloroform extraction after enzymatic lysis resulted in the greatest DNA yields and detectable diversity. Additionally, two methods showing similar yields and retrieved diversity were compared by cloning and sequencing. Clones belonging to members of the Alpha-, Beta- and Gamma- proteobacteria, Bacteroidetes, Cyanobacteria and to the Firmicutes were recovered from both libraries. However, when bead-beating was applied, clones belonging to the Deltaproteobacteria were also recovered, as well as plastid signatures. Phenol–chloroform extraction after bead-beating and enzymatic lysis was therefore considered to be the most suitable method for DNA extraction from such highly diverse phototrophic biofilms.  相似文献   

13.
Electroactivity is a property of microorganisms assembled in biofilms that has been highlighted in a variety of environments. This characteristic was assessed for phototrophic river biofilms at the community scale and at the bacterial population scale. At the community scale, electroactivity was evaluated on stainless steel and copper alloy coupons used both as biofilm colonization supports and as working electrodes. At the population scale, the ability of environmental bacterial strains to catalyze oxygen reduction was assessed by cyclic voltammetry. Our data demonstrate that phototrophic river biofilm development on the electrodes, measured by dry mass and chlorophyll a content, resulted in significant increases of the recorded potentials, with potentials of up to +120 mV/saturated calomel electrode (SCE) on stainless steel electrodes and +60 mV/SCE on copper electrodes. Thirty-two bacterial strains isolated from natural phototrophic river biofilms were tested by cyclic voltammetry. Twenty-five were able to catalyze oxygen reduction, with shifts of potential ranging from 0.06 to 0.23 V, cathodic peak potentials ranging from -0.36 to -0.76 V/SCE, and peak amplitudes ranging from -9.5 to -19.4 μA. These isolates were diversified phylogenetically (Actinobacteria, Firmicutes, Bacteroidetes, and Alpha-, Beta-, and Gammaproteobacteria) and exhibited various phenotypic properties (Gram stain, oxidase, and catalase characteristics). These data suggest that phototrophic river biofilm communities and/or most of their constitutive bacterial populations present the ability to promote electronic exchange with a metallic electrode, supporting the following possibilities: (i) development of electrochemistry-based sensors allowing in situ phototrophic river biofilm detection and (ii) production of microbial fuel cell inocula under oligotrophic conditions.  相似文献   

14.
15.
The tolerance limits of extremophiles in term of temperature, pH, salinity, desiccation, hydrostatic pressure, radiation, anaerobiosis far exceed what can support non-extremophilic organisms. Like all other organisms, extremophiles serve as hosts for viral replication. Many lines of evidence suggest that viruses could no more be regarded as simple infectious “fragments of life” but on the contrary as one of the major components of the biosphere. The exploration of niches with seemingly harsh life conditions as hypersaline and soda lakes, Sahara desert, polar environments or hot acid springs and deep sea hydrothermal vents, permitted to track successfully the presence of viruses. Substantial populations of double-stranded DNA virus that can reach 109 particles per milliliter were recorded. All these viral communities, with genome size ranging from 14 kb to 80 kb, seem to be genetically distinct, suggesting specific niche adaptation. Nevertheless, at this stage of the knowledge, very little is known of their origin, activity, or importance to the in situ microbial dynamics. The continuous attempts to isolate and to study viruses that thrive in extreme environments will be needed to address such questions. However, this topic appears to open a new window on an unexplored part of the viral world. Marc Le Romancer and Mélusine Gaillard contributed equally to this work.  相似文献   

16.
Bioprocess and Biosystems Engineering - Biotechnological production of valuables by microorganisms is commonly achieved by cultivating the cells as suspended solids in an appropriate liquid medium....  相似文献   

17.
A kinetic model for mixed phototrophic biofilms is introduced, which focuses on the interactions between photoautotrophic, heterotrophic, and chemoautotrophic (nitrifying) functional microbial groups. Biofilm-specific phenomena are taken into account, such as extracellular polymeric substances (EPS) production by phototrophs as well as gradients of substrates and light in the biofilm. Acid-base equilibria, in particular carbon speciation, are explicitly accounted for, allowing for the determination of pH profiles across the biofilm. Further to previous models reported in literature, the PHOBIA model combines a number of kinetic mechanisms specific to phototrophic microbial communities, such as internal polyglucose storage under dynamic light conditions, phototrophic growth in the darkness using internally stored reserves, photoadaptation and photoinhibition, preference for ammonia over nitrate as N-source and the ability to utilize bicarbonate as a carbon source in the absence of CO(2). The sensitivity of the PHOBIA model to a number of key parameters is analyzed. An example on the potential use of phototrophic biofilms in wastewater polishing is discussed, where their performance is compared with conventional algal ponds. The PHOBIA model is presented in a manner that is compatible with other reference models in the area of water treatment. Its current version forms a theoretical base which is readily extendable once further experimental observations become available.  相似文献   

18.
In the current study, five phototrophic biofilms from different Southern Europe limestone monuments were characterised by molecular techniques and cultivated under laboratory conditions. Phototrophic biofilms were collected from Orologio Tower in Martano (Italy), Santa Clara-a-Velha Monastery and Ajuda National Palace, both in Portugal, and Seville and Granada Cathedrals from Spain. The biofilms were grown under laboratory conditions and periodically sampled in order to monitor their evolution over a three-month period. Prokaryotic communities from natural samples and cultivated biofilms were monitored using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments in conjunction with clone sequencing and phylogenetic analysis. DNA-based molecular analysis of 16S rRNA gene fragments from the natural green biofilms revealed complex and different communities composition with respect to phototrophic microorganisms. The biofilms from Orologio Tower (Martano, Italy) and Santa Clara-a-Velha Monastery (Coimbra, Portugal) were dominated by the microalga Chlorella. The cyanobacterium Chroococcidiopsis was the dominating genus from Ajuda National Palace biofilm (Lisbon, Portugal). The biofilms from Seville and Granada Cathedrals (Spain) were both dominated by the cyanobacterium Pleurocapsa. The DGGE analysis of the cultivated biofilms showed that the communities developed differently in terms of species establishment and community composition during the three-month incubation period. The biofilm culture from Coimbra (Portugal) showed a remarkable stability of the microbial components of the natural community in laboratory conditions. With this work, a multiple-species community assemblage was obtained for further stone colonisation experiments.  相似文献   

19.
A system of nonlinear hyperbolic partial differential equations is derived using mixture theory to model the formation of biofilms. In contrast with most of the existing models, our equations have a finite speed of propagation, without using artificial free boundary conditions. Adapted numerical scheme will be described in detail and several simulations will be presented in one and more space dimensions in the particular case of cyanobacteria biofilms. Besides, the numerical scheme we present is able to deal in a natural and effective way with regions where one of the phases is vanishing.  相似文献   

20.
Phototrophic biofilms are defined as interfacial microbial communities mainly driven by light as energy source and are studied for both ecological and technological reasons. Field investigations of biofilms usually do not offer the opportunity to study the effects of a large number of external parameters. In order to investigate the temporal development of phototrophic communities a laboratory flow-lane incubator for cultivation of freshwater and marine biofilms was developed. The incubator has four lanes which accommodate microscope slides used as substratum and for sampling. The slides can be of different material and may be employed for characterisation of phototrophic biofilms by means of gravimetry, microscopy, taxonomy, molecular biology and chemical analysis. The design allows control of irradiance, temperature and flow velocity. Furthermore, on-line control of biomass accumulation via specially adapted light sensors was proved to be a suitable indicator of temporal developmental stages (initial adhesion, active growth and mature stage). Spatial heterogeneity of the cultivated phototrophic biofilms along the flow direction within each flow-lane was low. Biofilm growth characteristics (e. g. lag time, net accrual rate, peak biomass) recorded in dependency from external conditions may be used as input data for training of artificial neural networks (ANN) and mechanistic modelling. The material and devices used in combination with low maintenance costs and ease of handling suggests the flow-lane incubator as a useful tool for studying the influence of abiotic and biotic factors on the development of freshwater and marine phototrophic biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号