首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
FXYD proteins are a group of short single-span transmembrane proteins that interact with the Na(+)/K(+) ATPase and modulate its kinetic properties. This study characterizes intracellular trafficking of two FXYD family members, FXYD1 (phospholemman (PLM)) and FXYD7. Surface expression of PLM in Xenopus oocytes requires coexpression with the Na(+)/K(+) ATPase. On the other hand, the Na(+)/Ca(2+) exchanger, another PLM-interacting protein could not drive it to the cell surface. The Na(+)/K(+) ATPase-dependent surface expression of PLM could be facilitated by either a phosphorylation-mimicking mutation at Thr-69 or a truncation of three terminal arginine residues. Unlike PLM, FXYD7 could translocate to the cell surface of Xenopus oocytes independently of the coexpression of α1β1 Na(+)/K(+) ATPase. The Na(+)/K(+) ATPase-independent membrane translocation of FXYD7 requires O-glycosylation of at least two of three conserved threonines in its ectodomain. Subsequent experiments in mammalian cells confirmed the role of conserved extracellular threonine residues and demonstrated that FXYD7 protein, in which these have been mutated to alanine, is trapped in the endoplasmic reticulum and Golgi apparatus.  相似文献   

2.
To investigate effects of pH on the Na(+),K(+)-ATPase, we used the Xenopus oocytes to measure transient charge movements in the absence of extracellular K(+), and steady-state currents mediated by the pump as well as ATPase activity. The activity of purified Na(+), K(+)-ATPase strongly depends on pH, which has been attributed to protonation of intracellular sites. The steady-state current reflects pump activity, the transient charge movement voltage-dependent interaction of external Na(+) ions with the pump molecule and/or conformational changes during Na(+)/Na(+) exchange. The steady-state current exhibits a characteristic voltage dependence with maximum at about 0 mV at low external K(+) (< or =2 mM) and with 50 Na(+). This dependency is not significantly affected by changes in external pH in the range from pH 9 to pH 6. Only below pH 6, the voltage dependence of pump current becomes less steep, and may be attributed to a pH-dependent inhibition of the forward pump cycle by external Na(+). External stimulation of the pump by K(+) in the absence of Na(+) can be described by a voltage-dependent K(m) value with an apparent valency z(K). At higher external pH the z(K) value is reduced. The transient current signal in the absence of external K(+) can be described by the sum of three exponentials with voltage-dependent time constants of about 50 ms, 700 micros and less than 100 micros during pulses to 0 mV. The charge distribution was calculated by integration of the transient current signals. The slowest component and the associated charge distributions do not significantly depend on external pH changes. The intermediate component of the transients is represented by a voltage-dependent rate constant which shows a minimum at about -120 mV and increases with decreasing pH. Nevertheless, the contribution to the charge movement is not altered by pH changes due to a simultaneous increase of the amplitude of this component. We conclude that reduction of external pH counteracts external K(+) and Na(+) binding.  相似文献   

3.
The Na(+)/K(+) ATPase is an almost ubiquitous integral membrane protein within the animal kingdom. It is also the selective target for cardiotonic derivatives, widely prescribed inhibitors for patients with heart failure. Functional studies revealed that ouabain-sensitive residues distributed widely throughout the primary sequence of the protein. Recently, structural work has brought some consensus to the functional observations. Here, we use a spectroscopic approach to estimate distances between a fluorescent ouabain and a lanthanide binding tag (LBT), which was introduced at five different positions in the Na(+)/K(+) ATPase sequence. These five normally functional LBT-Na(+)/K(+) ATPase constructs were expressed in the cell membrane of Xenopus laevis oocytes, operating under physiological internal and external ion conditions. The spectroscopic data suggest two mutually exclusive distances between the LBT and the fluorescent ouabain. From the estimated distances and using homology models of the LBT-Na(+)/K(+) ATPase constructs, approximate ouabain positions could be determined. Our results suggest that ouabain binds at two sites along the ion permeation pathway of the Na(+)/K(+) ATPase. The external site (low apparent affinity) occupies the same region as previous structural findings. The high apparent affinity site is, however, slightly deeper toward the intracellular end of the protein. Interestingly, in both cases the lactone ring faces outward. We propose a sequential ouabain binding mechanism that is consistent with all functional and structural studies.  相似文献   

4.
In this study, cell permeable diacylglycerols, sn-1,2-dioctanoglycerol (DiC8), and sn-1-oleoyl-2-acetylglycerol (OAG) were found to downregulate the activity of Na(+)-K+ pump in Xenopus laevis oocytes. Both DiC8 and OAG decreased the binding of [3H]ouabain to intact oocytes while phorbol esters did not appreciably influence the same. These diacylglycerols inhibited the amiloride-sensitive 22Na+ influx and ouabain-sensitive 86Rb+ uptake in the oocytes. Furthermore, DiC8 prevented the 22Na+ efflux from the oocytes preloaded with 22Na+. Addition of H-7 to DiC8- and OAG-treated oocytes stimulated the pump activity curtailed by the two latters. The impairment of Na(+)-K+ pump activity by diacylglycerols suggests that protein kinase C activators may stimulate endocytosis of membrane-coupled Na(+)-K+ ATPase.  相似文献   

5.
An inhibition of the Na(+)/K(+)ATPase was previously shown to accompany and potentiate apoptosis in different experimental models. Since TNF-alpha is known to be a pro and anti-apoptotic cytokine, this work was undertaken to study the effect of TNF-alpha on the Na(+)/K(+)ATPase in HepG2 cells and to determine the signaling pathway involved. Cells were incubated for 1 h with TNF-alpha in presence and absence of PDTC, SP600125 and FK009, respective inhibitors of NF-KB, c-JNK, and caspases. The activity of the pump was assayed by measuring the ouabain-inhibitable release of inorganic phosphate, and changes in its expression were monitored by western blot analysis. TNF-alpha decreased significantly the activity and protein expression of the Na(+)/K(+)ATPase. NF-kappaB and caspases were found to be the main effectors of the cytokine, mediating respectively down-regulation and up-regulation of the pump. Their activity was however modulated at 1 h by c-JNK, which stimulated the caspases and inhibited NF-kappaB, resulting in a net inhibition of the ATPase, and probably favoring the apoptotic pathway.  相似文献   

6.
The spontaneously active Br neuron from the brain-subesophageal ganglion complex of the garden snail Helix pomatia rhythmically generates regular bursts of action potentials with quiescent intervals accompanied by slow oscillations of membrane potential. We examined the involvement of the Na(+)/K(+) pump in modulating its bursting activity by applying a static magnetic field. Whole snail brains and Br neuron were exposed to the 10-mT static magnetic field for 15?min. Biochemical data showed that Na(+)/K(+)-ATPase activity increased almost twofold after exposure of snail brains to the static magnetic field. Similarly, (31)P NMR data revealed a trend of increasing ATP consumption and increase in intracellular pH mediated by the Na(+)/H(+) exchanger in snail brains exposed to the static magnetic field. Importantly, current clamp recordings from the Br neuron confirmed the increase in activity of the Na(+)/K(+) pump after exposure to the static magnetic field, as the magnitude of ouabain's effect measured on the membrane resting potential, action potential, and interspike interval duration was higher in neurons exposed to the magnetic field. Metabolic pathways through which the magnetic field influenced the Na(+)/K(+) pump could involve phosphorylation and dephosphorylation, as blocking these processes abolished the effect of the static magnetic field.  相似文献   

7.
We previously demonstrated that the alpha-subunit of human nongastric H,K-ATPase (Atp1al1) can assemble with the gastric H,K-ATPase beta-subunit (betaHK) into an active ion pump upon coexpression in Xenopus oocytes. To gain insight into enzymatic functions, we have analyzed the Atp1al1-betaHK complex using a baculovirus expression system. The efficient formation of the functional Atp1al1-betaHK complex in membranes of Sf-21 insect cells was obtained upon co-infection with recombinant baculoviruses expressing Atp1al1 and betaHK. Expression of either protein alone did not produce active ATPase. The effects of K(+), Na(+), pH, and ATP and inhibitors on ATPase activity of the recombinant Atp1al1-betaHK complex were analyzed. The Atp1al1-betaHK complex was shown to exhibit significant ATPase activity in nominally K(+)-free medium. The addition of K(+) stimulated the ATP hydrolysis up to 3-fold with K(m) approximately 116 microM K(+). The ATPase activity was moderately sensitive to ouabain and to SCH 28080 with apparent K(i) values in K(+)-free medium of approximately 64 microM and approximately 93 microM, respectively. Potassium exhibited strong antagonism toward both inhibitors. Assays of the ouabain-sensitive ATPase activity revealed inhibitory effects of Na(+) with the apparent K(i) of approximately 24 mM in the absence of added K(+) and with K(i) within the range of 60-70 mM in the presence of > or = 1 mM K(+). Thus, the human nongastric H,K-ATPase represented by the recombinant Atp1al1-betaHK complex exhibits enzymatic properties of K(+)-dependent ATPase sensitive to ouabain, SCH 28080, and Na(+). It differs from Na,K-ATPase in cation dependence and differs from gastric H,K-ATPase and Na,K-ATPase in sensitivity to inhibitors.  相似文献   

8.
Basolateral membranes of Aplysia californica foregut epithelia contain an ATP-dependent Na(+)/K(+) transporter (Na(+)/K(+) pump or Na(+)/K (+) -ATPase). This Na(+)/K(+) pump accounts for both the intracellular Na(+) electrochemical potential (micro) being less than the extracelluar Na(+) micro and the intracellular K(+) micro being more than the extracellular K(+ ) micro. Also, K(+) channel activity resides in both luminal and basolateral membranes of the Aplysia foregut epithelial cells. Increased activity of the Na(+)/K(+) pump, coupled to luminal and basolateral membrane depolarization altered the K(+) transport energetics across the basolateral membrane to a greater extent than the alteration in K(+) transport energetics across the luminal membrane. These results suggest that K(+) transport, either into or out of the Aplysia foregut epithelial cells, is rate-limiting at the basolateral membrane.  相似文献   

9.
10.
The seven members of the FXYD protein family associate with the Na(+)-K(+) pump and modulate its activity. We investigated whether conserved cysteines in FXYD proteins are susceptible to glutathionylation and whether such reactivity affects Na(+)-K(+) pump function in cardiac myocytes and Xenopus oocytes. Glutathionylation was detected by immunoblotting streptavidin precipitate from biotin-GSH loaded cells or by a GSH antibody. Incubation of myocytes with recombinant FXYD proteins resulted in competitive displacement of native FXYD1. Myocyte and Xenopus oocyte pump currents were measured with whole-cell and two-electrode voltage clamp techniques, respectively. Native FXYD1 in myocytes and FXYD1 expressed in oocytes were susceptible to glutathionylation. Mutagenesis identified the specific cysteine in the cytoplasmic terminal that was reactive. Its reactivity was dependent on flanking basic amino acids. We have reported that Na(+)-K(+) pump β(1) subunit glutathionylation induced by oxidative signals causes pump inhibition in a previous study. In the present study, we found that β(1) subunit glutathionylation and pump inhibition could be reversed by exposing myocytes to exogenous wild-type FXYD3. A cysteine-free FXYD3 derivative had no effect. Similar results were obtained with wild-type and mutant FXYD proteins expressed in oocytes. Glutathionylation of the β(1) subunit was increased in myocardium from FXYD1(-/-) mice. In conclusion, there is a dependence of Na(+)-K(+) pump regulation on reactivity of two specifically identified cysteines on separate components of the multimeric Na(+)-K(+) pump complex. By facilitating deglutathionylation of the β(1) subunit, FXYD proteins reverse oxidative inhibition of the Na(+)-K(+) pump and play a dynamic role in its regulation.  相似文献   

11.
Current generated by the electrogenic Na+/K+ pump protein was determined in oocytes of Xenopus laevis as strophantidine-sensitive current measured under voltage clamp. Under conditions of reduced intracellular [Na+] and [ATP], both to values below 1 mM, and in extracellularly K(+)-free medium, the Na+/K+ pump seems to operate in a reversed mode pumping Na+ into the cell and K+ out of the cell. This is demonstrated by strophantidine-induced hyperpolarization of the membrane and inward-directed current mediated by the pump protein. In addition, strophantidine-sensitive uptake of 22Na+ can be demonstrated under these conditions. The pump current decreases with membrane depolarization as expected for a pump cycle that involves inward movement of positive charges during Na+ translocation.  相似文献   

12.
Modulation of the current generated by the Na+/K+ pump by membrane potential and protein kinases was investigated in oocytes of Xenopus laevis. In addition to a positive slope region in the current-voltage (I-V) relationship of the Na+/K+ pump, a negative slope region has been described in these cells (Lafaire & Schwarz, 1986) and has been attributed to a voltage-dependent apparent Km value for pump stimulation by external [K+] (Rakowski et al., 1991). To study this feature in more detail, Xenopus oocytes were used for comparative analysis of the negative slope of the I-V relationship of the endogenous Na+/K+ pump and of the Na+/K+ pump of the electric organ of Torpedo californica expressed in the oocytes. The effects of stimulation of protein kinases A and C on the negative slope were also analyzed. To investigate the negative slope over a wide potential range, experiments were performed in Na(+)-free solution and in the presence of high concentrations of Ba2+ and tetraethylammonium, to block all nonpump related K(+)-sensitive currents. Pump currents and pump-mediated fluxes were determined as differences of currents or fluxes in solutions with and without extracellular K+. The voltage dependence of the Km value for stimulation of the Na+/K+ pump by external [K+] shows significant species differences. Over the entire voltage range from -140 to +20 mV, the Km value for the Na+/K+ pump of Torpedo electroplax is substantially higher than for the endogenous pump and exhibits more pronounced voltage dependence. For the Xenopus pump, the voltage dependence can be described by voltage-dependent stimulation by external [K+] and can be interpreted by voltage-dependent K+ binding, assuming that an effective charge between 0.37 and 0.56 of an elementary charge is moved in the electrical field. An analogous evaluation of the voltage dependence of the Torpedo pump requires the assumption of movement of two effective charges of 0.16 and 1.0 of an elementary charge. Application of 1,2-dioctanoyl-sn-glycerol (diC8, 10-50 microM), which is known to stimulate protein kinase C, reduces the maximum activity of the Xenopus pumps in the oocyte membrane by 40% and modulates the voltage dependence of K+ stimulation. For the endogenous Xenopus pump, the apparent effective charge increased from 0.37 to 0.51 of elementary charge and the apparent Km at 0 mV increased from 0.46 to 0.83 mM. For the Torpedo pump, one of the apparent effective charges increased from 1.0 to 2.5 of elementary charge.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Apart from Na(+),K(+)-ATPase, a second sodium pump, Na(+)-stimulated, K(+)-independent ATPase (Na(+)-ATPase) is expressed in proximal convoluted tubule of the mammalian kidney. The aim of this study was to develop a method of Na(+)-ATPase assay based on the method previously used by us to measure Na(+),K(+)-ATPase activity. The ATPase activity was assayed as the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Na(+)-ATPase activity was calculated as the difference between the activities measured in the presence and in the absence of 50 mM NaCl. Na(+)-ATPase activity was detected in the renal cortex (3.5 +/- 0.2 mumol phosphate/h per mg protein), but not in the renal medulla. Na(+)-ATPase was not inhibited by ouabain or an H(+),K(+)-ATPase inhibitor, Sch 28080, but was almost completely blocked by 2 mM furosemide. Leptin administered intraperitoneally (1 mg/kg) decreased the Na(+),K(+)-ATPase activity in the renal medulla at 0.5 and 1 h by 22.1% and 27.1%, respectively, but had no effect on Na(+)-ATPase in the renal cortex. Chronic hyperleptinemia induced by repeated subcutaneous leptin injections (0.25 mg/kg twice daily for 7 days) increased cortical Na(+),K(+)-ATPase, medullary Na(+),K(+)-ATPase and cortical Na(+)-ATPase by 32.4%, 84.2% and 62.9%, respectively. In rats with dietary-induced obesity, the Na(+),K(+)- ATPase activity was higher in the renal cortex and medulla by 19.7% and 34.3%, respectively, but Na(+)-ATPase was not different from control. These data indicate that both renal Na(+)-dependent ATPases are separately regulated and that up-regulation of Na(+)-ATPase may contribute to Na(+) retention and arterial hypertension induced by chronic hyperleptinemia.  相似文献   

14.
We have characterized the physiological and biochemical properties of the Na(+)/K(+) pump and its molecular expression in L8 rat muscle cells. Pump properties were measured by [(3)H]ouabain binding and (86)Rb uptake. Scatchard plot analysis of specific ouabain binding indicated the presence of a single family of binding sites with a B(max) of approximately 135 fmol/ mg P and a K(D) of 3.3 x 10(-8). (86)Rb uptake due to specific pump activity was found to be 20% of the total in L8 cells. The results indicated lower affinity of L8 cells for ouabain and lower activity of the pump than that reported for chick or rat skeletal muscle in primary culture. Both the alpha(1) and beta(1) protein and mRNA isoforms were expressed in myoblasts and in myotubes, while the alpha(2), alpha(3), and beta(2) isoforms were not detectable. We attempted to overcome low physiological expression of the Na(+)/K(+) pump by employing a vector expressing an avian high affinity alpha subunit. This allowed identification of the transfected subunit separate from that endogenously expressed in L8 cells. Successful transfection into L8 myoblasts and myotubes was recognized by anti-avian alpha subunit monoclonal antibodies. Fusion index, Na(+)/K(+) pump activity, and the level of the transmembrane resting potential were all significantly greater in transfected L8 (tL8) cells than in non-tL8. The total amount of alpha subunit (avian and rat) in tL8 cells was greater than that (only rat) in non-tL8 cells. This relatively high abundance of the Na(+)/K(+) pump in transfected cells may indicate that avian and rat alpha subunits hybridize to form functional pump complexes.  相似文献   

15.
16.
Although metabolic rate is considered to be useful as a general indicator of the biological effects of exposure to metals, it is seldom measured in conjunction with specific physiological, biochemical or cellular parameters. The purpose of this investigation was to examine the influence of cadmium (Cd) exposure on metabolic rate and gill Na(+)/K(+) ATPase activity in golden shiners (Notemigonus crysoleucas). Shiners were exposed to six levels of Cd (ranging from control to the maximum sublethal concentration) for 24- and 96-h periods. After 24-h, metabolic rate and Na(+)/K(+) ATPase activity of individual fish were strongly correlated. Shiners exposed to the four highest Cd concentrations (500, 800, 1100, and 1400 μg L(-1)) for 24-h exhibited a shock response that was characterized by mean values for metabolic rate and Na(+)/K(+) ATPase activity that were significantly lower compared to the control. Although results for 96-h exposures reflect a repair/recovery phase, there was no significant correlation between metabolic rate and Na(+)/K(+) ATPase activity. Metabolic rate of shiners was significantly elevated (65-100%) at all concentrations compared to the control after 96-h, whereas Na(+)/K(+) ATPase activity did not differ from the control. Elevated metabolic rate after 96-h likely reflects the influence of a variety of energetically demanding processes associated with repair and recovery.  相似文献   

17.
Epithelial sodium channels (ENaC) are composed of three structurally related subunits (alpha, beta, and gamma). Each subunit has two transmembrane domains termed M1 and M2, and residues conferring cation selectivity have been shown to reside in a pore region immediately preceding the M2 domains of the three subunits. Negatively charged residues are interspersed within the M2 domains, and substitution of individual acidic residues within human alpha-ENaC with arginine essentially eliminated channel activity in oocytes, suggesting that these residues have a role in ion permeation. We examined the roles of M2 residues in contributing to the permeation pore by individually mutating residues within the M2 domain of mouse alphaENaC to cysteine and systematically characterizing functional properties of mutant channels expressed in Xenopus oocytes by two-electrode voltage clamp. The introduction of cysteine residues at selected sites, including negatively charged residues (alphaGlu(595), alphaGlu(598), and alphaAsp(602)) led to a significant reduction of expressed amiloride-sensitive Na(+) currents. Two mutations (alphaE595C and alphaD602C) resulted in K(+)-permeable channels whereas multiple mutations altered Li(+)/Na(+) current ratios. Channels containing alphaD602K or alphaD602A also conducted K(+) whereas more conservative mutations (alphaD602E and alphaD602N) retained wild type selectivity. Cysteine substitution at the site equivalent to alphaAsp(602) within beta mENaC (betaD544C) did not alter either Li(+)/Na(+) or K(+)/Na(+) current ratios, although mutation of the equivalent site within gamma mENaC (gammaD562C) significantly increased the Li(+)/Na(+) current ratio. Mutants containing introduced cysteine residues at alphaGlu(595), alphaGlu(598), alphaAsp(602), or alphaThr(607) did not respond to externally applied sulfhydryl reagent with significant changes in macroscopic currents. Our results suggest that some residues within the M2 domain of alphaENaC contribute to the channel's conduction pore and that, in addition to the pore region, selected sites within M2 (alphaGlu(595) and alphaAsp(602)) may have a role in conferring ion selectivity.  相似文献   

18.
The myoinositol transporter SMIT (SLC5A3) and the betaine/γ-aminobutyric acid (GABA) transporter BGT1 (SLC6A12) accomplish cellular accumulation of organic osmolytes and thus contribute to cell volume regulation. Challenges of cell volume constancy include energy depletion, which compromises the function of the Na(+)/K(+) ATPase leading to cellular Na(+) accumulation and subsequent cell swelling. Energy depletion is sensed by AMP-activated protein kinase (AMPK). The present study explored whether AMPK influences the activity of SMIT and BGT1. To this end, cRNA encoding SMIT or BGT1 was injected into Xenopus oocytes with and without additional injection of wild type AMPK (AMPKα1+AMPKβ1+AMPKγ1), of constitutively active (γR70Q)AMPK (AMPKα1+AMPKβ1+(R70Q)AMPKγ1) or of catalytically inactive (αK45R)AMPK ((K45R)AMPKα1+AMPKβ1+AMPKγ1). Substrate-induced current in dual electrode voltage-clamp experiments was taken as measure of osmolyte transport. As a result, in SMIT-expressing, but not in water-injected Xenopus oocytes, myoinositol, added to the extracellular bath, generated a current (I(SMIT)), which was half maximal (K(M)) at ≈7.2μM myoinositol concentration. Furthermore, in BGT1-expressing, but not in water-injected Xenopus oocytes, GABA added to the bath generated a current (I(GABA)), which was half maximal (K(M)) at ≈0.5mM GABA concentration. Coexpression of AMPK and of (γR70Q)AMPK but not of (αK45R)AMPK significantly decreased I(SMIT) and I(GABA). AMPK decreased the respective maximal currents without significantly modifying the respective K(M). In conclusion, the AMP-activated kinase AMPK is a powerful regulator of the organic osmolyte transporters SMIT and BGT1 and thus interacts with cell volume regulation.  相似文献   

19.
Treatment with ouabain led to massive death of principal cells from collecting ducts (C7-MDCK), indicated by cell swelling, loss of mitochondrial function, an irregular pattern of DNA degradation, and insensitivity to pan-caspase inhibitor. Equimolar substitution of extracellular Na(+) by K(+) or choline(+) sharply attenuated the effect of ouabain on intracellular Na(+) and K(+) content but did not protect the cells from death in the presence of ouabain. In contrast to ouabain, inhibition of the Na(+)/K(+) pump in K(+)-free medium increased Na(+)(i) content but did not affect cell survival. In control and K(+)-free medium, ouabain triggered half-maximal cell death at concentrations of approximately 0.5 and 0.05 microM, respectively, which was consistent with elevation of Na(+)/K(+) pump sensitivity to ouabain in K(+)-depleted medium. Our results show for the first time that the death of ouabain-treated renal epithelial cells is independent of the inhibition of Na(+)/K(+) pump-mediated ion fluxes and the [Na(+)](i)]/[K(+)](i) ratio.  相似文献   

20.
Because firing properties and metabolic rates vary widely, neurons require different transport rates from their Na(+)/K(+) pumps in order to maintain ion homeostasis. In this study we show that Na(+)/K(+) pump activity is tightly regulated by a novel process, RNA editing. Three codons within the squid Na(+)/K(+) ATPase gene can be recoded at the RNA level, and the efficiency of conversion for each varies dramatically, and independently, between tissues. At one site, a highly conserved isoleucine in the seventh transmembrane span can be converted to a valine, a change that shifts the pump's intrinsic voltage dependence. Mechanistically, the removal of a single methyl group specifically targets the process of Na(+) release to the extracellular solution, causing a higher turnover rate at the resting membrane potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号